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ABSTRACT-------------------------------------------------------------------------------------------------------------------- 
This article examines the complex interaction between random processes in developing communication systems. As wired 
and wireless networks undergo radical changes and smart spaces become an integral part of our daily environment, under-
standing processes' stochastic nature is paramount. The study examines the theoretical foundations of random processes, 
which link mathematical science and the unpredictable phenomena inherent in the development of modern networks. It 
examines the fundamental characteristics, models, and representations of random processes and highlights their impact on 
the performance, adaptability, and effectiveness of IP-based wireless networks and smart spaces. Methodologically, the 
study uses mathematical models and analytical tools to determine the dynamics of random processes in each context. Un-
derstanding stochastic complexities, this study aims to provide practical recommendations to operators and stakeholders 
navigating an evolving communication system. In conclusion, the detailed study of random processes, offering a roadmap 
for the efficient operation of next-generation wired/wireless networks and smart spaces. The acquired knowledge contributes 
to the ongoing dialogue about adaptability and resilience necessary to meet the requirements of the modern communication 
environment. 
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1.INTRODUCTION 
Against the background of rapid technological progress in wired and wireless networks and intelligent spaces is a compre-

hensive study of the theory of random processes in their dynamics. The evolution of modern networks from simple data 

transmitters to complex ecosystems poses the challenge of understanding random processes and their impact on network 

efficiency, especially in the context of IP-based wireless networks and smart spaces. Networks are turning not just into 

information carriers but also into complex ecosystems in which advanced technologies such as 5G and others are integrated. 

These changes create an environment where communication becomes integral to our daily lives. Smart spaces, ranging 

from homes to cities, are becoming living laboratories of innovation. Intelligent sensors, Internet of Things (IoT) devices, 

and advanced analytics allow these spaces to respond in real-time to the needs of their inhabitants. The digital economics 

testifies to the new generation's insatiable demand for multimedia services. Users expect to be immersed in real-time content 

- from high-definition video streaming to virtual reality. This surge challenges traditional communication systems, requiring 

high bandwidth, minimal latency, and high reliability. In the context of these rapid changes, conventional communication 

systems face significant problems — the volume and variety of data generated by next-generation multimedia services 

create a load on existing networks. Latency-sensitive applications require instant response, which requires a fundamental 

change in the perception and management of the communication infrastructure. In this context, the interaction of random 

processes becomes critical to ensuring the efficient and reliable operation of IP-based wireless networks. This document 

aims to study this issue to identify theoretical approaches that can provide the necessary harmony in such complex and 

rapidly changing network scenarios. 

 

2.RESEARCH METHODOLOGY 
Stochastic processes and communication systems are two related fields that use probability theory and random variables to 

model, analyze, and design systems that deal with uncertain or noisy data [1]. A stochastic process is a mathematical object 

that consists of a collection of random variables indexed by time or space. Modulation and demodulation are deterministic, 

but the information and noise in transmission are stochastic. These phenomena follow predictable characteristics summa-

rized in a random process model and heavily influence digital communication system design [3]. A communication system 

is a system that enables the transmission and reception of information between two or more parties. A communication 

system typically consists of a transmitter, channel, receiver, source, and destination of information. Some researchers 
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describe random processes from an engineering perspective and use examples from the field of communications to explain 

concepts. This is a valuable approach for modeling, synthesis, and numerical simulation of random processes with applica-

tions in communications and related fields. The random processes in relation to the modeling of phenomena such as inter-

ference and fading in communications [4].  A communication system can be affected by various sources of noise and 

interference, such as thermal noise, atmospheric noise, or jamming signals [5]. Random processes can be used to model the 

behavior and characteristics of various components and factors in IP-based wireless networks, such as information source, 

channel noise, receiver output data, network topology, traffic scheme, mobility scheme, interference level, and quality of 

service[6], for analyzing and evaluating the performance and reliability of wireless networks based on IP in various scenar-

