
Published By :
EPRA Journals

CC License

Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
 Mrs.M.Josephin Immaculate Ruba

EDITORIAL ADVISORS
1. Prof. Dr.Said I.Shalaby, MD,Ph.D.
 Professor & Vice President

Tropical Medicine,
Hepatology & Gastroenterology, NRC,
Academy of Scientific Research and Technology,
Cairo, Egypt.

2. Dr. Mussie T. Tessema,
Associate Professor,
Department of Business Administration,
Winona State University, MN,
United States of America,

3. Dr. Mengsteab Tesfayohannes,
Associate Professor,
Department of Management,
Sigmund Weis School of Business,
Susquehanna University,
Selinsgrove, PENN,
 United States of America,

4. Dr. Ahmed Sebihi
Associate Professor
Islamic Culture and Social Sciences (ICSS),
Department of General Education (DGE),
Gulf Medical University (GMU),
UAE.

5. Dr. Anne Maduka,
Assistant Professor,
Department of Economics,
Anambra State University,
Igbariam Campus,
Nigeria.

6. Dr. D.K. Awasthi, M.SC., Ph.D.
Associate Professor
Department of Chemistry,
Sri J.N.P.G. College,
Charbagh, Lucknow,
Uttar Pradesh. India

7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
Assistant Professor,
School of Social Science,
University of Jammu,
Jammu, Jammu & Kashmir, India.

8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,

Institute for Studies in Industrial Development,
An ICSSR Research Institute,
New Delhi- 110070, India.

9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
Associate Professor & HOD
Department of Biochemistry,
Dolphin (PG) Institute of Biomedical & Natural
Sciences,

 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838
SJIF Impact Factor (2017): 5.705

Research &
Development

EPRA International Journal of

(IJRD)

Monthly Peer Reviewed & Indexed
International Online Journal

Volume: 3, Issue:9, September 2018

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |13 |

SJIF Impact Factor: 5.705 Volume: 3 | Issue: 9 |September| 2018 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

ROBUST REVERSIBLE DATA HIDING BY
BINARY-BLOCK EMBEDDING

Pooja Wagh
1

1M.Tech Student, Department Of Computer Science & Engineering, MPCT Gwalior,

Madhya Pradesh, India

Dr. Shivnath Ghosh
2

2Associate Professor& H.O.D, Department Of Computer Science & Engineering, MPCT

Gwalior, Madhya Pradesh, India

ABSTRACT
The proposed work is based on a binary-block embedding (BBE) framework. This method is used to hide the secret

message behind the digital image. The design algorithm is described as RDHEI using BBE. The idea is to hide

secret bits in lower bit planes inside the cover image. The lower planes are kept empty for the secret hiding

operation in sequential manner. BBE-RDHEI employs a bit-level scrambling process after secret data embedding

to spread embedded secret data to the entire marked encrypted image so that it can prevent secret data from loss. A

security key design mechanism is proposed to enhance the security level of BBE-RDHEI. The processes of BBE-

RDHEI are fully reversible. The secret data and original image can be reconstructed independently and

separately. Experiments and comparisons show that BBERDHEI has an embedding rate nearly twice larger than

the state-of-the-art algorithms, generates the marked decrypted images with high quality, and is able to withstand

the brute-force, differential, noise and data loss attacks.

KEYWORDS: Binary-Block Embedding (BBE) Reversible data hiding Image encryption Encrypted

domain.

INTRODUCTION
Reversible Data Hiding (RDH) is a technique that
slightly alters digital media (e.g. images or videos) to
embed secret data while the original digital media can
be completely recovered without any error after the
hidden messages have been extracted [1]. It is quite
useful for various applications in military, medical
science or law enforcement, where the original
images or videos should not be damaged. A number
of RDH methods were proposed in recent years.
Histogram shifting (HS)[3] shifts several or the
maximum points in histogram bins of the original
image to reserve spare space for data embedding [1].
To improve the embedding capacity, prediction-error
based HS algorithms were introduced [2–4].

Difference expansion (DE) [5–7] as another type of
RDH divides the image into pixel pairs and embeds

secret data into the expanded difference values.
Integer transforms[9] have been used to modify the
values of pixel pairs to embed secret data [8–10].
These RDH methods need the redundancy
information of image pixels in original images to

embed secret data, such as the statistic or difference
information of pixel pairs. They are not suitable for
encrypted images that are noise-like and have no
redundancy information available. Recently,
reversible data hiding in encrypted images (RDHEI)
has attracted people's attention. It aims to protect both
the original images and secret data simultaneously.
For example, the content owner intends to store an

