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ABSTRACT 
 Promoters are modular DNA structures that contain complex regulatory elements required for the initiation of gene 

transcription. Therefore, the use of machine learning methods to identify promoters is very important for improving 

genome annotation and understanding transcriptional regulation. In recent years, many methods for predicting 

eukaryotic and prokaryotic promoters have been proposed. However, the performance of these methods is still far from 

satisfactory. In this article, we have developed a hybrid method (called IPMD) that combines a position correlation score 

function and diversity increment with modified Mahalanobis Discriminant to predict eukaryotic and prokaryotic 

promoters. The precise calculation and identification of promoters remains a challenge because these key DNA 

regulatory regions have variable structures composed of functional motifs that can provide gene-specific transcription 

initiation. The promoter is a regulatory DNA region, which is very important for gene transcription regulation. It is 

located near the transcription start site (TSS) upstream of the corresponding gene. In the post-genomics era, the 

availability of data makes it possible to build computational models to detect promoters robustly, because these models 

are expected to be helpful to academia and drug discovery. Until recently, the developed model only focused on 

distinguishing sequences into promoters and non-promoters. However, by considering the classification of weak and 

strong promoters, promoter predictors can be further improved. 

INDEX TERMS—:  deep learning, DNA sequence analysis, Promoter prediction, Promoters, Promoter elements 

 

 

1. INTRODUCTION 
Promoters are key regions involved in protein 

coding and differential transcription regulation of 

RNA genes. The gene-specific structure of the 

promoter sequence makes it extremely difficult to 

design a general computational identification 

strategy. The 5'flanking region of the promoter may 

contain many short (5-10 bases long) motifs, which 

can be used as protein recognition sites to provide the 

initiation of transcription and specific regulation of 

gene expression. The smallest eukaryotic promoter 

region called the core promoter can initiate basic 

transcription and contains a transcription start site 

(TSS). Among all known eukaryotic promoters, 

approximately 30-50% of the TATA box is located 

~30 bp upstream of the transcription start site. Many 

highly expressed genes contain a powerful TATA 

box in their core promoters. At the same time, a large 

number of genes including housekeeping genes, 

some oncogenes and growth factor genes have 

promoters that do not contain TATA. Among these 

promoters, Inr (promoter region) or the recently 

discovered downstream promoter element (DPE) 

(usually located ~25-30 bp downstream of TSS) can 

control the exact position of transcription initiation. 

Promoters are functional regions containing complex 

regulatory elements and are used to determine the 

initiation of gene transcription. Therefore, the use of 

computational techniques to predict promoters is very 

important for discovering genes missed by gene 

predictors and designing experiments to understand 

transcriptional regulation (Abeel et al., 2008a, b). 

Although many methods for promoter prediction 

have been developed, the performance of existing 

methods is still far from satisfactory. It is necessary 

to develop more effective methods to accurately and 

quickly predict promoters. It is well known that 

prokaryotic and eukaryotic promoters use different 

DNA sequences to regulate gene expression. In 

prokaryotes, the transcription of most genes is 

regulated by the r70 promoter. The r70 promoter 

usually contains three basic regulatory elements 

(Hawley and McClure 1983): the Pribnow box (or 

TATA box), which has a consensus TATAAT about 

-10 bp upstream of the transcription start site (TSS), 

and the -35 box. The total TTGACA is around -35. 

The bp upstream of the TSS and the initiator (Inr) 

around the TSS. In eukaryotes, all protein-coding 
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genes and certain small nuclear RNAs are regulated 

by the pol II promoter. The core region of the pol II 

promoter usually contains several regulatory motifs 

(Pedersen et al., 1999; Bajic et al., 2004): The TATA 

box is located near -25 bp upstream of TSS, and the 

initiator and downstream promoter elements (DPE) 

are about 30%. bp downstream TSS. Promoter is a 

key region involved in protein coding and differential 

transcription regulation of RNA genes. The gene-

specific structure of the promoter sequence makes it 

extremely difficult to design a general computational 

recognition strategy. The 5'flanking region of the 

promoter may contain many short (5-10 bases long) 

motifs, which can be used as protein recognition sites 

to provide transcription initiation and specific 

regulation of gene expression. The smallest 

eukaryotic promoter region is called the core 

promoter, which can initiate basic transcription and 

contains a transcription start site (TSS). Among all 

known eukaryotic promoters, approximately 30-50% 

of the TATA boxes are located upstream of the 

transcription start site * 30 bp. Many highly 

expressed genes contain a powerful TATA box in 

their core promoters. At the same time, a large 

number of genes including housekeeping genes, 

some oncogenes and growth factor genes have 

promoters that do not contain TATA. Among these 

promoters, Inr (promoter region) or the recently 

discovered downstream promoter element (DPE), 

usually located downstream of TSS* 25-30 bp, can 

control the exact position of transcription initiation. 