ios and conditions[6,7], for the design and optimization of IP-based wireless networks, for example, using stochastic opti-

mization methods, stochastic control methods or stochastic coding schemas, to improve the efficiency and reliability of IP-

based wireless networks by finding optimal or near-optimal solutions for various tasks, such as resource allocation, energy 

management, routing, scheduling, congestion control and error control [7] . Random processes can also enhance the security 

and privacy of IP-based wireless networks, for example, through random key distribution, random encryption, random 

authentication, or random jamming, these methods can help protect the confidentiality, integrity, and availability of infor-

mation transmitted and received in IP-based wireless networks by preventing or mitigating various attacks, such as eaves-

dropping, spoofing, replay, or denial of service [8]. Assuming the system is conceptualized as a stochastic process, its 

performance can be assessed through metrics indicative of its average or anticipated behavior. Examples of fidelity criteria 

encompass average mean squared error, the ratio of average signal power to average error power (signal-to-noise ratio or 

SNR), and the average probability of symbol error. The language employed in signal coding is founded on a fusion of 

stochastic processes and linear systems. Despite the inherent nonlinearity of signal coding systems, it is imperative to em-

ploy the tools and methodologies of linear systems for their analysis. Within a communication system, a mathematical 

model posits that transmitted data originates from a stochastic process, and the system may involve stochastic elements, 

such as the introduction of random noise or digital errors. Evaluating system performance is predicated on its average 

characteristics, such as root-mean-square error, signal-to-noise ratio (SNR), or average probability of symbol error. Tem-

poral averages are computed by aggregating or integrating sample values acquired during the process and normalizing them 

over time. Although the short-term behavior of temporal averages exhibits randomness, in many instances, long-term be-

havior tends to converge towards a non-random state. Mathematical expectations prove most beneficial when computing 

averages within the framework of a stochastic process model. Determining the expected values of critical variables in a 

mathematical system model facilitates the examination of structural transformations within the system. However, in prac-

tical scenarios, average values are measured over time. Hence, it is crucial to delineate the conditions under which these 

two types of averages coincide and formulate management tools for systems in which they diverge. The comparison be-

tween expected values and long-term temporal averages necessitates a comprehension of the stationarity and ergodic prop-

erties of stochastic processes. Stationarity may be perturbed by the introduction of a transient element into an otherwise 

stationary process, yet sample averages can still converge meaningfully. Notably, the debate in the literature on the station-

arity or ergodicity of human speech underscores the relevance of these theoretical considerations in the design and analysis 

of speech coding systems [9]. Leonard Kleinrock studied a combination of studies of connected networks and stochastic 

flows that provided a basis for understanding the general behavior and functioning of communication networks and pre-

sented a model of the theory of queuing communication networks with limited channel capacity. Studying Random Pro-

cesses, the optimal distribution of channel bandwidth, priority effects, the choice of routine procedure, fixed cost con-

straints, and the design of a topological structure are considered [10]. The researchers studied energy-saving wireless com-

munication networks using the theory of random processes, paying particular attention to channel capacity, transmission 

schemes, and optimization of energy consumption, and found that energy harvesting is cost-effective for designing and 

deploying next-generation wireless networks. They also identified open research objectives and future directions in wireless 

energy collection networks [11]. 

 

3.RESULT AND DISCUSSION 
A random variable is a variable that, because of the test, depending on the case, takes one of the possible sets of its values 

(which one is unknown in advance). A random process X(t) is called a process whose value is a random variable for any 

value of the argument t. In other words, a random process is a function that, because of the test, may take one or another 

the specific form unknown in advance. For a fixed t = to,  X(to) is an ordinary random variable, i.e. the reading of a random 

process at the time of to.  
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Examples of random processes in new-generation networks with wired and wireless technologies and intelligent spaces: 

─ Traffic patterns: Data packets enter the wireless sensor network, and their number can vary over time, often modeling a 

Poisson process. 