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |14 |

original image in the Cloud that is hosted by a third
party. To prevent the content of the original image
from being exposed to the third party, the content
owner encrypts the image before sending it to the
Cloud. Meanwhile, the system administrator of the
third party is able to add some notations to the
encrypted image without knowing its original content.
Depending on whether the data extraction and image
recovery processes can be performed separately,
existing RDHEI methods can be classified into joint
and separate methods. For joint methods, Peuch et al.
[11] first encrypted each block of the original image
by the advanced encryption standard (AES) and then
embedded one bit of the secret data into each
encrypted block by bit substitution. The encrypted
image embedded with secret data is called the marked
encrypted image. Secret data extraction is just to
obtain the bits in the substituted positions. Original
image recovering is accomplished by analyzing the
local standard deviation of the marked encrypted
image during the decryption procedures. This
algorithm has a limited payload and yields the
decrypted image with low quality. Another joint
RDHEI algorithm proposed by Zhang [12] encrypts
the original image using bit-level XOR and then
embeds one bit of secret data into each block of the
encrypted image by shifting the three least significant
bits (LSBs) of half pixels within the block. This

algorithm may suffer from incorrect results of data
extraction and image recovering[27] in the non-
smoothness regions in the image when the block size
is relatively small (e.g., 8×8). Hong et al. [13]
proposed an improved version of this algorithm by
modifying its smoothness measurement function. The
error rate of data extraction is reduced for small block
sizes. In Wu et al.'s joint method [14], one bit of the
secret data is embedded by flipping the ith (i1 ≤ ≤ 6)
bit of pixels in a certain group. This method also may

suffer from incorrect results of data extraction and

image recovery. To allow the receiver with different

privileges to obtain different contents (the secret data,
the original image or both) from the marked
encrypted image, researchers devote themselves to
develop separable RDHEI methods. Zhang et al.
[15,16] proposed two separable methods that
compress the encrypted image to accommodate secret
data. In Wu et al.'s separable method [14], one bit of
the secret data is embedded by replacing the ith (i ≥ 7
for the later one) bit of pixels in a certain group.
Secret data extraction and image recovering are using
the prediction error. Compared with algorithms in
[12,13,15], the methods in [14] reduce the number of
incorrectly extracted secret data bits and improve the
visual quality of the marked decrypted image. Qian
[17] proposed a separable RDHEI algorithm using n-
nary histogram[3] modification. However, it results in

Salt & Pepper noise in the marked encrypted images.
Besides, instead of working in the spatial domain,
Qian et al. [18] proposed an RDHEI method to embed
secret data in the encrypted JPEG bitstream. In [19]
and [20], homomorphic encryption is utilized to
encrypt the original image. However, image size
increases because the used homomorphic encryption
algorithm maps the pixel value into a larger data
range. In above mentioned RDHEI methods, the
content owner does nothing except for image
encryption. These methods have a small payload
and/or a high error rate in data extraction and image
recovering. To overcome these problems, some
researchers aim to develop another type of separable
RDHEI method by reserving the spare space for
secret data embedding before image encryption. In
Ma's method [21], it reserves the spare space by
embedding some LSBs in a part of the cover image
into the rest part of the cover image with using
simplified RDH method in [22]. The self-embedding
of LSBs ensures the reversibility of image recovering.
Zhang et al. [23] selected some pixels and applied a
histogram shifting method to their estimation error
values for accommodating secret data. Previous
RDHEI methods in [12,13,15,14,21] have a limited
embedding rate and are under the only situation that
the images are for the Cloud storage with no
transmission involved and thus no attacks [18].

Considering the scenario that hospitals at different
locations build a bridge for co-operation, many
medical images embedded with patients' information
or treatment history records will be shared among
several working teams, thus medical images will be
transmitted over public channels that they may
inevitably experience some noise and data loss. In

this scenario, these RDHEI methods may suffer from
secret data loss when the marked encrypted image is
partially damaged or lost. For example, the method in
[21] uses a part of the LSB plane in the encrypted
image to accommodate the secret data when
embedding rate is less than 0.2 bpp. If the LSB plane
is illegally removed, all secret data will lose. In the
separable method in [14], the secret data are
embedded in the ith most significant bit (MSB) plane,

it will also suffer from complete loss of secret data
when this MSB plane is removed or damaged. To
improve the embedding rate while enhancing security
and robustness[29], this paper introduces the binary-
block embedding (BBE) method to embed message
bits in binary images. Based on BBE, we further
propose a reversible data hiding algorithm in
encrypted images (BBE-RDHEI). It first uses BBE to
embed binary bits in several LSB planes of the
original image into its MSB planes. BBE-RDHEI
encrypts the original image and hides the secret data
into its LSB planes. A bit-level scrambling process is

