IC Value : 56.46

EPRA International Journal of Economic and Business Review

Research Paper

e-ISSN : 2347 - 9671| p- ISSN : 2349 - 0187 SJIF Impact Factor(2016) : 6.484 ISI Impact Factor (2013): 1.259 (UAE)

www.eprawisdom.com

COTTON ACREAGE RESPONSE TO PRICE IN THE PRE AND POST REFORM PERIOD IN THIRUPPUR MARKET CENTER OF TAMIL NADU STATE (PART B)

Dr.R.Meenakshi¹

¹Retired Head & Associate Professor of Economics, Sri Sarada College for Women, Salem, Tamil Nadu, India

ABSTRACT

Quantitative assessment of the contribution of the various factors to the growth of cotton is helpful in reorienting the programmes and priorities of cotton growth so as to achieve higher rates of growth. The factors which essentially determine the growth of cotton are the rate of growth in land area, area sown more than once, the yield per hectare, rainfall and substitute crop acreage to name a few. Acreage response to relative price for cotton in Thiruppur market center in the pre reform period reveals that this district takes two years and six months for full adjustment to bring about acreage allocation when there is change in price of cotton crop and in the post reform period this market center takes nearly three years for full adjustment due to rigidities in cotton acreage allocation.

KEYWORDS: cotton, crop process, crop yields, crop acreage, cotton market

INTRODUCTION

The major focus of the study is on the cotton market area of Thiruppur where the price pertaining to cotton is available in this market center of the state. The requirements of basic statistical series for this cotton market area fall into four categories namely crop areas, crop process, crop yields and rainfall.

THE DATA

The study covers pre reform period (1971-72 TO 1989-90) and post reform period (1990-91 TO 2014-15) for which continuous time series data have been made available from the various issues of Government of Tamil Nadu. The estimating model included prices, lagged acreage, yield, rainfall, time trend and substitute crop acreage as independent variables with acreage considered as a dependent variable. The effect of the above six independent variables on cotton acreage in this select region has been examined individually because it is not only the price but the quantum of other variables which are important for acreage allocation of cotton.

The results and interpretations of this analysis are based on two models, the adjustment lag model and the traditional model to obtain the response relation. Non-linear (logarithmic) regression equations have been fitted to the absolute values of the variables. The logarithmic functions gave consistently better fit and therefore for the study area, they were selected for discussion in this paper.

For Thiruppur cotton market region a set of sixteen equations are presented. The first eight relate to the adjustment lag model using the first four price specifications namely, (a) Twelve - month annual average price in previous year (p_1) , (b) Three - month post-harvest average price in previous year (p_2) , (c) Three - month pre-sowing average price in current year (p_3) , and (d) Average of previous year's post harvest and current year's pre-sowing prices (p_4) with and without a trend value. The remaining eight are the equations based on the traditional model. In the traditional model with no recognition to past acreage,

the first four prices are the same as used in the adjustment lag equations and the last four involve three year average price specifications namely (e) Three - year average of twelve - month annual average price (p_5) , (f) Three - year average of three - month post harvest average price (P_6) , (g) Three - year average of three - month pre sowing average price (p_7) and (h) Three year average of three - month post harvest and three month

pre sowing average prices (p_8) . On the basis of these sixteen functions the best price expectation has been chosen for analysis.

FINDINGS OF THE STUDY

As a preliminary analysis simple zero order and first order partial correlations were worked out for Thiruppur region for the variables used in this study and are given below.