─ Channel attenuation: The wireless channel's operating conditions can change due to obstacles and interference, and mod-

eling the attenuation process as a stochastic process like Rayleigh or Nakagami helps account for signal level fluctuations' 

random nature. 

─ Connecting devices: As devices move or join/leave the network, the network topology can change dynamically. Sto-

chastic processes such as Markov chains can be used to model these changes. 

─ Interference levels: The interference levels in a wireless network can vary depending on the number of devices and 

external interference sources. Using a stochastic process to represent the random nature of interference helps understand 

its effect on communication quality. 

─ Energy Harvesting: Devices in smart spaces can collect energy from external sources like solar or kinetic energy. Mod-

eling the energy collected as a stochastic process influenced by environmental factors like lighting intensity or move-

ment. 

─ Packet Loss: During wireless communication, packets may be lost due to channel errors or overload. Modeling packet 

loss as a random process using a Bernoulli distribution can help understand the probabilistic nature of data loss. 

─ Quality of Service (QoS) Metrics: QoS metrics like latency and jitter can change randomly in communication networks. 

Stochastic processes can model the dynamic changes of these indicators over time. 

─ Device mobility: Modeling the random movement of devices in an intelligent space or mobile peer-to-peer network 

using processes like random walk or the Gauss-Markov mobility model reflects the unpredictability of device location. 

─ Network bandwidth: The bandwidth of a wireless network can vary due to changes in channel conditions and traffic 

load. Stochastic processes like autoregressive models can reflect the time-varying nature of network bandwidth. 

─ Energy consumption: The energy consumption of devices in smart spaces can fluctuate randomly depending on the tasks 

performed. Stochastic processes can simulate these fluctuations, helping optimize energy-efficient strategies. Accurately 

modeling and analyzing these processes can help design and optimize efficient, fault-tolerant network systems. 

 

The examples given earlier cover some key aspects, but there are additional aspects that can be taken into account: Random 

security events, such as cyber-attacks or attempts to invade the network (modeling the timing and nature of these events 

can help in developing reliable security strategies), random device failures in the network (device reliability may vary, and 

modeling failures as a stochastic process can help in predicting the reliability of the system and managing it), dynamic 

resource allocation (for example, bandwidth or computing resources, in response to changing requirements and stochastic 

optimization processes can be used for probabilistic resource allocation), human behavior in smart spaces (random patterns 

of human behavior in smart spaces that affect interaction with devices and network usage and stochastic models can be 

used for modeling and understanding human behavior to improve system design), spectrum availability in wireless networks 

(availability of spectrum ranges for wireless communication and spectrum availability can be influenced by factors such as 

interference or changes in regulation, and modeling this as a stochastic process helps in managing spectrum use), data 

receipt patterns in cloud computing (patterns of random data requests in cloud computing environments and stochastic 

models can be applied to account for the variability of data processing load on cloud servers), the signal-to-noise ratio 

(SNR) in wireless communications (SNR in wireless communication channels can vary depending on environmental con-

ditions and stochastic processes, such as logarithmically regular or rice distribution, can simulate random fluctuations in 

SNR), dynamic changes in network topology (changes in network topology due to the addition or removal of devices and 

stochastic models can represent the random nature of network reconfigurations in dynamic environments), etc. 

 

Table 1. Summary of some examples of random processes 

The random processes Description: Example application 

Wiener Process (Brownian 

Motion) 

A continuous-time stochastic process 

with independent and normally distributed 

increments. 

Modeling the erratic motion of par-

ticles suspended in a fluid 

Poisson Process A counting process that represents the 

number of events occurring in fixed inter-

vals of time or space 

Modeling the arrival of customers at 

a service point or the occurrence of 

rare events. 
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Markov Process A stochastic process where the future state 

depends only on the current state and not 

on the sequence of events that preceded it 

Modeling systems with memoryless 

transitions, such as queueing systems. 