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |15 |

then employed after secret data embedding to ensure
that the proposed BBE-RDHEI can resist the noise

and data loss attacks. Using different security[30]
keys[28], the receiver is able to obtain the secret data,
marked decrypted image, decrypted image, or all of
them from the marked encrypted image. Our main
contributions in this work are listed as follows:
(1)We propose a new BBE algorithm for reversible
data hiding in the encryption domain, which is totally

different from traditional RDH methods. BBE can be

utilized in different types of images such as binary,
gray-scale[24], medical and cartoon images.
(2) Based on BBE, we further propose a method of
reversible data hiding in encrypted images, BBE-
RDHEI. Compared with existing state-of-the-art
methods, it has significantly improved embedding
capacity and quality of the marked decrypted image.
BBE-RDHEI can also be simplified and utilized for
binary images while existing RDHEI methods are
designed only for gray-scale images.
(3) To significantly enhance the security level of
BBE-RDHEI, we also propose a security key design
mechanism such that BBE-RDHEI is able to resist the

differential attack while existing RDHEI methods
cannot.
(4) To enhance the robustness of RDHEI methods in
withstanding noise and data loss attacks, we introduce
a bit-level scrambling process to BBE-RDHEI after
secret data embedding to spread out embedded secret
data over the entire marked encrypted image. As a
result, BBE-RDHEI is able to recover most of the
secret data even if one bit-plane[6] (e.g., LSB or
MSB) of the marked encrypted[25] image is
completely removed. Moreover, any bit-level
scrambling algorithm can be used in our BBE-
RDHEI. This is another security benefit of BBE-

RDHEI. The rest of this paper is organized as
follows:
(1) Section 2 will introduce the BBE algorithm.
Section 3 will propose BBE-RDHEI. Simulation
results and comparisons will be provided in Section 5.
Section 6 will provide security and robustness
analysis of the proposed BBE-RDHEI. Section 7 will
draw a conclusion.
(2) 2. Binary-block embedding.
(3) In this section, we propose a binary-block
embedding (BBE) algorithm to embed message bits
into a binary image.
(4) 2.1. BBE
(5) BBE first divides the binary image[26] into a
number of non-overlapping blocks, separates them
into two groups named good and bad blocks,
respectively. A good block is able to be embedded
with messages while a bad one is not. In the message
embedding phase, BBE first labels the first 2 or 3 bits
of each block with special bits that indicate the block
types. Then the rest bits of a good block will be
replaced with its structure information and message
bits while the rest bits of a bad block will be kept
unchanged. Next, we present the BBE algorithm in
detail.

(6)2.1.1. Block labeling Assume that a binary image
with a size of MN × is able to embed secret data. We
first divide the image into a set of non-overlapping
blocks with a size of ss ×1 2, where ss,≥ 312. For a
certain block, we let n ss =* 1 2 be the total number of
pixels within the block, and mn n = min{,} 01be the
minimum value of n0 and n1, where n0 and n1 are the
numbers of 0 s and 1 s within the block, respectively.
According to a threshold na, we then classify these
blocks into five categories as shown in Table 1,
namely: Good-I/II/III/IV block and Bad block, where a
good block is able to embed secret data, while a bad
one cannot.

Table 1

Block Types and block-labeling bits

Condition Blocktype Blockdescription Block-labeling bits

m > na Bad Cannot embed data 00
m = n0 = 0 Good-I all pixels are 1 11
m = n1 = 0 Good-II all pixels are 0 10
1 = ≤ m ≤ na, no < m Good-III most of pixels are 1 011
1 = ≤ m ≤ na, n1 < no Good-IV most of pixels are 0 010

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |16 |

Fig. 1. BBE examples with the block size of

5×5. The first and second rows show the five

types of original blocks and their

corresponding embedded results. White and

gray boxes represent the pixels with values of 1

and 0, respectively. The green, orange and blue

areas are utilized to embed payload, parameter

m and the positions of m original pixels in the

block. (a) and (b) are Good-I and Good-II

blocks with c = 23 b and their embedded

results; (c) Good-III block with c = 10 b and its

embedded result; (d) Good-IV block with c = 7

b and its embedded result; and (e) Bad block

withc =− 2b and its result after embedding.

(For interpretation of the references to color in

this figure, the reader is referred to the web

version of this article.)
In a Good-I (Good-II) block, all pixel values are
equal to 1 (0), while in a Good-III (Good-IV) block,
less than or equal to na pixel values are equal to 1
(0). An illustrative example can also be found in the
first line of Fig. 1. To embed the secret data, we first
need to determine the block type. As shown in Table
1, Good-I (Good-II) block can be easily
distinguished by checking the value of m, where m is
obtained once a block is given. In order to
distinguish Good-III (Good-IV) blocks from Bad
ones, we calculate the threshold na by-
na = argmax { n – 3 – max { [log2 x],1} – x {log2n]
≥ 0},1 ≤ x ≤ [0.16*n] }

If mn ≥ a, it is a Bad block; otherwise, it is a Good-III

(Good-IV) block. In Eq.(1), expressions x max{⌈log ⌉,
1} 2 and x n ⌈log ⌉ 2 represent the bit length to store x
and these x pixels' locations, respectively. These 2
parts are utilized to store the structure information of
Good-III and Good-IV blocks, and they will be
discussed in Section 2.1.2. Thus, after the block is
labeled by 3 labeling bits and embedded with the
structure information of x pixels, if there is still larger
than or equal to 0 bits left, the current block is
considered as a good block; otherwise, it is a bad
block. Therefore, na is the maximum number of
pixels that can be represented by the block itself with

a given block size. It is utilized to distinguish bad
blocks from good ones. Here, x should be less than n,
and the reason why we set x less than or equal to n

⌈0.16* ⌉ will be discussed in Section 2.4.1. After
determining the block type, we label each block by
replacing its first 2 or 3 pixels with the corresponding
block-labeling bits as shown in Table 1. Before
labeling blocks, the first 2 or 3 original pixels of each
block are picked up and stored with the secret
message for the purpose of image recovery at the
receiver side.