Bacterial promoters contain two short conserved 

sequence elements upstream of the transcription start 

site, which are approximately -10 and -35 

nucleotides. The -10 box is absolutely necessary to 

start transcription in prokaryotes. The sequence of the 

-35 box will affect the transcription rate. Although 

these consensus sequences are conserved on average, 

they are not complete in most promoters. 

 

Eukaryotic Promoters 

Human data are taken from Genbank 90 

edition (Benson et al., 1994). Specifically, all human 

sequences containing the feature key 

"prim_transcript" were selected. This function key 

indicates that the sequence is an unprocessed 

transcript, so it may contain one or more transcription 

starting points. From these sequences, select a 

sequence at least 250 bp upstream of the first 

transcription start point and at least 250 bp 

downstream, cut out 501 bp symmetrically 

surrounding the start point, and perform training. 

This produced a set of 340 sequences, 37 of which 

contained multiple transcription start points. 

 

Prokaryotic Promoters 

The E. coli promoter sequence was taken from the 

compilation of Lisser and Margalit (Lisser & 

Margalit 1993). This database contains 300 

sequences and is superior to most other E. coli 

promoter databases available in two respects: 

• Each sequence has been compared with the original 

paper, thereby minimizing the chance of database 

input errors. 

• For each sequence, the assignment of the 

transcription starting point has been verified through 

related papers, and the most reliable 

 

Eukaryotic Promoter Architecture 

The promoter region is generally defined as 

any genomic DNA assembled by the transcription 

machinery and initiate transcription. The promoter 

region is composed of a protein binding region and a 

transcription start site (TSS). The structure of 

promoters in prokaryotes and eukaryotes is different 

in complexity. In prokaryotes, a single RNA 

polymerase can transcribe all types of RNA. The 

promoter region is characterized by the presence of -

35 and -10 elements, and in some cases UP elements. 

In general, in prokaryotes, the regulatory region is 

located within 100 base pairs of TSS. In eukaryotes, 

the promoter structure is more complex, and its 

complexity is increasing from single-celled yeast to 

mammals. There are several different types of RNA 

polymerases in eukaryotes (usually three), each of 

which is responsible for producing a different subset 

of RNA. RNA polymerase II is responsible for the 

synthesis of all mRNA and has been thoroughly 

studied compared with other RNA polymerases. 

Therefore, only features corresponding to the 

promoters of genes transcribed by RNA polymerase 

II are discussed below. In eukaryotes, the promoter 

region is roughly divided into core promoter, 

proximal promoter and distal promoter. The actual 

length of the core promoter region assembled by the 

basic transcription mechanism is 30-100 nucleotides. 

These regions are characterized by the presence of 

sequence motifs, such as TATA boxes and Inr 

elements. They may also contain downstream 

elements, such as DPE, MTE (human) and related 

TSS (Juven-Gershon et al. 2008; Thomas and Chiang 

2006). The proximal promoter region is a sequence 

within 500 base pairs relative to TSS and contains 

certain proximal promoter elements, including GC 

box, CAAT box, cis-regulatory module (CRM) 

(Lenhard and Sandelin 2012), etc. . The accelerator 

elements include reinforcing agents, insulators and 

silencers. The remote promoter region has no clearly 

defined length, and can extend from TSS to 10 kb in 

the upstream and downstream regions. The distal 

promoter interacts with the transcription activator to 

increase the rate of transcription. In vertebrates, 5% 

of genes are known to encode specific transcriptional 

activators, which interact with proximal and distal 

promoter regions. 
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Curvature Prediction 

With the help of the internal software 

NUCGEN (49), all the curvature calculations of the 

promoter sequence studied in this study were carried 

out. Our previous analysis showed that based on the 

crystal structure data of oligonucleotides (50,51), a 

set of dinucleotide parameters (CS) can correctly 

predict the curvature of synthetic and genomic DNA 

sequences. Therefore, CS parameters are used in the 

generation of DNA structures. Other analyses (A. 