Gaussian Process A collection of random variables, any fi-

nite number of which have a joint Gaussian 

distribution 

Used in machine learning for re-

gression and classification tasks 

Martingale A stochastic process where the expecta-

tion of the future value, given the past val-

ues, is equal to the present value 

Modeling fair games of chance 

Renewal Process A stochastic process used to model the 

occurrence of events that renew or restart 

the process 

Analyzing the reliability of systems 

subject to periodic maintenance 

Autoregressive (AR) Process A linear model in which each value in 

the time series is a linear combination of 

past values and a random error term 

Time-series analysis in economics 

and finance 

Moving Average (MA) 

Process 

A linear model where the current value 

is a linear combination of past random er-

rors. 

Filtering out noise in time-series 

data 

Ornstein-Uhlenbeck Process A stationary Gauss–Markov process, of-

ten used to model the velocity of a particle 

undergoing Brownian motion with friction 

Modeling the mean-reverting be-

havior of asset prices 

Fractional Brownian Motion A generalization of Brownian motion 

with a Hurst parameter, allowing for long-

range dependence 

Modeling network traffic in tele-

communications, where the process 

captures long-range dependence in 

data transmission patterns 

Kleinrock's Studies The Ornstein-Uhlenbeck process is a 

stationary Gauss–Markov process used to 

model the velocity of a particle undergoing 

Brownian motion with friction. It exhibits 

mean-reverting behavior, making it appli-

cable in finance for modeling asset prices 

that tend to return to a long-term average 

Modeling interest rates in finance, 

where the process represents the ten-

dency for interest rates to revert to a 

long-term average over time 

Gersho-Gray Algorithm It is related to vector quantization and 

signal compression. Developed by A. Ger-

sho and R. M. Gray, it involves quantizing 

vectors into a finite set of representative 

vectors. This algorithm has applications in 

image and speech compression 

The Gersho-Gray algorithm com-

presses images while preserving their 

quality using a limited set of repre-

sentative vectors, reducing storage and 

enabling faster transmission. 

 

Random processes are used as models for various phenomena, such as electron emission, noise due to thermal agitation, 

atmospheric noise, economic changes, population growth, queues, and more[12]. Similar to a random variable represented 

as a function of an elementary event 𝑟0 resulting from a test, a random process can be expressed as a function of two 

variables  X(t,ro), where ro∈Q, t∈T, X(t,ro)∈R, and ro is an elementary event, Q is the space of elementary events, T is the 

set of values of the argument t, and R is the set of possible values of a random process X(t,ro). The realization of a random 

process X(t,ro) is termed a non-random function x(t), representing a specific view taken by the random process X(t) as a 

result of a test (at a fixed ro), i.e., its trajectory. Therefore, the random process X(t,ro) combines the characteristics of both 

a random variable and a function. When fixing the value of the argument t, the random process becomes an ordinary random 
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variable; when selecting ro, it transforms into an ordinary non-random function with each test. In subsequent presentations, 

we will omit the ro argument, implying it by default (Figure 1). 

 

Figure 1.  A figure illustrates various implementations of a random process. 

 

If the cross-section of this process at a given t is a continuous random variable, the random process X(t) for a given t is 

determined by the probability density ρ (x, t). Notably, the density ρ(x,t) does not comprehensively describe the random 

process X(t) as it fails to express the dependence between sections at different time points. A random process about X(t) 

encompasses all sections for all possible values of t; thus, describing it necessitates considering a multidimensional random 

variable (X(t1), X(t2)...,X(tp)) consisting of all sections of this process. While there are theoretically infinite such sections, 

describing a random function often requires considering a relatively small number of sections. A random process has order 

n if it is entirely determined by the density of the joint distribution F(x1,x2,...,xn;t1,t2,...,tp) of n arbitrary sections of the 

process, i.e., the density of the n-dimensional random variable (X(t1),X(t2),...,X(tp)), where X(ti) is the cross-section of a 

random process X(t) at time ti for i=1,2,...,n. Numerical characteristics can also describe a random process. While for a 

random variable these characteristics are constant numbers, for a random process, they manifest as non-random functions. 