2.1.2.Structure Information Embedding
In BBE, a good block is self-embedded with its
original structure information and may have an
additional spare space to accommodate secret
message bits. The first 2 bits of each bad block are
extracted and embedded into good blocks together
with secret messages because they are directly

replaced by the block-labeling bits ′00′ after the
block labeling procedure. For a Good-I (Good-II)
block, no additional structure information needs to
be embedded except for two labeling bits. For a
Good-III (Good-IV) block, parameter m and the
locations of m pixels need to be embedded as the
structure information. Here, p bits are utilized to

embed parameter m, where p n = max{⌈log ⌉, 1} a2.
Then, we use the variable length of bits to store the
locations of m pixels. We first scan pixels in a block
from top to bottom and left to right to obtain the
location index values zzn{}(1 ≤ ≤) ii m i=1 of these
m pixels. For the first of m pixels located at z1,
without any additional information, z1 could be any

integer in the range of n [1,]. Thus, we use n⌈log⌉2
bits to store its location index. For the second pixel
located at z2, it could only be in the range of

zn[+1,]1. Thus, we can use nz⌈log(−)⌉2 1 instead of

n ⌈log ⌉ 2 bits to store its location index. Therefore,
the actual location information of m pixels is stored
as the distance t { } ii m =1 between the current
pixel and its previous pixel, where ti is calculated by
Eq. (3). For example, for the second pixel, we store
its location information by converting the decimal

value t2 into nz ⌈log (−)⌉ 2 1 -bit binary sequence.

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |17 |

In this manner that considers the relative distance
between adjacent pixels, we are able to use fewer
bits to store the locations of m pixels. We then
continue in this process until all m pixels' locations
are stored. Thus, qi bits are required to store the ith
pixel's location, and totally pq (+∑) im i=1 bits are
needed to store the parameter m and m pixels'
locations.

 * *, ()- +
, -

 * +

2.1.3. Message Embedding
The BBE payload consists of two parts: and, where is
a bit sequence containing all of the first 2 original bits
in each bad block and denotes secret messages. After
embedding structure information, we replace the rest
bits of a good block with cb bits of payload, where cb
is the block capacity and calculated by-

 *

 ∑

Algorithm I
Input: binary image I, block size s1 x s2, payload P.
1: Divide I into non-overlapping blocks Bi.j with a
size of s1 x s2 .
Calculate parameters na, p and qi using Eqs. (1) and
(2).
2: for each block Bi.j do
3: Calculate n0, n1, m and cb according to Eq. (4).
4: if m > nac
5: set the first two pixels to [0,0].
6: else if m=0 and n0=0
7: set the first two pixels to [1,1], replace other
pixels by cb bits of the payload.
8: else if m=0 and n1=0
9: set the first two pixels to [1,0], replace other
pixels by cb bits of the payload.
10: else if 1 ≤ m ≤ na then
11: if n0 < n1 then
12 : set the first three pixels to [0,1,1].
13: else
14: set the first three pixels to [0,1,0].
15: endif
16: replace other pixels with the parameter m,
locations of m pixels, and cb bits of the payload.
17: endif
18: end for
Output: Embedded image I.
Illustrates an example of BBE. A binary image is
divided into 5 blocks with size of 5×5. The payload
includes the first two pixels of the bad block in Fig.
1(e) and 61 bits of secret messages. BBE embeds

payload into all good blocks one by one. For the
block in Fig. 1(d), it is a Good-IV block where most
pixels are 0s. Parameters are m=3, p=2, q=5 1 ,qq
==4 23,c=7b. BBE labels the block in Fig. 1(d) by

setting its first three pixels to′010′ (the white area),
embeds m=3=(11)2 to the subsequent two pixels (the
orange area), puts the location of three pixels (white
boxes in the original block in Fig. 1(d)) tz== 9=
(01001)112,
 tzz=−=12−9 = 3= (0011)2212 and

 tzz=−=14−12=2=(0010)3322 to the following 13
pixels (the blue region). The remaining 7 pixels (the
green area) are utilized to embed payload. For the bad

block in Fig. 1(e), its first two original pixels′11′ are
embedded at the beginning of the green area in Fig.

1(a). BBE replaces its first two pixels as′00′ to indicate
that it is a bad block, and keeps its other pixels
unchanged.

