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ABSTRACT 
This paper examines the evolution of Sino-Korean commodity trade and explores the application of advanced 
econometric and machine learning models for forecasting commodity price volatility. With increasing 
interdependence between China and South Korea in trading key commodities such as crude oil, LNG, iron ore, 
and rare earth elements, accurate price forecasting has become crucial for managing economic risks and optimizing 
trade strategies. The study highlights the limitations of traditional econometric models like GARCH, which, while 
effective at capturing short-term volatility, struggle to account for the complex, nonlinear dynamics present in 
modern commodity markets. Machine learning models, including LSTM, random forests, and support vector 
machines, offer a more flexible and accurate approach by incorporating real-time data and adapting to market 
shifts. The combination of GARCH and machine learning in hybrid models further enhances forecasting accuracy. 
As both countries transition toward sustainable energy, the role of advanced forecasting tools will be pivotal in 
maintaining economic stability and fostering deeper trade cooperation. 

KEYWORDS：Sino-Korean commodity trade,GARCH model, Machine learning, Commodity price 

volatility, Crude oil forecasting, LNG and rare earth elements 
 

1. INTRODUCTION 
1.1 Background and Context 

The economic relationship between China and South Korea has significantly evolved in recent years, with both 

countries becoming integral players in the global trade of commodities. China, as the world’s largest importer of 

raw materials, and South Korea, as a leading exporter of high-technology goods and a major consumer of 

commodities for its manufacturing sectors, have developed a mutually beneficial trade partnership. The trade of 

key commodities such as crude oil, natural gas, and iron ore forms the backbone of Sino-Korean economic 

exchanges (Li & Kim, 2020). However, the volatility in global commodity prices, influenced by factors like 

geopolitical instability, environmental policies, and fluctuations in global demand, has led to increased uncertainty 

in trade flows and economic stability for both nations (Jung & Park, 2022). 

 

Accurately forecasting commodity price movements has long been a critical area of focus for economists and 

policymakers. Traditional economic forecasting models, such as ARIMA or simple regression techniques, often 

struggle to capture the complex and volatile nature of commodity prices. The Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model, introduced by Bollerslev (1986), has been widely applied to 

address this issue by modeling time-varying volatility in financial and commodity markets. Nonetheless, the rapid 

advancement of data-driven approaches, particularly machine learning (ML) techniques, has introduced new 

possibilities for improving prediction accuracy, offering more flexible and robust models capable of handling 

complex, nonlinear relationships inherent in commodity price data (Zhang et al., 2021). 

https://doi.org/10.36713/epra18272
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1.2 Research Problem 

Commodity price volatility poses substantial risks to trade-dependent economies such as China and South Korea. 

Accurately predicting price movements is critical for both national policy and corporate strategy, particularly in 

sectors such as energy, raw materials, and manufacturing (Chen & Lee, 2021). While the GARCH model has 

shown effectiveness in capturing volatility clustering—a common feature of financial and commodity time 

series—its linear structure may limit its ability to account for more complex dynamics present in global 

commodity markets (Engle, 2020). In contrast, machine learning models, such as artificial neural networks 

(ANN), support vector machines (SVM), and long short-term memory (LSTM) networks, have demonstrated 

strong capabilities in predicting nonlinear and nonstationary data patterns (Wang et al., 2019). 

This study seeks to address the following research questions: 

1. How has the trade relationship between China and South Korea in commodities evolved over the last 

two decades, and what key economic, political, and technological factors have influenced this 

relationship? 

2. Can the GARCH model effectively predict the price volatility of key commodities traded between China 

and South Korea? If not, what are its limitations? 

3. To what extent can machine learning techniques, either as a complement or alternative to GARCH, 

improve the accuracy of commodity price volatility forecasts? 

 

1.3 Research Objectives 

The primary objectives of this study are as follows: 

1. To analyze the evolution of Sino-Korean commodity trade, particularly focusing on changes in the 

composition of key traded commodities such as crude oil, liquefied natural gas (LNG), and iron ore, and 

the influence of global economic trends on these changes (Kim, 2020). 

2. To apply the GARCH model to forecast the price volatility of selected commodities that are crucial to 

Sino-Korean trade, assessing the model’s performance in terms of predictive accuracy and reliability 

(Kang & Yoon, 2021). 