TABLE - 1

ESTIMATION OF ZERO-ORDER AND FIRST-ORDER CORRELATIONS IN PRE-REFORM PERIOD (1971–72 TO 1989–90) AND POST REFORM PERIOD (1990 – 91 TO 2014 – 15) THIRUPPUR

PRE-REFORM PERIOD

POST REFORM PERIOD	

Tt

.807(**)

.685(**)

.184

-.619(**)

1.000

St

.603(**)

-.200

-.273 .479(*)

1.000

	At	At_1	Yt_1	Wt	Tt	St		At	At_1	Yt_1	Wt
At	1.000	.817(**)	148	036	.776 (**)	104	At	1.000	.842(**)	.067	542(*)
At_1		1.000	061	126	.840(**)	147	At_1		1.000	.110	476(*)
Yt_1			1.000	204	210	.376	Yt_1			1.000	.056
Wt				1.000	244	265	Wt				1.000
Tt					1.000	020	Tt				
St						1.000	St				

** Correlation is significant at 0.01 level. * Correlation is significant at 0.05 level.

TA	BL	E –	
----	----	-----	--

ESTIMATION OF SIMPLE PRICE CORRELATION COEFFICIENTS IN PRE-REFORM PERIOD (1971-72 TO 1989-90) AND POST REFORM PERIOD (1990 - 91 TO 2014 - 15) THIRIPPUR

								THIN
_		Р	RE-REFOR	RM PERIO	D	-		-
	P1	P2	P3	P4	P5	P6	P7	P8
P1	1.000	.952 (**)	.926 (**)	.941(**)	.882 (**)	.832 (**)	.918 (**)	.876 (**)
P2		1.000	.991(**)	.998 (**)	.934 (**)	.898 (**)	.953 (**)	.929 (**)
P3			1.000	.998 (**)	.934 (**)	.899 (**)	.954 (**)	.931 (**)
P4				1.000	.936 (**)	.901(**)	.956 (**)	.933 (**)
P5					1.000	.991(**)	.988 (**)	.998 (**)
P6						1.000	.963 (**)	.993 (**)
P7							1.000	.987 (**)
PS								1 0 0 0

	P1	P2	P3	P4	P5	P6	P7	P8
P1	1.000	.860 (**)	.803 (**)	.846 (**)	.934 (**)	.806 (**)	.922(**)	.888(**)
P2		1.000	.936 (**)	.984 (**)	.842 (**)	.835 (**)	.840(**)	.856(**)
P3			1.000	.984 (**)	.849 (**)	.838 (**)	.860(**)	.868(**)
P4				1.000	.860 (**)	.851 (**)	.865(**)	.877(**)
P5					1.000	.928 (**)	.984(**)	.979(**)
P6						1.000	.915(**)	.975(**)
P7							1.000	.982(**)
P8								1.000

** Correlation is significant at 0.01 level. * Correlation is significant at 0.05 level.

In pre reform period the correlation between area and lagged area were positive in the study area. This association reveals that a substantial portion of acreage allocation in cotton flows from past behaviour. Equally surprising is the positive correlation found between area and trend in the study region. It was really unique, variables like rainfall and substitute crop acreage emerged with negative signs in Thiruppur region. The relationship between area and time trend was positive in this market region.

In the post reform period, there was positive association between area and lagged area, area and yield, and area and trend value in Thiruppur study region. Cotton acreage and rainfall emerged with a negative sign in this select region taken for the study. The relationship of area with substitute crop acreage had a mixture of positive and negative signs.

It may be mentioned that no definite indication could be obtained from the zero order correlations worked out for the acreage and non price variables as the association between them in the study area came to be neither uniform nor powerful, not significant enough to suggest any definite choice.

The extent and direction of association between the relative prices was attempted with the help of simple correlation coefficients. P_1 price showed a very good significant association with P_3 price in Thiruppur, in pre and post reform periods. All values are positively correlated in the study area. Out of the eight price variables P_3 emerges significantly correlated with EPRA International Journal of Economic and Business Review SJIF Impact Factor(2016) : 6.484

remaining price variables in this study area of Tamil Nadu.

Regressions were run for Thiruppur district and the estimated acreage response function based on the selection of price for this district is given below.