2.2. Message extraction and image
recovering
The message extraction and image recovering includes
two phases: 1) payload extraction and good block
recovering; 2) bad block recovering. In Phase 1, the
BBE scans the first 3 labelling bits of each block to
determine the block type. For a good block, BBE
extracts parameter m, the locations of m pixels and
payload bits from the block, and then reconstructs the
block based on the extracted information. Otherwise,
for a bad block, BBE records the block index. In Phase
2, BBE recovers the first 2 pixels of each bad block
using the extracted payload and keeps the rest pixels
unchanged.

2.2.1. Phase 1
For each image block, we first determine its block type
by checking its first 3 pixels. If it is a bad block, we do
nothing except for recording its block index. If it is a
Good-I (Good-II) block, we obtain the payload bits
from the last n(− 2) bits and recover the block by
setting all bits to 1 s (0 s for the Good-II block). For a
Good-III (Good-IV) block, we first extract the labeling
bits and structure information from its first nc (−) b
pixels, where cb is the block capacity; and then obtain
the payload bits from the rest pixels of the block. To
extract secret data from a Good-III (Good-IV) block,
we first obtain the raster-scanned bit sequence aa [,…,]
n12 from the block, and calculate parameter m from
the specific p bits aa [,…,] p 4 3+. Then, we calculate
the location index distance t {^} ii m =1 of m pixels by
the following bits in an orderly way. Here, t ^ i is the
location index distance between the ith and i(− 1) the
pixels, and it is sequentially extracted from the
subsequent q{ } ii m =1 bits, where qi is calculated by
Eqs. (5). After obtaining t ^ i, we then calculate the
actual locations of m pixels by Eq. (6). For example,
for the first pixel, we obtain its location index zt = ^1 1

according to the following qn= ⌈log ⌉1 2 bits. For the

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |18 |

second pixel, because its location can only in the range
of tn [^ +1,] 1, the maximum possible bits to store its

location index should be q n t = ⌈log (−^)⌉2 21. Thus,
we obtain the distance ^ 2 between the first and second
pixels from the subsequent q2 bits and calculate the
actual location ztt =+ ^21 2 of the second pixel. We
continue in this manner until all structure information
of m pixels are successfully obtained.

 ̂ * *, ()- +
, -

 ̂ * ̂ ̂
 ̂

 ̂ *

 ∑ ̂

2.2.2. Phase 2 after obtaining the
extracted payload and bad block indices
We recover the first two pixels of each bad block
using two bits of the payload. Thus, the remaining
payload bits are extracted messages. The procedures
of message extraction and image recovering of BBE
are given in Algorithm.

Algorithm 2. Message extraction and recovering.

Input: Image I with message block size s1 x s2,
1: Initialization: p= [], bad block index b=[].

2: Divide I into non-overlapping blocks Bi.j with a
size of s1 x s2 .
Calculate parameters n and p.
3: for each block Bi.j do
4: Scan Bi.j to obtain the pixel sequence
[a1,a2,…….,an].
5: if [a1, a2]=[1,1] then

6: P[P ,[a3,a4,…..…,an]].Bi.jSet all pixels to1.
7: else [a1, a2]=[1,1] then

8: P[P,[a3,a4,…….,an]]. Bi.jSet all pixels to 0.
9: else [a1, a2]=[1,1] then
10: Calculate m, obtain the m pixels location zi using
eq. (6).

11: P[P,[a4+p+∑

 ……,an]].

12: if a3=1 then

13: Bi.jset all pixels to 1 except for the m pixels
with location zi.
14: else

15: Bi.jset all pixels to 0 except for the m pixels
with location zi.
16: end if
17: else

18: b[b;(i,j)]. % record the bad block index
19: endif
20: end for
21: Extract B and M from P.
22: for each bad block Bi.j by 2 bits of B.
23: end for
Output: Recovered image I, message M.

Fig. 2. Embedding results of BBE with a block

sizes == 4 12. The first and second rows show

the original images and their embedded results

with an embedding rate (a) 0.7100 bpp, (b)

0.3536 bpp, (c) 0.6332 bpp and (d) 0.6730 bpp.

2.3. SIMULATION RESULTS
BBE introduces noise to uniform regions, changes the
uniform regions, and keeps only the edges. These
operations yield an image with more noise. Fig. 2
shows the embedding results of four 512×512 binary
images using the BBE algorithm with the block size

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |19 |

of 4×4. As we can obverse, the more all-white or all-
black blocks the original image contains, the higher
embedding rate BBE can achieve. Meanwhile, the
embedded images become more noise-like.

2.4. DISCUSSION
Here, we discuss the threshold na, embedding rate
and advantages of BBE.

2.4.1.Threshold na As shown in Eq. (1) and Table
1, the block sizes ×1 2 will influence the value of na,
which is a threshold to decide the block types. Fig. 3
visually shows the relationship between the threshold
na and block pixel number n. We set ss 3 ≤, ≤ 4012,

thus, n ∈ [9, 1600]. As can be seen, na increases with
the increase of n. For example, if == 3 12, we can

obtain the threshold na=1. This means that a 3×3
image block containing at most one 0 or 1 is
considered as a good block, otherwise, it is a bad
block. In addition, when the block size is 5×5, n n /a
reaches the maximum value of 0.16. Therefore, in Eq.