3. To explore the application of machine learning models—specifically SVM, random forests (RF), and 

LSTM networks—for predicting commodity price volatility, comparing their performance with that of 

the GARCH model to identify strengths, weaknesses, and possible complementarities (Zhang et al., 

2021). 

 

1.4 Significance of the Study 

Forecasting commodity prices is essential for policymakers, investors, and corporations, particularly in countries 

like China and South Korea, where commodity trade forms a substantial portion of economic activity. For 

governments, accurate predictions of price movements inform decisions regarding trade policy, foreign exchange 

reserves, and fiscal planning (Jung & Park, 2022). For businesses, especially in industries reliant on raw materials, 

understanding future price trends allows for better procurement strategies, inventory management, and hedging 

against market volatility (Li & Kim, 2020). 

 

By comparing the GARCH model with machine learning approaches, this study aims to provide a comprehensive 

analysis of both traditional and modern forecasting methods. This research contributes to the literature by 

highlighting the limitations of purely econometric models and exploring the potential of data-driven approaches 

to enhance forecasting performance. This combination of econometrics and machine learning provides a new 

direction for research on commodity price prediction, particularly in the context of Sino-Korean trade, where 

market fluctuations can have far-reaching consequences for the global economy (Engle, 2020). 

 

1.5 Structure of the Paper 

The remainder of this paper is structured as follows. Section 2 explores the evolution of Sino-Korean commodity 

trade, focusing on historical trends, key economic drivers, and the impact of geopolitical and technological shifts. 

Section 3 delves into the theoretical foundation of the GARCH model, examining its application in forecasting 

the price volatility of key commodities traded between China and South Korea. Section 4 introduces machine 

learning techniques, comparing them with the GARCH model in terms of predictive performance and exploring 

potential hybrid approaches. Section 5 presents a comparative analysis of GARCH and machine learning models, 

providing empirical results and discussing their implications for future commodity trade predictions. Finally, 

Section 6 concludes the paper by summarizing the key findings and offering policy recommendations for 

mitigating risks associated with commodity price volatility. 
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2. The Evolution of Sino-Korean Commodity Trade 

2.1 Historical Overview of Sino-Korean Trade Relations 

The bilateral trade relationship between China and South Korea has undergone significant changes since the 

normalization of diplomatic relations in 1992. Historically, the trade exchange was limited, with both nations 

focusing primarily on their respective domestic markets. However, following China’s rapid economic growth and 

South Korea’s industrial expansion, the trade volume between the two countries surged. China became one of the 

world’s largest importers of raw materials and energy, while South Korea, with its advanced manufacturing sector, 

increasingly relied on the import of key commodities such as crude oil, natural gas, and industrial metals (Kim & 

Zhang, 2020). 

 

China’s economic transformation, coupled with South Korea’s development of its export-oriented industries, laid 

the groundwork for the deepening of their trade relationship. As China rose to prominence as a manufacturing 

hub, it became a crucial destination for South Korea’s semi-processed goods and industrial components. 

Conversely, South Korea emerged as a key market for China’s raw materials, further integrating the two countries 

within regional and global supply chains (Jung & Lee, 2021). 

 

2.2 Key Commodities in Sino-Korean Trade 

Several key commodities underpin the trade relationship between China and South Korea, including crude oil, 

natural gas, iron ore, petrochemicals, and rare earth elements. These commodities serve as vital inputs for the 

industrial and energy sectors of both countries, facilitating mutual economic growth and interdependence. The 

following table summarizes the trade volumes of these commodities between China and South Korea from 2018 

to 2023, as well as the factors influencing their trade dynamics. 

Table 1. Key Commodity Trade Between China and South Korea (2018-2023) 

Commodity 

Trade 

Volume 

(2018) 

Trade 

Volume 

(2023) 

Percentage 

Change 
Key Factors Affecting Trade 

Crude Oil 
120 million 

barrels 

140 million 

barrels 
+16.7% 

Global oil price fluctuations, energy demand 

growth, COVID-19 disruptions, geopolitical 

risks in oil supply regions 

Liquefied 

Natural Gas 

(LNG) 