Kanhere and M. Bansal, unpublished data) also show 

that for reliable curvature prediction, the window size 

should be at least 50 bp or greater. Therefore, we 

chose a window size of 75 bp for all curvature 

calculations. This not only allows us to estimate 

curvature more reliably, but also helps reduce noise. 

Therefore, for a promoter sequence with a length of 

"n" and a window size of "w" = 75 bp, we have 

obtained (n w +1) DNA fragments. According to (i) 

the radius of curvature (LSC), (ii) the ratio of the 

maximum component (Imax) to the minimum 

component (Imin) of the moment of inertia (Imax / 

Imin), calculate the curvature of the predicted 

structure of each of these segments) and (iii) ) The 

ratio of the end-to-end distance'd' along the path 

traced by the DNA molecule to the contour 

length'lmax' (d / lmax). Because similar trends are 

observed for all three parameters, only the parameter 

d/lmax is discussed in detail. 

 

General Promoter Architecture 

 

Figure : 1 Molecular mechanism of transcription modulation. The main features of four repression and 

four activation types are presented. +, the TF binds at this location; +-, there are multiple places where 

the TF could bind. TS signifies the transcription start site, TGn signifies the extended 10 element, and UP 

signifies the UP element. The ORF is the gene regulated by the promoter. 

 

Some genes are highly transcribed, while 

others are hardly transcribed or even not transcribed 

at all. This is largely due to the fact that 

transcriptional regulation mainly occurs during the 

initial binding of RNAP to DNA, the isomerization 

process, and the earliest stages of RNAP 

development along the DNA duplex (36). Since the 

supply of both factors and free RNAP is restricted in 

cells, promoters strongly compete for the binding of 

RNA complete enzymes (36, 192a). The binding of 

specific RNAP subunits plays an important role in 

transcription regulation. -The three main functions of 

the factor are (i) to ensure the recognition of core 

promoter elements, (ii) to locate RNAP on the target 

promoter, (iii) to unwind DNA near the transcription 

start site (321) (Figure 1)  

A genome can encode many different factors. 

In addition to specific TFs, each factor can also 

determine the transcriptional response of bacterial 

cells by directing RNAP to a specific set of target 
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genes (111). In general, bacterial housekeeping 

factors are similar to E. coli 70 70 kDa factors (111, 

226) and regulate genes related to cell growth. 

Several members of the 70 factor family have been 

described. In addition to 70 (231), Escherichia coli 

K-12 has five other 70 family factors, and Bacillus 

subtilis has 17 known variants of 70 (274). Generally, 

the 70 housekeeping factors bind to 35 and 10 DNA 

sequence elements in the promoter, which are 

relatively conserved hexanucleotide sequences, with 

the consensus sequence TTGACA at position 35 and 

TATAAT at position 10 (36). The intrinsic strength 

of the core promoter (except for the effect of binding 

to other TFs, the level of transcription occurring) 

depends to a large extent on the matching degree of 

the core promoter elements with these consensus 

sequences (154, 157, 289). Substitution factors 

(including those in the 54 family) usually regulate a 

set of genes with well-defined functions, but their 

regulators may also cover a wider range of target 

genes involved in a variety of biological processes, 

and significantly overlap with housekeeping genes. 

Factor (306). There is also a specific factor-subfamily 

(ECF factor) that directly binds to extracellular 

environmental signals to regulate transcription (121). 

The substitution factors can be discussed in detail, 

and their various functions (111, 121, 151) can be 

discussed in detail. A variety of factors are usually 

regulated by anti-factors, which can inhibit its 

function under certain conditions (139). 