(1), x should be less than or equal to n ⌈0.16* ⌉.
2.4.2. Embedding rate To analyze the
embedding rate
 we apply BBE with different block sizes to 10,000
binary test images that are generated by binarizing the
gray-scale images from BOWSBase1 with the
threshold calculated by Otsu's method [24]. Table 2
lists the average embedding rates of all test.

na/n nan

Fig.3. Relationship between threshold na and block pixel number n.

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |20 |

Table 2
Average embedding rate of 10000 binary images using BBE with different block sizes

Block size Avg. Embedding Block Size Avg. Embedding

S1×S2 Rate(.bpp) S1×S2 Rate(.bpp)

3×3 0.6628 11×11 0.7308

4×4 0.7431 14×14 0.7014

5×5 0.7600 17×17 0.6975

6×6 0.7628 21×21 0.6568

7×7 0.7685 28×28 0.6180

8×8 0.7679 33×33 0.5708

9×9 0.7348 40×40 0.5072

Images with different block sizes. Here we set

ss=12. From the result, we can observe that,the avg.

embedding rate reaches the maximum value when

the block size is 7×7. When block size is less than

7×7, the average embedding rate increases with the

block size enlarging, and it decreases when block

size is larger than 7×7.

2.4.3. Advantages

The proposed BBE has at least the following

advantages. Namely, BBE is able to-(a) achieve a

higher embedding rate when the original image

contains more all-white or all-black blocks.

(b) perform data hiding and image quality

degradation within one single step. This is because

BBE embeds secret messages by modifying the

pixels values in good blocks while keeping the

randomness of bad blocks.

(c) Completely recover the secret messages and

original image without any error.

(

 Content Owner

Fig.4. The structure of BBE-RDHEI.

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |21 |

3. BBE based reversible data hiding in
encrypted images
In this section, we propose a BBE based reversible
data hiding algorithm for encrypted images (BBE-
RDHEI). The structure of BBERDHEI is shown in
Fig. 4. It is composed of three processes: generation
of the encrypted image, generation of the marked
encrypted image, data extraction/image recovery.
These processes are accomplished by the content
owner who provides the original image, the data hider
who has the secret data to be embedded and the
receiver, respectively.
Data Receiver Hider
The content owner uses the BBE algorithm to embed
binary bits of lower bit-planes of the original image
into its higher bitplanes.such that its lower bit-planes
can be reserved for hiding secret data in the
subsequent processes. The image is then encrypted
using the image encryption key KI. The data hider
encrypts the secret data using the data encryption key
KD, embeds them into the reserved lower bit-planes
in the encrypted image, and scrambles the image
using the sharing encryption key KS to generate the
marked encrypted image which will be transmitted

over public channels. These three encryption keys are
randomly generated by users.

3.1. Random sequence generation
Before presenting three processes of BBE-RDHEI in
detail, we discuss the security key design and random
sequence generation. Their framework is shown in
Fig. 5. A secure hash algorithm 2 (SHA) is used to
generate two random hash sequences with the inputs
of a user-defined security key K and image/secret
data, respectively. Then the two hash sequences are
XORed to generate the inner random sequence K. K
is utilized to initialize a chaotic system to produce the
random sequence that will be used for encrypting the
original image and secret data. The random sequence
K is used for secret data extraction and image
recovering. Thus, it is called the decryption key. The
length of security key K is user-defined and the
decryption key K is with the same length of the
output of SHA. Using the framework in Fig. 5, any
change in the image/secret data.

 K

Image or Random Sequence

secret data

Fig.5. The generation framework of the security key

& random sequence.

3.1.1. Security key design BBE-RDHEI has three
encryption keys, KI, KD and KS. They all are random
bit sequences generated by users. In addition to
obtaining the marked encrypted image, BBE-RDHEI
also produces three corresponding decryption keys
KI, KD and KS for the receiver to extract the secret
data, marked decrypted image, decrypted image, or
all of them if he holds KS along with KD, KI or both,
espectively. These decryption keys are linked with

their corresponding encryption keys and contents of
images or secret data as shown in Fig. 5. They are
defined by

[

 ̂
 ̂
 ̂

] [

 ()
 ()

 ()
] ⨁ [

 ()
 ()

 ()
]

Where K is an SHA; I, P and E represent the original
image, secret data, and encrypted image, respectively.
Note that users have flexibility to choose any SHA for
Eq. (8). In this paper, we select SHA-13 for
simulations. Thus, three decryption keys and outputs

of having a length of 160 bits. According to Eq. (8)KI
is linked to KI and the original image I; KD is linked
to KD and the secret data P; KS is linked to KS and
the encrypted image E. Thus, any change in the
encryption key or the input of will result in a

SHA

SHA

Chaotic System

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com

|22 |

completely different decryption key and thus another
chaotic sequence.