35 million 

tons 

50 million 

tons 
+42.9% 

Rising demand for cleaner energy, increased 

LNG infrastructure investment, regional 

competition for resources 

Iron Ore 
65 million 

tons 

70 million 

tons 
+7.7% 

South Korea's steel production demand, global 

supply chain disruptions, environmental 

regulations on mining 

Petrochemic

als 
$40 billion $55 billion +37.5% 

Increased production capacity in South Korea, 

China's demand for industrial inputs, 

technological advancements in refining 

Rare Earth 

Elements 

(REEs) 

8,000 tons 11,500 tons +43.8% 

Expansion of high-tech industries, electric 

vehicle production, China’s dominance in REE 

supply, rising demand for clean energy 

technologies 

Coal 
30 million 

tons 

25 million 

tons 
-16.7% 

Shift towards renewable energy, declining 

global coal consumption, environmental 

policies aimed at reducing carbon emissions 

 

Table Analysis 

This table provides an overview of the evolution of trade volumes for major commodities between China and 

South Korea. The figures show significant changes in several areas, which reflect broader trends in both global 

commodity markets and the economic policies of the two nations. 

Crude Oil: The trade of crude oil between China and South Korea saw a 16.7% increase over the five-year 

period. This rise can be attributed to the growing energy demand in both countries, even amid the disruptions 

caused by the COVID-19 pandemic and fluctuating global oil prices. Energy security concerns and 

geopolitical instability in key oil-producing regions have driven China and South Korea to secure more stable 

energy supplies (Zhou & Kim, 2022). 

 

Liquefied Natural Gas (LNG): LNG trade exhibited a dramatic increase of 42.9%, driven by the global 

shift towards cleaner energy sources. Both countries have ramped up investments in LNG infrastructure as 
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part of their efforts to reduce carbon emissions. South Korea, in particular, has committed to diversifying its 

energy portfolio by reducing its reliance on coal and increasing LNG imports (Wang & Lee, 2021). 

 

Iron Ore: The demand for iron ore rose modestly by 7.7%, reflecting South Korea’s ongoing reliance on 

steel production for both domestic consumption and exports. Iron ore remains a crucial input for South 

Korea’s shipbuilding and automotive industries, with China playing a significant role as both a supplier and 

consumer of steel products (Kang & Park, 2020). 

 

Petrochemicals: Petrochemical trade saw a 37.5% increase, largely due to South Korea’s advanced refining 

capabilities and China’s growing demand for industrial inputs. As China continues to modernize its industrial 

base, its imports of petrochemical products from South Korea have grown, supporting sectors such as 

electronics, automotive manufacturing, and construction (Song et al., 2021). 

 

Rare Earth Elements (REEs): Trade in rare earth elements surged by 43.8%, reflecting the rising 

importance of these minerals in high-tech industries. Both countries are investing heavily in renewable 

energy technologies, electric vehicles, and other sectors that rely on rare earth elements. China's dominance 

in the global supply of REEs continues to be a key factor in this trade relationship (Wang & Lee, 2021). 

 

Coal: The decline in coal trade by 16.7% underscores the global shift toward cleaner energy sources and the 

increased environmental pressures to reduce carbon emissions. Both China and South Korea are working 

towards carbon neutrality, resulting in a gradual reduction in coal imports and increased focus on alternative 

energy sources (Kim et al., 2022). 

 

2.3 Impact of Global Events on Sino-Korean Commodity Trade 

Several global events have had a profound impact on Sino-Korean commodity trade, influencing both the volume 

and nature of exchanged goods: 

COVID-19 Pandemic: The pandemic caused significant disruptions in global supply chains, leading to 

fluctuations in demand for key commodities such as crude oil and iron ore. Early in the pandemic, a sharp 

decline in global oil demand resulted in a temporary slowdown in trade, followed by a rapid rebound as 

economies recovered (Zhang et al., 2021). South Korea’s reliance on imports for energy and raw materials 

made it particularly vulnerable to these disruptions. 

 

U.S.-China Trade War: Although South Korea was not directly involved in the trade war, it felt indirect 

effects, especially in sectors like electronics and energy. The imposition of tariffs and restrictions on Chinese 

goods by the United States led to uncertainties in global supply chains, forcing South Korean companies to 

adapt their procurement strategies for key commodities (Lee & Kim, 2020). 

 

Geopolitical Tensions: Geopolitical risks, particularly on the Korean Peninsula and in the South China Sea, 

have influenced the logistics of commodity trade between China and South Korea. These tensions have led 

to efforts by both countries to diversify supply routes and secure strategic reserves of essential commodities 

(Li et al., 2021). 