The mathematical expectation of a random process at time t, denoted as E[X(t)], is a non-random function ax(t). This 

function is equal to the mathematical expectation of the corresponding section (slice) of the random process at time t, i.e., 

ax(t)=E[X(t)]. The variance of a random process at time t, denoted as D[X(t)], is also a non-random function Dx(t). This 

function is equal to the variance of the corresponding section of the random process at time t, i.e., Dx(t)=D[X(t)]. The root 

means square deviation of a random process at time t, denoted as σ[X(t)], is the arithmetic value of the square root of its 

variance. Thus, σ[X(t)] =D[X(t)]. These parameters provide insights into various characteristics of the random process at a 

specific time t. The mathematical expectation of a random process characterizes the average trajectory of all its possible 

implementations, and its variance or mean square deviation is the spread of implementations relative to the average trajec-

tory. The characteristics of the random process introduced above are insufficient since they are determined only by the one-

dimensional distribution law. Figures 2 and 3 show two random processes X1(t) and X2(the with approximately the exact 

mathematical expectations and variances. If the random process X1(t) (see Figure 2) is characterized by a slow change in 

the values of implementations with a change in t, then for the random process X2(t) (see Figure 3), this change occurs 

significantly faster. In other words, the random process X1(t) is characterized by a close probability dependence between 

its two sections, X1(t1) and X1(t2), while for the random process X2(t) this dependence between the sections X2(t1) and 

X2(t2) is practically absent. A correlation function characterizes the indicated dependence between the sections. The corre-

lation function of a random process X(t) is a non-random function of two variables t1 and t2, which for each pair of variables 

t1 and t2 is equal to the covariance of the corresponding cross sections X(t1) and X(t2) of the random process.  

Figure 2. A figure illustrates the random process X1(t) is characterized by a slow 

change in the values of implementations with a change in t. 
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Obviously, for a random process X1(t), the correlation function Kx1(t1, t2 ) decreases as the difference increases t2 - t1 is 

significantly slower than to Kx2(t 1, t 2 ) for a random process X2(t). The normalized correlation function of a random process 

X(t) is a function that expresses the degree of relationship between the values of the process at different time points and is 

normalized by the variances of the process. Formally, the normalized correlation function N(t1, t2) is defined as: 

 N(t1, t2)=Var(X(t1))⋅Var(X(t2))/Cov(X(t1),X(t2)) 

where: 

Cov(X(t1), X(t2)) represents the covariance between the values of the process at times t1 and t2, Var(X(t1)) and Var(X(t2)) 

denote the variances of the process at times t1 and t2, respectively. The normalized correlation function is useful for meas-

uring the degree of dependence between the values of the process at different time points, independent of the absolute scales 

of their changes. It is commonly used to analyze the stationarity of a process and identify periodic or random variations in 

its dynamics.  

 

To build a mathematical model of a new generation of network variables considering random processes, we will use prob-

abilistic models to describe the relationships. First, let's define the variables: 

B – bandwidth; 

D – latency; 

E - energy consumption; 

S - Service Level. 

Now, let's define random processes that affect these variables: 

FB(t) is a random process for throughput; 

FD(t) is random process for delay; 

FE(t) is a random process for energy consumption; 

FS(t) is a random process for the service level. 

The mathematical model can be represented as follows: 

 B=fB(t)+FB(t) 

 D=fD(t)+FD(t) 

 E=fE(t)+FE(t) 

 S=fS(t)+FS(t), 

where: 

fB(t),fD(t), fE(t), fS(t) - deterministic functions representing the main characteristics of the network; FB(t), FD(t),FE(t), FS