 

II. TRADITIONAL METHODS 
A promoter is a basic DNA element located 

around the transcription start site (TSS) and can 

regulate gene transcription. Promoter recognition is 

of great significance in determining transcription 

units, studying gene structure, analyzing gene 

regulation mechanisms and annotating gene function 

information. Many models have been proposed to 

predict promoters. However, the performance of 

these methods still needs improvement. In this work, 

we combined the pseudo-k-tuple nucleotide 

composition (PseKNC) with the position-related 

scoring function (PCSF) to form Homo sapiens (H. 

sapiens), D. melanogaster (D. melanogaster), 

Caenorhabditis elegans (C. elegans), Bacillus subtilis 

(B. subtilis) and Escherichia coli (E. coli). [1] 

The promoter region is located near the 

transcription initiation site and regulates the 

transcription initiation of genes by controlling the 

binding of RNA polymerase. Therefore, promoter 

region recognition is an important area of concern in 

the field of bioinformatics. Many tools for promoter 

prediction have been proposed. However, the 

reliability of these tools still needs to be improved. In 

this work, we propose a powerful deep learning 

model DeePromoter to analyze the characteristics of 

short eukaryotic promoter sequences and accurately 

identify human and mouse promoter sequences. 

DeePromoter combines Convolutional Neural 

Network (CNN) and Long Short-Term Memory 

(LSTM). [2] 

Promoter identification is an important step in 

understanding drug development and gene 

transcription regulation in academia. This paper 

proposes a new computational model that can 

identify prokaryotic promoters and their strength 

through deep learning and pseudo-dinucleotide 

composition. The proposed model has been evaluated 

on the benchmark data set, and is superior to the 

current state-of-the-art model in both the promoter 

identification and promoter strength identification 

tasks. [3] 

In this study, the authors investigated the 

possibility of predicting prokaryotic promoters by 

detecting evolutionary conserved motifs. We focused 

on the possible G-quadruplex structure upstream of 

AT-rich elements. The basic principle starts with the 

following evidence: In human, yeast, and bacterial 

genomes, G-quadruplexes are overexpressed in 

regions near the promoter [18, 19, 40, 41]. In this 

study, we showed that among the experimentally 

identified TSS, in 75.6% and 73.4% of the cases rich 

in Co.color A3(2) and Pseudomonas aeruginosa 

PA14, the four G-rich cases The AT-rich elements of 

the chain motif are within ±50 bp. Genome, 

respectively (Table 5). These high percentages 

support the idea that the G-quadruplex is a prototype 

motif involved in general promoter 

function/regulation. [4] 

This study proved the excellent performance 

of the CNN model in classifying promoter and non-

promoter sequences. However, the accurate 

identification of promoters in long genome sequences 

is still a major challenge, not only requires accurate 

classifiers, but also requires proper selection of 

unique predictions among multiple overlapping high-

scoring genome fragments. In this task, it is also 

important to consider multiple or alternative 

promoters for each transcription unit, and it is 

possible to apply non-parametric methods recently 

described and tested on the promoter region of the 

model dicot plant Arabidopsis. Although we have 

integrated the developed CNN classifier into the 

promoter recognition program in the genome 

sequence, we will consider ways to solve many 

difficult aspects of this task in our follow-up 

research. [5] 

Identifying promoters on a computer is a huge 

challenge in computer biology. A large number of 

promoter prediction programs are available, and they 

differ in the features used to distinguish promoter 

regions from a large amount of genomic sequence 

information. Search by structure or ensemble 

algorithms seem promising because they are 

applicable to different model systems, while hybrid 
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algorithms are usually effective but limited to the 

availability of auxiliary experimental information 

(such as epigenetic features and CAGE tag counts) 

system. With the rapid development of high-

throughput technologies, which provide genome-

wide information about transcription, our 

understanding of promoter characteristics is 

changing. [6] 

In prokaryotes, the nature of the problem is 

different. Since there is usually no splicing, it is 

usually simple to divide the genome into gene units. 

However, this cannot make the correct inference of 

the protein product trivial, but it is difficult to find 

the correct start codon in the open reading frame 

(ORF). In this case, although the location of the 

promoter is useful, it cannot provide key information 

useful to eukaryotes due to the presence of the 

polycistronic operon. [7] 

This article discusses the application of soft 

computing technology in the field of gene prediction. 

Soft computing technologies, especially neural 

networks, seem to be powerful tools for gene 

prediction. This seems to be an ideal technique for 

combining multiple sources of information. 

However, the success of neural networks as a genetic 

prediction technology mainly depends on the type of 

information used as input. Genetic algorithms and 

hybrid techniques have given encouraging results, 

but they have been applied in very limited ways. 