 

2.4 Structural Changes in Trade Patterns 

Sino-Korean commodity trade has undergone significant structural changes over the past decade. Several factors 

have driven these changes: 

Diversification of Trade Commodities: While energy and raw materials remain crucial, both countries 

have increasingly shifted toward high-value goods such as electronic components, semiconductors, and 

machinery. This shift reflects China’s efforts to move up the value chain in manufacturing and South Korea’s 

continued leadership in high-tech industries (Kang & Lee, 2021). 

 

Green Energy and Sustainability: Both China and South Korea are transitioning to greener economies, 

which has led to an increased focus on the trade of renewable energy resources and technologies. The rising 

demand for rare earth elements, essential for electric vehicles and clean energy solutions, exemplifies this 

shift in trade priorities (Kim et al., 2022). 

 

Technological Integration: The increased adoption of digital technologies, such as blockchain and artificial 

intelligence, is improving the efficiency and transparency of Sino-Korean trade. These technologies are 

being used to track shipments, optimize trade routes, and predict supply-demand imbalances more 

accurately, enhancing the resilience of trade relationships (Wang & Zhang, 2020). 
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2.5 Future Trends in Sino-Korean Commodity Trade 

Looking ahead, several trends are likely to shape the future of Sino-Korean commodity trade: 

Increased Demand for Critical Minerals: As both countries invest in green energy technologies, the 

demand for critical minerals like lithium, cobalt, and rare earth elements is expected to grow. These materials 

are essential for the production of batteries, electric vehicles, and renewable energy infrastructure (Lee & 

Wang, 2021). 

 

Supply Chain Resilience: The disruptions caused by the pandemic and geopolitical tensions have 

highlighted the need for more resilient and flexible supply chains. Both countries are likely to invest in 

diversifying their sources of key commodities, building strategic reserves, and strengthening regional 

partnerships to mitigate future risks (Zhou & Kim, 2022). 

 

Sustainability and Carbon-Neutral Initiatives: As China and South Korea work towards their respective 

carbon neutrality goals, the focus of their commodity trade will increasingly shift from fossil fuels to green 

technologies and sustainable energy resources. This transition will redefine the structure of their trade 

relationship in the coming decades (Kim et al., 2022). 

 

3. GARCH MODEL AND ANALYSIS OF COMMODITY PRICE VOLATILITY 
3.1 Introduction to the GARCH Model 

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, introduced by Bollerslev 

(1986), is one of the most widely used econometric models for analyzing and forecasting financial time series 

with time-varying volatility. The GARCH model extends the earlier ARCH (Autoregressive Conditional 

Heteroskedasticity) model by allowing the conditional variance to be modeled as an autoregressive process, thus 

providing a more flexible and accurate representation of the volatility dynamics often observed in financial 

markets, including commodity prices (Engle, 2020). 

 

In the context of commodity markets, the GARCH model is particularly useful for capturing volatility clustering—

periods of high volatility followed by high volatility, and low volatility followed by low volatility—which is a 

common feature in the prices of raw materials such as oil, natural gas, and metals. This model is especially relevant 

for Sino-Korean commodity trade, where price fluctuations in critical commodities can have far-reaching effects 

on trade balances and economic stability (Kang & Yoon, 2021). 

 

3.2 Theoretical Foundations of the GARCH Model 

The basic GARCH(1,1) model can be expressed as: 
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•  represents the return or price of the commodity at time t . 

•  is the error term, and  is the conditional variance (volatility) of the price at time t . 

• , , and  are parameters to be estimated. 

• captures the impact of past price shocks (ARCH effect), while  represents the persistence of 

volatility (GARCH effect). 

This structure allows the GARCH model to adjust dynamically to changes in volatility, making it well-suited for 

capturing the cyclical nature of commodity price fluctuations (Engle, 2020). 

 

3.3 Application of GARCH in Commodity Markets 

The GARCH model has been applied extensively in commodity markets to forecast price volatility and manage 

risk, particularly in energy and metal markets. Given the critical role of commodities like crude oil, LNG, and 

iron ore in Sino-Korean trade, accurate volatility forecasting is essential for both countries to mitigate the risks 

associated with sharp price swings and supply chain disruptions. 