3.1.2. Chaotic sequence generation
A chaotic sequence is a random sequence that is
sensitive to the parameter and initial value of its
chaotic system. Any chaotic system can be used to
generate the chaotic sequence, and we choose the

Logistic-Sine system (LSS) [25] for demonstrations
and it is defined by xyxxy sin
πx=((1−))+(4−)()/4)mod1 ii ii+1 (9) where the

initial value x0 (x∈[0,1]0) and parameter y(y∈(0,4])
are calculated by Algorithm 3 with a binary hash
sequence H. Then, we will use this initial condition
(xy,0) in rest of this paper.

Algorithm 3. Generation of initial value and

parameter of LSS

Input: Binary sequence

H = [h1,h2,……….h160](hi ϵ {0,1},
1 ≤ i ≤ 160).

1: u1 ∑

2: u2 ∑

 3: v1 ∑

 4: v2 ∑

 5: Initial value X0

 ⁄

 6: Parameter y0

 ⁄

 7: for i = 1 to 2 do

 8: x1 (xi-1uivi/240 + xi-1) mod1

 9: y1 (yi-1uivi/240 + yi-1) mod4
 10: end for

 11: x0 x2

 12: y 4 - y2

 Output Initial conditions (x0,y).

SIMULATION RESULTS &
COMPARISON
The proposed BBE-RDHEI is implemented in
Matlab. All test images in our experiments have a
size of 512×512 and the pixel value range of[0,
255]. Fig. 6 shows the simulation results of BBE-
RDHEI in the standard gray-scale Lena image with
parameter s=8 and the embedding rate r=1.6834
bpp. As we can obverse, the marked encrypted
image is a noise-like image. It protects both the
original image and secret data. The unauthorized

user has extremely difficulty to obtain any useful
information from it. Two decrypted images (Figs.

6(c) and (d)) have no visual difference although the

LSB lanes of the image in Fig. 6(c) carry secret
data. Table 4 lists the average embedding rates of
10,000 images in BOWS Base4 using BBE-RDHEI

under different block sizes. As can be seen, when
the block size s=5, the images have the maximum
embedding rates. When s is larger than 5, the
embedding rate decreases while the block size
increases. Even s is as large as 20, BBE-RDHEI
has an average embedding rate of 1.6874 bpp. To
compare the embedding rate, we apply BBE-
RDHEI and five existing RDH methods to several
selected images as shown in Fig. 7. The results are
plotted in Fig. 8. In experiments, we set the block
size.

CONCLUSION
In this paper, we have proposed a binary block
embedding (BBE) method for embedding messages
in binary images. Based on BBE, Graph showing
PSNR Vs Embedding Capacity we have proposed
a reversible data hiding algorithm in encrypted
images (BBE-RDHEI) in which BBE is utilized for
reserving the bit space for embedding secret data.
BBE-RDHEI employs a bit-level scrambling
process after secret data embedding to spread
embedded secret data to the entire marked
encrypted image. A security key design mechanism
is proposed to enhance its security level. Both BBE
and BBE-RDHEI have been proved to be
reversible. Simulations and comparisons have
shown that BBE-RDHEI outperforms other existing
methods in terms of the embedding rate and PSNR
results of the decrypted images. Security analysis
has demonstrated the robustness of BBE-RDHEI in

against different attacks.

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |23 |

Fig.6 Data hiding & extraction using BBE-RDHEI

with the blocl size 8*8 & embedding

rate=1.6834bpp.(a)The original image;(b)The marked

encrypted image;(c)The marked decrypted image; &

(d)The decrypted image.

Fig.7 Proposed GUI

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |24 |

Fig.8 Graph showing PSNR Vs Embedding Capacity

Fig.9 Graph showing embedding capacity vs no bits
hidden

__________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 5.705|_______________

Volume: 3 | Issue: 9 | September| 2018 | www.eprajournals.com |25 |

REFERENCES
1. Z. Ni, Y.-Q. Shi, N. Ansari, W. Su, “Reversible data

hiding”,”IEEE Trans. Circuits Syst. Video Technol”.
16 (3) (2006) 354–362.

2. X. Li, B. Li, B. Yang, T. Zeng, “General framework
to histogram-shifting-based reversible data hiding”,
“IEEE Signal Process. Lett”. 22 (6) (2013) 2181–
2191.

3. P. Tsai, Y.-C. Hu, H.-L. Yeh, “Reversible image
hiding scheme using predictive coding and histogram
shifting”, Signal Process. 89 (6) (2009) 1129–1143.

4. W. Hong, T.-S. Chen, C.-W. Shiu, “Reversible data

hiding for high quality images using modification of
prediction errors”, “J. Syst. Softw.” 82 (11) (2009)
1833–1842.