(t) are random processes describing stochastic fluctuations of variables.This model considers not deterministic and stochas-

tic components, allowing to describe the behavior of a new generation network more accurately. For example, the radio 

frequency spectrum is a multidimensional object; space, time, polarization, frequency, signal transmission power, and in-

terference are some critical dimensions[13]. Wireless networks typically use Dynamic Spectrum Access (DSA), a stochastic 

function. DSA has become a vital force for building next-generation wireless networks. Cognitive radio, built on a software-

defined radio receiver, is a frequency-dependent and intelligent device that can underlie most forms of these networks. This 

device provides access to radio frequency spectrum bands and uses them adaptively depending on real-time needs and 

interference conditions [14]. Unlike traditional fixed spectrum allocation, DSA dynamically allocates spectrum resources, 

which increases efficiency and reduces interference. An Internet of Things (IoT) device installed to monitor the environ-

ment in an intelligent city uses DSA to intelligently select the best spectrum band for data transmission based on the current 

Figure 3. A figure illustrates a random process X1(t), characterized by a rapid change in 

the values of implementations when t changes. 
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RF environment. This dynamic adaptation ensures reliable communication even at different interference levels, contributing 

to efficient spectrum use in intelligent rooms. 

The formula defines a random process X(t) = X sinmt, where X is a random variable, M(X) = a, D(X) = σ2. Based on the 

properties of mathematical expectation and variance, it turns out:  

ax(𝑡) = 𝑀(𝑋𝑠𝑖𝑛𝑚𝑡) = 𝑠𝑖𝑛𝑚𝑡 ∙ 𝑀(𝑋) = 𝑎𝑠𝑖𝑛𝑚𝑡, 

Dx(𝑡) = 𝐷(𝑋𝑠𝑖𝑛𝑚𝑡) = sin2𝑚𝑡, 

CovX(t1 , t2) = 𝑀[(𝑋𝑠𝑖𝑛𝑚t1 − 𝑎𝑠𝑖𝑛𝑚t1)(𝑋𝑠𝑖𝑛𝑚t2 − 𝑎𝑠𝑖𝑛𝑚t2)] == 𝑠𝑖𝑛𝑚t1𝑠𝑖𝑛𝑚t2 ∙ 𝑀[(𝑋 − 𝑎)(𝑋 − 𝑎)]
= 𝑠𝑖𝑛𝑚t1𝑠𝑖𝑛𝑚t2𝐷(𝑋) == 𝜎2𝑠𝑖𝑛𝑚t1𝑠𝑖𝑛𝑚t2, 

NX(t1, t2) =
𝜎2𝑠𝑖𝑛𝑚t1𝑠𝑖𝑛𝑚t2

(𝜎sinmt1) ∙ (𝜎sinmt2)
≡ 1. 

The process exhibits complete predictability in terms of linear dependence between its values at different points in time. 

However, it's worth noting that in real-world scenarios, where randomness is present, achieving complete linear dependence 

is unlikely. 

 

4. CONCLUSION AND RECOMMENDATIONS 
The study focuses on mathematical modeling to understand random processes in modern networks using wired and wireless 

technologies and intelligent spaces. The wired and wireless networks have undergone significant changes, and integrating 

smart spaces into our daily lives emphasizes the importance of understanding the stochastic nature of processes in this 

dynamic environment. The study examined the theoretical foundations of random processes, which act as a vital link be-

tween mathematical science and unpredictable phenomena inherent in modern networks' development. Mathematical mod-

els and analytical tools were used to unravel the dynamics of random processes, which aimed to provide practical recom-

mendations to operators and stakeholders navigating an ever-evolving communication ecosystem. There is a need for future 

research to focus on the applied aspects of random processes, especially in emerging technologies like the Internet of Things 

(IoT) and intelligent spaces. Collaboration between researchers in mathematics, communication systems, and related dis-

ciplines can contribute to a holistic understanding of random processes, leading to innovative solutions and applications. 

With the growing importance of security in wireless networks, further research could explore how random processes en-

hance the security and privacy aspects of IP-based wireless networks. Developing adaptive strategies using information 

about random processes to dynamically adjust network parameters in response to changing environmental conditions and 

user requirements can also be a focus. Integration with machine learning and an understanding of random processes can 

enhance forecasting capabilities and the adaptive nature of communication systems. 
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