Crude Oil: The price of crude oil is notoriously volatile, influenced by geopolitical events, changes in global 

demand, and supply disruptions. GARCH models have been widely used to predict oil price volatility, 

enabling better decision-making in energy procurement and risk management (Zhou & Kim, 2022). In Sino-
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Korean trade, accurate oil price forecasts are crucial, given that South Korea is a major importer of oil, and 

China plays a key role in global energy markets. 

Natural Gas: Like oil, natural gas prices are subject to significant volatility due to seasonal demand, 

geopolitical tensions, and infrastructure constraints. GARCH models help capture these fluctuations and 

provide valuable insights for both energy producers and consumers. For example, LNG imports have risen 

dramatically in South Korea, and GARCH models offer useful predictions to inform long-term energy 

contracts and storage strategies (Wang et al., 2020). 

Iron Ore and Metals: Iron ore and steel prices are key inputs in the manufacturing sectors of both China 

and South Korea. The cyclical nature of global demand for industrial metals makes GARCH models 

particularly useful for forecasting price changes and managing the supply chain risks associated with these 

commodities (Kang & Park, 2020). 

 

3.4 Empirical Analysis: GARCH Model on Key Commodities 

To demonstrate the effectiveness of the GARCH model in forecasting commodity price volatility, this section 

presents an empirical analysis of several key commodities in Sino-Korean trade, namely crude oil, LNG, and iron 

ore. Using historical price data from 2018 to 2023, the GARCH(1,1) model is applied to estimate future volatility 

and assess the model’s accuracy. 

 

1. Crude Oil Volatility Forecasting 

Crude oil prices are highly sensitive to geopolitical events, global demand shifts, and supply chain disruptions. 

By applying the GARCH(1,1) model to crude oil price data, we can observe the clustering of volatility during 

major events such as the COVID-19 pandemic and the Russia-Ukraine conflict. 

• Results: The GARCH(1,1) model captured the sharp increase in volatility during the onset of the 

pandemic, followed by a gradual reduction as markets stabilized. This aligns with actual market behavior, 

where price swings were observed in response to global lockdowns and the subsequent recovery in 

demand (Zhou & Kim, 2022). 

 

2. LNG Volatility Forecasting 

LNG prices have been volatile due to infrastructure constraints and rising demand for cleaner energy sources. The 

GARCH model was used to forecast LNG price volatility, with a focus on the impact of seasonal demand 

fluctuations and geopolitical risks in major supply regions. 

• Results: The model accurately captured the seasonal spikes in LNG prices during the winter months, 

reflecting the higher demand for heating. It also identified increased volatility during supply disruptions 

in key producing regions, such as the Middle East (Wang et al., 2020). 

 

3. Iron Ore Volatility Forecasting 

Iron ore is a critical input in steel production, and its price volatility is influenced by global demand, mining 

capacity, and environmental regulations. Using the GARCH model, the price fluctuations of iron ore were 

analyzed to predict periods of heightened volatility. 

• Results: The GARCH model effectively identified periods of increased price volatility corresponding to 

fluctuations in global demand for steel, particularly in response to infrastructure investment surges in 

China and South Korea (Kang & Park, 2020). 

3.5 Limitations of the GARCH Model in Commodity Markets 

Despite its widespread use, the GARCH model has certain limitations when applied to commodity price 

forecasting. One key limitation is its reliance on historical data, which may not fully capture sudden, unexpected 

shocks in the market, such as geopolitical crises or technological breakthroughs. Additionally, the GARCH model 

assumes a constant mean, which may not always hold true in the highly dynamic and evolving commodity markets 

(Engle, 2020). 

 

Moreover, the GARCH model is designed to handle symmetric volatility. However, in many commodity markets, 

price movements can exhibit asymmetry, where negative shocks (e.g., supply disruptions) have a greater impact 

on volatility than positive shocks (e.g., increased production capacity). In such cases, extensions of the GARCH 

model, such as the Exponential GARCH (EGARCH) or Threshold GARCH (TGARCH), may provide more 

accurate forecasts (Zhang et al., 2021). 

 

3.6 Combining GARCH with Machine Learning for Improved Forecasting 

To overcome the limitations of the GARCH model, recent studies have explored the integration of GARCH with 

machine learning techniques. Machine learning models, such as random forests and artificial neural networks, can 
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capture nonlinear relationships and complex patterns in the data that traditional econometric models like GARCH 

may miss. By combining GARCH with machine learning, it is possible to enhance the accuracy of volatility 

forecasts and better capture the asymmetric nature of commodity price fluctuations (Wang et al., 2020). 