Price Expectation used	Constant	Pt_1	At_1	Yt_1	Wt	Tt	St	R ²	Adj. R ²
P1	9.762	-0.571 (0.54)	0.374 (0.387)	0.388 (0.635)	0.327 (0.402)	0.147 (0.815)	-0.346 (0.56)	0.636	0.418
P2	5.088	-0.0695 (0.558)	0.299 (0.41)	0.487 (0.662)	0.26 (0.44)	0.671 (0.873)	-0.362 (0.598)	0.596	0.353
P3	3.798	0.0177 (0.534)	0.312 (0.36)	0.449 (0.631)	0.261 (0.419)	0.759 (0.767)	-0.327 (0.581)	0.655	0.466
P4	4.528	-0.0139 (0.574)	0.289 (0.404)	0.488 (0.666)	0.246 (0.454)	0.735 (0.848)	-0.353 (0.605)	0.595	0.352
P1	10.196	-0.639 * (0.369)	0.426 * (0.247)	0.322 (0.495)	0.325 (0.384)		-0.308 (0.496)	0.635	0.469
P2	7.227	-0.374 (0.385)	0.534 ** (0.268)	0.246 (0.572)	0.289 (0.43)		-0.254 (0.57)	0.572	0.377
Р3	6.081	-0.323 (0.409)	0.561 *** (0.258)	0.234 (0.592)	0.307 (0.416)		-0.217 (0.57)	0.624	0.467
P4	6.801	-0.356 (0.411)	0.541 ** (0.278)	0.253 (0.601)	0.298 (0.445)		-0.244 (0.585)	0.565	0.367
P1	11.776	-0.46 (0.526)		0.819 ** (0.451)	0.314 (0.401)	0.732 * (0.543)	-0.639 (0.469)*	0.602	0.421
P2	6.573	0.0241 (0.531)		0.813 * (0.478)	0.239 (0.429)	1.147 ** (0.569)	-0.577 (0.51)	0.574	0.381
Р3	5.997	0.0332 (0.528)		0.797 * (0.482)	0.297 (0.413)	1.223*** (0.543)	-0.581 (0.496)	0.631	0.478
P4	6.299	0.0514 (0.554)		0.804 * (0.487)	0.228 (0.443)	1.17 ** (0.577)	-0.568 (0.513)	0.575	0.381
Р5	6.319	0.0516 (1.101)		0.809 * (0.500)	0.228 (0.541)	1.169 (0.974)	-0.572 (0.556)	0.574	0.381
P6	-2.620	0.936 (0.92)		0.735 * (0.453)	-0.101 (0.516)	1.962 *** (0.876)	-0.391 (0.498)	0.611	0.434
Р7	6.460	0.0403 (1.002)		0.807 * (0.532)	0.232 (0.515)	1.16 (0.911)	-0.575 (0.539)	0.574	0.381
P8	-0.414	0.736 (1.035)		0.7 *	0.004 (0.522)	1.777 ** (0.967)	-0.434 (0.516)	0.593	0.408
	P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P2 P3 P4 P5 P6 P6 P7	P1 9.762 P2 5.088 P3 3.798 P4 4.528 P1 10.196 P2 7.227 P3 6.081 P4 6.801 P1 11.776 P2 6.573 P3 5.997 P4 6.299 P5 6.319 P6 -2.620 P7 6.460	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE - 3 ESTIMATED ACREAGE RESPONSE FUNCTIONS WITH DIFFERENT PRICE EXPECTATIONS USED

* - Significant at 20% level

- Significant at 1% level

Figures in the Parenthesis are standard errors

P1 – *Twelve* – *month annual average price in previous year.*

P3 – *Three* – *month pre sowing average price in current year.*

P5 – Three – year average of twelve – month annual average price. P2 – Three – month post harvest average price in previous year. P6 – Three – year average of three – month post harvest average price. P7 – Three – year average of three – month pre sowing average price.