5. J. Tian, “Reversible data embedding using a

difference expansion”, “IEEE Trans. Circuits Syst.
Video Technol”. 13 (8) (2003) 890–896.

6. A. Alattar, “Reversible watermark using the

difference expansion of a generalized integer
transform”, “IEEE Trans. Image Process.” 13 (8)
(2004) 1147–1156.

7. H.-J. Kim, V. Sachdev, Y.Q. Shi, J. Nam, H.-G.

Choo, “A novel difference expansion transform for
reversible data embedding”, “IEEE Trans. Inf.
Forensics Secur”. 3 (3) (2008) 456–465.

8. D. Coltuc, J.-M. Chassery, “Very fast watermarking
by reversible contrast mapping”, “IEEE Signal
Process.” Lett. 14 (4) (2007) 255–258.

9. X. Wang, X. Li, B. Yang, Z. Guo, “Efficient
generalized integer transform for reversible
watermarking”, “IEEE Signal Process.” Lett. 17 (6)
(2010) 567–570.

10. F. Peng, X. Li, B. Yang, “Adaptive reversible data
hiding scheme based on integer”

11. M.C.W. Puech, O. Strauss, “A reversible data hiding
method for encrypted images, Security, Forensics,
Steganography, and Watermarking of Multimedia
Contents X,” in: Proceedings of SPIE 6819.

12. X. Zhang, “Reversible data hiding in encrypted
image”, “IEEE Signal Process”. Lett. 18 (4) (2011)
255–258.

13. W. Hong, T.-S. Chen, H.-Y. Wu, “An improved
reversible data hiding in encrypted images using side
match”, “IEEE Signal Process. Lett.” 19 (4) (2012)
199–202.

14. X. Wu, W. Sun, “High-capacity reversible data
hiding in encrypted images by prediction error”,
“Signal Process.” 104 (2014) 387–400.

15. X. Zhang, “Separable reversible data hiding in
encrypted image”, “IEEE Trans. Inf. Forensics
Secur.” 7 (2) (2012) 826–832.

16. X. Zhang, Z. Qian, G. Feng, Y. Ren, “Efficient
reversible data hiding in encrypted images”, “J. Vis.
Commun. Image Represent.” 25 (2) (2014) 322–328.

17. Z. Qian, X. Han, X. Zhang, “Separable reversible
data hiding in encrypted images by n-nary histogram

modification”, in: Proceedings of the Third
International Conference on Multimedia Technology,
2013, pp. 869–876.

18. Z. Qian, X. Zhang, W. Shuozhong, “Reversible data
hiding in encrypted JPEG bitstream”, “IEEE Trans.
Multimed”. 16 (5) (2014) 1486–1491.

19. Y.-C. Chen, C.-W. Shiu, G. Horng, “Encrypted
signal-based reversible data hiding with public key
cryptosystem”, J. Vis. Commun. Image Represent. 25
(5) (2014) 1164–1170.

20. X. Zhang, J. Wang, Z. Wang, H. Cheng, “Lossless
and reversible data hiding in encrypted images with
public key cryptography”, “IEEE Transactions on
Circuits and Systems for Video Technology” PP (99).

21. K. Ma, W. Zhang, X. Zhao, N. Yu, F. Li,
“Reversible data hiding in encrypted images by
reserving room before encryption”, IEEE Trans. Inf.
Forensics Secur. 8 (3) (2013) 553–562.

22. L. Luo, Z. Chen, M. Chen, X. Zeng, Z. Xiong,
“Reversible image watermarking using interpolation
technique”, IEEE Trans. Inf. Forensics Secur. 5 (1)
(2010) 187–193.

23. W. Zhang, K. Ma, N. Yu, “Reversibility improved
data hiding in encrypted images”, Signal Process. 94
(2014) 118–127.

24. N. Otsu, “A threshold selection method from gray-
level histograms”,” IEEE Trans. Syst. Man Cybern”.
9 (1) (1979) 62–66.

25. Y. Zhou, L. Bao, C.P. Chen, “A new 1D chaotic
system for image encryption”, Signal Process. 97
(2014) 172–182.

26. Y. Zhou, W. Cao, C.P. Chen, “Image encryption using
binary bitplane”, Signal Process. 100 (2014) 197–
207.

27. H.W. Wang, Shuozhong, “Cyber warfare:
Steganography vs. steganalysis”, Communications of
the ACM 47.

28. W. Diffie, M.E. Hellman, “New directions in
cryptography”, “IEEE Trans. Inf. Theory” 22 (6)
(1976) 644–654.

29. F.B.M. Barni, T. Furon, “A general framework for
robust watermarking security”, “Signal Process” 83
(10) (2003) 2069–2084.

30. F. Cayre, C. Fontaine, T. Furon, “Watermarking
security: theory and practice”, “IEEE Trans. Signal
Process”. 53 (10) (2005) 3976–3987. [31] R.
Anderson, Security engineering: A Guide to Building
Dependable Distributed Systems, Wiley.