 

For example, hybrid models that combine GARCH with neural networks have been used to improve forecasting 

accuracy in oil and gas markets. These models use the GARCH framework to estimate conditional volatility while 

leveraging the predictive power of machine learning algorithms to account for nonlinearities and market shocks 

(Zhang et al., 2021). 

 

4. APPLICATION OF MACHINE LEARNING METHODS IN COMMODITY PRICE 

FORECASTING AND FUTURE TRENDS 
4.1 Introduction to Machine Learning in Commodity Price Forecasting 

Machine learning (ML) has emerged as a powerful tool for forecasting commodity prices, offering several 

advantages over traditional econometric models such as GARCH. While models like GARCH rely on linear 

relationships and are constrained by assumptions about volatility patterns, machine learning models can capture 

complex, nonlinear relationships in data, allowing for more accurate predictions in highly volatile and dynamic 

markets. This flexibility is particularly valuable in the commodity markets, where prices are influenced by a 

myriad of factors, including geopolitical risks, global demand shifts, supply chain disruptions, and natural 

disasters (Zhang et al., 2021). 

 

Machine learning models, such as artificial neural networks (ANN), support vector machines (SVM), random 

forests (RF), and long short-term memory (LSTM) networks, have shown great potential in capturing the intricate 

relationships that drive commodity prices. These models are able to process large datasets, identify hidden 

patterns, and adapt to changing market conditions, making them suitable for predicting the price movements of 

key commodities such as crude oil, LNG, iron ore, and rare earth elements (Wang et al., 2019). 

 

4.2 Key Machine Learning Models in Commodity Price Forecasting 

Several machine learning models have been applied to commodity price forecasting, each offering unique 

strengths in handling different types of data and forecasting challenges. Below are some of the most widely used 

machine learning models in commodity markets: 

Artificial Neural Networks (ANNs): ANNs are inspired by the structure of the human brain and are capable 

of learning complex, nonlinear relationships from data. They are particularly effective in predicting time-

series data with high volatility, such as commodity prices. ANNs can be used to model the nonlinear effects 

of external variables such as market sentiment, geopolitical factors, and macroeconomic indicators (Zhang et 

al., 2021). 

Support Vector Machines (SVM): SVMs are powerful for regression and classification tasks. In commodity 

price forecasting, SVMs can identify patterns in historical price data and use these patterns to predict future 

price movements. SVMs are especially useful when dealing with small datasets and when the relationship 

between input and output variables is not strictly linear (Wang & Lee, 2020). 

Random Forests (RF): RF is an ensemble learning method that combines multiple decision trees to improve 

forecasting accuracy. Random forests are effective in dealing with high-dimensional datasets, such as those 

found in commodity markets where prices are influenced by numerous factors. RF can also handle missing 

data and prevent overfitting, making it robust for forecasting commodity prices over both short and long time 

horizons (Chen & Lee, 2021). 

Long Short-Term Memory Networks (LSTM): LSTM is a type of recurrent neural network (RNN) 

designed to capture dependencies over long time sequences, making it ideal for time-series forecasting. LSTM 

networks are particularly well-suited for predicting commodity prices, as they can retain information over 

longer periods, helping to capture the persistence in volatility and market trends (Wang et al., 2020). 

 

4.3 Empirical Applications of Machine Learning in Commodity Markets 

In recent years, empirical studies have demonstrated the effectiveness of machine learning models in predicting 

the prices of key commodities traded between China and South Korea, including crude oil, LNG, iron ore, and 

rare earth elements. The following examples illustrate how machine learning has been applied to forecast price 

volatility and trends: 

 

1. Crude Oil Price Forecasting Using LSTM 

Crude oil prices are known for their volatility and susceptibility to sudden shocks due to geopolitical events, 

changes in supply and demand, and natural disasters. By applying LSTM networks to historical crude oil price 
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data from 2018 to 2023, researchers were able to capture long-term dependencies in price fluctuations and 

accurately predict future price movements. LSTM models outperformed traditional models, such as GARCH, by 

better capturing the nonlinear interactions between market variables and external shocks, such as the COVID-19 

pandemic and supply chain disruptions (Zhou & Kim, 2022). 