P4 – Average of previous years post harvest and current year pre sowing prices. P8 – Three – year average of three – month post harvest and three-month pre sowing average price TABLE – 4

FINALLY ESTIMATED COTTON ACREAGE RESPONSE FUNCTIONS - THIRUPPUR IN PRE REFORM PERIOD

Equation] No.		Price Expectation Selected	Consta nt		Reg	gression	Coefficie	nts		Coefficient of Multiple Determina tion R ²	$\begin{array}{c} \textbf{Adjusted} \\ \textbf{Coefficient} \\ \textbf{of Multiple} \\ \textbf{Determination} \\ \overline{R}^2 \end{array}$
	Selected		Relative Price P _t . 1		Yield Y _{t-1}	Rainfall W _t	T _t	Substi tute Crop S _t			
3.03	Р3	3.798	0.0177 (0.534)	0.312 (0.36)	0.449 (0.631)	0.261 (0.419)	0.759 (0.767)	-0.327 (0.581)	0.655	0.466	
3.11	Р3	5.997	0.0332 (0.528)		0.797 * (0.482)	0.297 (0.413)	1.223** * (0.543)	-0.581 (0.496)		0.478 cant at 5% level	

٩

**** - Significant at 1% level

Figures in the Parenthesis are standard errors

TABLE – 5ACREAGE ELASTICIES AND COEFFICIENT OF ADJUSTMENT FOR COTTON LINTPRICES IN THIRUPPUR PRE-REFORM PERIOD (1971-72 TO 1989-90)

Equation No.	r -	ith respect to ices	Elasticity with respect to yield		Elasticity with respect to substitute crop	r	S	Coefficient of adjustment (X)	Years required for 95 percent effect of price
	Short run elasticity	Long run elasticity							
3.03	0.012	0.018	0.015	0.016	0.030	5.52	0.0258	0.6880	2.572
3.11	0.023 0.023		0.019	0.021	0.039	6.00	0.0332	-	-

PRE REFORM PERIOD

Thiruppur district is the second major market area for cotton in Tamil Nadu state. Table 3 gives the logarithmic functions obtained for this district. Equations 3.01 to 3.04 give the regression coefficients obtained by the adjustment lag model using the four prices other than the three year averages with relative yield, rainfall, trend and substitute crop acreage. The price coefficients have negative signs in all cases but only P_3 emerges positively significant. Among other variables, lagged area, lagged yield, rainfall and trend are positively significant. The S_t variable has negative sign for all the four equations. Between these equations R^2 is the highest for one using P_3 price as the expected price (equation 3.03) thereby suggesting its superiority over other prices.

In the next four equations 3.05 to 3.08 where the above same model is used for the first four specifications, no difference is observed in past acreage, past yield and rainfall. The removal of the effect of time makes the coefficient of correlation among acreage, P_{t-1} and S_t negative. P_3 price specification emerges as the best price specification with a high level of R^2 value.

In the traditional model the only negative price variable is P₁. The coefficients for lagged yield and trend are found to be positive varying from 20% level to 1% level of significance. With regard to rainfall one equation 3.14 gives a negative value. It is observed that the coefficient for substitute crop acreage is negative and not significant even under this model. Equation 3.03 and 3.11 are picked up for estimating acreage response under the selected price given in traditional and adjustment lag models (Table 4) for the simple reason of highest R² value. But the value of coefficient has come down from .66 to .63 in the prediction equation in this district. The short run and long run elasticities are .012 and .018 respectively in adjustment lag model and .023 (same value for short run and long run acreage elasticity with respect to price) in the traditional model (Table 5). In order to effectively bring about adjustment in acreage allocation, the study indicates that this district takes two years and 6 months for full adjustment in pre reform period (Table 5).

POST REFORM PERIOD

The estimated acreage response function based on the selection of price in the post reform period for Thiruppur district is given below.