• Results: LSTM provided superior forecasting accuracy during periods of high volatility, such as the 2020 

oil price crash. Its ability to account for the persistence of price movements made it more effective than 

linear models in predicting recovery trends following the initial shock. 

 

2. Iron Ore Price Forecasting Using Random Forests 

Iron ore prices are influenced by global demand for steel, mining capacity, and environmental regulations. By 

using random forests, researchers were able to analyze the impact of multiple factors—such as China's 

infrastructure investment, environmental policies, and trade agreements—on iron ore prices. Random forests 

identified the most significant variables driving price fluctuations and provided accurate short-term and long-term 

forecasts. 

• Results: The RF model successfully captured the relationships between iron ore demand and external 

variables, outperforming econometric models in predicting price spikes associated with increased 

infrastructure spending in China and South Korea (Kang & Park, 2020). 

 

3. LNG Price Forecasting Using Support Vector Machines 

LNG prices exhibit seasonal volatility and are subject to geopolitical risks, such as supply disruptions in major 

producing regions. Support vector machines were used to model the nonlinear relationships between historical 

price data, seasonal demand variations, and supply chain constraints. The SVM model proved effective in 

capturing the price dynamics of LNG, especially during periods of peak demand in winter months. 

• Results: The SVM model accurately predicted price increases during high-demand seasons and 

effectively incorporated geopolitical risks, such as supply disruptions in the Middle East, into its forecasts 

(Wang & Lee, 2020). 

 

4.4 Combining Machine Learning with Traditional Models 

One of the emerging trends in commodity price forecasting is the hybrid approach, where machine learning models 

are combined with traditional econometric models such as GARCH. This approach leverages the strengths of both 

methods: the GARCH model’s ability to capture time-varying volatility and machine learning’s capacity to handle 

nonlinearities and complex interactions in the data. 

 

For instance, hybrid models that combine GARCH with ANN or LSTM have been shown to improve forecasting 

accuracy for crude oil and natural gas prices. In these hybrid models, the GARCH component captures short-term 

volatility, while the machine learning component captures longer-term trends and nonlinear effects (Zhang et al., 

2021). This hybrid approach provides a more comprehensive framework for forecasting, particularly in highly 

volatile markets like commodities. 

 

4.5 Challenges and Limitations of Machine Learning in Commodity Forecasting 

While machine learning offers many advantages, it also presents certain challenges and limitations when applied 

to commodity price forecasting: 

Data Requirements: Machine learning models often require large amounts of data to perform well. In 

commodity markets, obtaining high-quality, timely data can be a challenge, especially for emerging markets 

or less frequently traded commodities (Chen & Lee, 2021). 

Interpretability: Machine learning models, particularly deep learning methods like LSTM and ANN, are 

often criticized for their lack of interpretability. Unlike traditional econometric models, which offer clear 

insights into the relationships between variables, machine learning models function more as "black boxes," 

making it difficult to understand how predictions are generated (Zhou & Kim, 2022). 

Overfitting: Machine learning models are prone to overfitting, especially when trained on noisy or limited 

datasets. Overfitting can lead to poor performance when the model is applied to out-of-sample data, making it 

crucial to carefully manage model complexity and validation processes (Wang et al., 2019). 

 

4.6 Future Trends in Machine Learning for Commodity Price Forecasting 

Looking ahead, several trends are likely to shape the future of machine learning in commodity price forecasting: 

Increased Use of Hybrid Models: Combining traditional econometric models with machine learning 

techniques will continue to gain popularity. Hybrid models can capture the strengths of both approaches, 

leading to more robust and accurate forecasts (Zhang et al., 2021). 



SJIF Impact Factor (2024): 8.282       Journal DOI: 10.36713/epra0003                ISSN: 2250 – 2017 

International Journal of Global Economic Light (JGEL) 

Volume: 10 | Issue: 9 | September 2024 

 

2024 EPRA JGEL |    https://eprajournals.com/   |    Journal DOI URL: https://doi.org/10.36713/epra0003           9 

 

Real-Time Data Integration: As real-time data sources, such as satellite imagery, social media 

sentiment, and IoT sensors, become more accessible, machine learning models will be increasingly able 

to incorporate real-time information into their forecasts. This will enhance the models' ability to predict 

sudden market changes and provide more timely insights (Chen & Lee, 2021). 

AI-Driven Decision Support Systems: The integration of machine learning models into AI-driven 

decision support systems will allow commodity traders, policymakers, and businesses to make more 

informed decisions. These systems will combine predictive analytics with optimization algorithms to 

provide actionable recommendations in real-time (Wang et al., 2020). 

Sustainability and Green Technologies: As global markets transition to renewable energy and green 

technologies, machine learning models will play a key role in forecasting the prices of critical 

commodities such as rare earth elements, lithium, and cobalt. These commodities are essential for the 

production of electric vehicles, solar panels, and other green technologies, making accurate price 

forecasting critical for both producers and consumers (Lee & Wang, 2021). 

 

5. CONCLUSION 
The evolution of Sino-Korean commodity trade over the last few decades has been marked by increasing 

interdependence, driven by the mutual reliance of China and South Korea on essential resources such as crude oil, 

LNG, iron ore, and rare earth elements. Between 2018 and 2023, significant fluctuations in commodity prices 

highlighted the vulnerability of this trade to global economic shifts, geopolitical tensions, and environmental 

regulations. The analysis of trade data showed that China’s dominance in global supply chains and South Korea’s 

position as a key manufacturing hub have led to a highly integrated commodity trade system. Both nations have 

experienced significant shifts in trade volumes, reflecting broader economic trends such as the growing demand 

for cleaner energy and the transition toward more sustainable industrial practices. 

 

While traditional econometric models like GARCH have played a valuable role in capturing time-varying 

volatility in commodity markets, their limitations have become apparent in the face of increasingly complex global 

dynamics. GARCH models excel in forecasting short-term volatility, especially in markets where price clustering 

and shocks are prevalent, such as crude oil and iron ore. However, their reliance on historical data and assumption 

of linear relationships restrict their ability to accurately predict market movements during periods of extreme 

instability, such as the COVID-19 pandemic or the Russia-Ukraine conflict. These events underscored the need 

for more adaptive models that can account for the multifaceted nature of modern commodity markets, where 

prices are influenced by a combination of political, economic, and environmental factors. 

 

Machine learning models have emerged as powerful alternatives, capable of capturing nonlinear relationships and 

handling large, complex datasets that econometric models struggle to process. As demonstrated by empirical 

studies on crude oil, LNG, and iron ore prices, models such as LSTM, random forests, and support vector machines 

have shown superior performance in forecasting accuracy, particularly in markets characterized by high volatility 

and uncertainty. These models excel at incorporating real-time data, such as geopolitical developments, market 

sentiment, and supply chain disruptions, allowing for more nuanced and accurate predictions. Furthermore, hybrid 

models that combine GARCH with machine learning approaches offer the potential to enhance forecasting 

accuracy by leveraging the strengths of both methods. This integration allows GARCH to model short-term 

volatility while machine learning captures longer-term trends and nonlinear interactions between variables. 

 

Looking ahead, the future of commodity price forecasting will likely involve a deeper integration of machine 

learning with traditional econometric models, particularly in high-stakes markets like energy and metals. 

However, challenges remain in fully realizing the potential of machine learning in this domain. Key obstacles 

include the need for high-quality, real-time data, which is often scarce or difficult to obtain, especially in emerging 

markets or less traded commodities. Moreover, the interpretability of machine learning models remains a concern 

for policymakers and industry leaders who require clear, actionable insights into the factors driving price 

predictions. Additionally, the risk of overfitting—where a model becomes too closely tailored to the historical 

data it has been trained on—can reduce the robustness of forecasts when applied to new data. 

 

For China and South Korea, two economies heavily reliant on the stability and predictability of commodity prices, 

adopting these advanced forecasting tools will be essential for managing trade risks, optimizing procurement 

strategies, and ensuring economic resilience. As both nations transition toward carbon neutrality, the importance 

of forecasting the prices of critical resources like rare earth elements, lithium, and cobalt—central to the 

production of green technologies—will grow. Real-time data integration, such as satellite imagery for monitoring 

commodity supply chains, and AI-driven decision support systems will also become increasingly important in 
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optimizing trade and production strategies. In conclusion, the strategic use of machine learning models, combined 

with traditional econometric approaches, will be crucial in navigating the future of Sino-Korean commodity trade 

and ensuring long-term economic stability amidst evolving global challenges. 
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