EPRA International Journal of Economic and Business Review SJIF Impact Factor(2016) : 6.484

		IN POS	T-REFORM	M PERIOD (1990-91 TO	2014 - 15	- LOGARIT	HMIC	1	
Equation No.	Price Expectation used	Constant	Pt_1	At_1	Yt_1	Wt	Tt	St	R ²	Adj. R ²
4.01	P1	-3.113	0.142 (0.629)	0.493 * (0.292)	-0.439 (0.364)	0.143 (0.441)	0.697 * (0.444)	0.462 (0.78)	0.904	0.856
4.02	P2	-4.061	0.455 (0.554)	0.393 *	-0.598 * (0.409)	0.101 (0.433)	0.852 *** (0.375)	0.44 (0.751)	0.909	0.863
4.03	Р3	-3.844	0.791 *	0.366 * (0.214)	-0.715 ** (0.376)	0.133 (0.401)	1.018 *** (0.34)	0.162 (0.724)	0.92	0.88
4.04	P4	-4.356	0.675 (0.545)	0.358 * (0.24)	-0.674 * (0.394)	0.107 (0.416)	0.963 *** (0.364)	0.321 (0.732)	0.915	0.872
4.05	P1	2.666	-0.684 ** (0.365)	0.861 **** (0.183)	-0.26 (0.365)	-0.004879 (0.455)		0.531 (0.821)	0.884	0.84
4.06	Р2	-2.181	-0.518 (0.404)	0.854 **** (0.196)	-0.05612 (0.381)	-0.122 (0.484)		0.8 (0.843)	0.87	0.819
4.07	Р3	-4.646	-0.347 (0.418)	0.803 **** (0.198)	-0.07697 (0.394)	-0.264 (0.48)		1.026 (0.842)	0.86	0.807
4.08	P4	-3.447	-0.441 (0.417)	0.824 **** (0.196)	-0.06745 (0.388)	-0.193 (0.484)		0.927 (0.841)	0.865	0.813
4.09	P1	-12.699	0.915 ** (0.461)		-0.465 (0.389)	0.05935 (0.468)	1.3 **** (0.282)	0.968 (0.769)	0.881	0.836
4.10	P2	-9.090	1.012 *** (0.426)		-0.772 ** (0.409)	0.009379 (0.448)	1.279 **** (0.252)	0.773 (0.749)	0.892	0.851
4.11	Р3	-7.864	1.239 *** (0.461)		-0.832 ** (0.397)	0.08813 (0.429)	1.417 **** (0.267)	0.42 (0.759)	0.9	0.862
4.12	P4	-8.623	1.176 *** (0.449)		-0.82 ** (0.4)	0.04369 (0.433)	1.363 **** (0.258)	0.578 (0.745)	0.899	0.86
4.13	Р5	-16.569	1.959 **** (0.666)		-0.61 * (0.352)	-0.03458 (0.416)	1.543 **** (0.28)	0.541 (0.711)	0.907	0.871
4.14	P6	-12.988	1.327 * (0.969)		-0.583 (0.448)	-0.05273 (0.51)	1.236 **** (0.313)	0.828 (0.866)	0.865	0.813
4.15	Р7	-14.292	1.601 *** (0.605)		-0.604 * (0.367)	0.05248 (0.431)	1.437 **** (0.274)	0.607 (0.738)	0.899	0.861
4.16	Р8	-14.649	1.705 *** (0.787)		-0.638 *	-0.02179 (0.461)	1.389 **** (0.296)	0.638	0.886	0.842
- Significa	ant at 20% level	1	()	ificant at 10%			* - Significant		1	**

TABLE - 6 ESTIMATED ACREAGE RESPONSE FUNCTIONS WITH DIFFERENT PRICE EXPECTATIONS USED FOR COTTON LINT PRICES IN THIRUPPUR

* - Significant at 20% level

** - Significant at 10% level

- Significant at 1% level

Figures in the Parenthesis are standard errors

P1 – *Twelve* – *month annual average price in previous year.*

P2-Three-month post harvest average price in previous year. P6-Three-year average of three-month post harvest average price.

P3 – Three – month pre sowing average price in current year. P7 – Three – year average of three – month pre sowing average price. P4 – Average of previous years post harvest and current year pre sowing prices. P8 – Three – year average of three – month post harvest

and three-month pre sowing average price

TABLE – 7 FINALLY ESTIMATED COTTON ACREAGE RESPONSE FUNCTIONS - THIRUPPUR IN POST REFORM PERIOD

Equation No.	Price Expectation Selected	Constant		F	Regression	Coefficien	ts		Coefficient of Multiple Determinati on R ²	$\begin{array}{c} \text{Adjusted} \\ \text{Coefficient} \\ \text{of Multiple} \\ \text{Determinatio} \\ \text{n} \ \overline{R}^2 \end{array}$
	Scietteu		Relative Price P _{t-1}	Cotton Acreage in A _{t-1}	Yield Y _{t-1}	Rainfall Wt	Tt	Substitute Crop S _t		
4.03	Р3	-3.844	0.791 * (0.503)	0.366 * (0.214)	-0.715 ** (0.376)	0.133 (0.401)	1.018 *** (0.34)	0.162 (0.724)	0.92	0.88
4.11 * - Significan	P3 ht at 20% level	-7.864 ** - Sign	1.239 *** (0.461) ificant at 10%	level *	-0.832 ** (0.397) ** - Significa	0.08813 (0.429) ant at 5% le	1.417 **** (0.267) evel ****	0.42 (0.759) - Significant	0.9 at 1% level	0.862 Figures in

٩

the Parenthesis are standard errors

P5 – Three – year average of twelve – month annual average price.

TABLE – 8 ACREAGE ELASTICITIES AND COEFFICIENT OF ADJUSTMENT FOR COTTON LINT PRICES IN THIRUPPUR IN POST-REFORM PERIOD (1990-91 TO 2014 - 15)

Equation No.	rocnoct	ity with to prices	Elasticity with respect to yield	Elasticity with respect to weather	Elasticity with respect to substitute crop	r	S	Coefficient of adjustment (x)	Years required for 95 percent effect of price
	Short run elasticity	0							
4.03	0.711	1.121	0.761	0.852	1.474	-6.06	1.2476	0.6340	2.980
4.11	1.113	1.113	0.756	0.846	1.463	-7.86	1.2390	-	-

Table 6 gives the regressions relating acreage and other variables with alternative price specifications in Thiruppur region in post reform period. It is found that P_{t-1}, A_{t-1}, W_t, T_t and S_t are positively significant in all equations from 4.01 to 4.04 with varying level of significance. Only yield coefficients are negative from 20% to 10% level of significance. In the adjustment lag model without the trend variable equations 4.05 to 4.09 reveal that farmers are influenced by past cotton acreage and substitute crop acreage. Other factors did not do well in the acreage allocation decisions. P_3 price is substantially significant in both the models because of the highest R^2 value. In the finally estimated cotton acreage response function (Table 7), regression coefficients are highly positive for past price and the level of significance varies from 20 percent to 5 percent level.

The long run elasticities are 1.121 and 1.113 for both the models. What is surprising is that both the short run and long run elasticities are the same for the traditional model. In this market center, it takes nearly 3 years for full adjustment due to rigidities as shown in Table 8.

CONCLUSION

The present study provides us with substantive evidence in support of the objective that price along with other factors do influence farmers' decisions to increase the area under cotton.

REFERENCES

- Heady, E.O. and V.Y. Rao, Acreage Response and Production Supply Functions for Soyabeans, Research Bulletin, Iowa Agricultural Extension Station, Ames, Iowan 1966.
- Jha, D., Acreage Response of Sugarcane in Forestry Areas of North – Bihar, LJAE, Vol. 25, No.1, 1970, pp. 79 – 91.
- Long, Roger, B, Supply Response of Dry land Wheat and Barley Farms in South – Eastern Idaha to Alternative Market Prices – IAES Bulletin, No.490, Idaha, 1970.