Although the current soft computing technology is 

very helpful in identifying protein codes and ncRNA 

genes, since most of the work is done for specific 

genomes, the output results are still far from perfect. 

In the future technology, such as fuzzy logic, genetic 

algorithm, neurofuzzy and neurogenetics all need to 

be explored. [8] 

In this article, the author has developed an 

effective method for eukaryotic and prokaryotic 

promoter prediction. Five promoters were used to 

evaluate the performance of the IPMD method. And 

achieved a higher prediction accuracy. Although this 

method shows good performance in promoter 

prediction, there is still a lot of room to improve 

prediction accuracy. The current study can be 

regarded as the first draft of the promoter annotation. 

Future work will focus on DNA structural 

information and complete genome prediction. This 

method can also play an important complementary 

role with other existing methods for predicting 

promoters and transcription start sites. [9] 

Barrett and Palsson and Covert and colleagues 

predict that through an iterative model construction 

strategy in which subsequent iterations of high-

throughput experiments and computer simulations 

can be completed within a few years to elucidate the 

regulatory network of the model organism 

Escherichia coli. Such an iterative method is indeed 

promising, because in this way, future experimental 

research will be effectively simplified to generate the 

most dense information. However, if complex 

regulatory mechanisms (such as those discussed in 

this review) play a major role in prokaryotes, the 

prospects given by Barrett and Palsson and Covert 

and colleagues may be too optimistic. A more 

complex model may be required to arrive at TRN 

with a minimum amount of inconsistency. [10] 

This communication proposes a simple 

algorithm with high specificity and sensitivity to 

determine the promoter region in the human genome 

sequence. This method relies on non-redundant and 

experimentally verified promoter datasets from the 

Eukaryotic Promoter Database (EPD) as training 

parameters. The technology predicts and 

computationally satisfies the promoter region 

surrounding the gene sequence in the NCBI 

annotation database. [11] 

Based on the atomic MD simulation of the 

physical potential calculated from quantum 

chemistry, the resulting spiral stiffness parameters 

reveal the complexity of the DNA deformation mode. 

Using these intuitive parameters at the genomic level 

allows us to define promoters as regions with unique 

deformation characteristics, especially near TSS. 

Using this pattern of difference, we trained a very 

simple method based on the Mahalanobis metric, 

which can locate human promoters with amazing 

accuracy. [12] 

It is predicted that the promoter regions in 

prokaryotic and eukaryotic genomes have several 

common structural features compared with their 

neighboring regions, such as lower stability, higher 

curvature and less bending. All four sets of promoters 

considered here are also significantly different from 

non-promoter regions in single nucleotide, 

dinucleotide and trinucleotide composition. However, 

there are also some important differences between 

the various groups of promoters. In the case of 

prokaryotic sequences, the unique structural features 

are restricted to relatively short upstream regions 

compared to eukaryotic sequences, where they 

appear to extend in a significantly larger upstream 

region. In addition, compared with eukaryotic 

promoters, prokaryotic sequences are expected to be 

generally less flexible. [13] 

Promoters are very complex structures, 

defined by many different structural features. The 

actual regulatory elements are usually very short, 

which makes their clear identification very 

complicated. As a result, computer simulation 

prediction of promoters and regulatory motifs is not 

simple. In addition, our understanding of general 

transcriptional regulation, especially organism-

specific expression regulation, is still very limited. 

Especially for plants, there is still a need for reliable 

"intrinsic" genomic data that can be integrated into 

existing prediction tools. In this regard, we start by 
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analyzing the CpG and CpNpG islands that are 

usually associated with promoters. Although several 

implementations of detecting such "islands" in 

vertebrates have been described (Ioshikhes and 

Zhang, 2000), the parameter settings used to detect 

these islands in animals cannot be used to find 

similarities in the Arabidopsis genome. [14] 

In this article, the author shows that the 

hidden Markov model can learn the sequential 

structure that exists in both prokaryotic and 

eukaryotic promoter sequences. They significantly 

enhance the features that are obscured by the strict 

and gapless alignment of the transcription start point. 

We further introduced a new method of performing 

clustering experiments using HMM technology and 

the need to model sequential structures. This is 

important in many biological sequence analysis 

situations. Here we take the study of promoter 

sequences as an example. The promoter sequence is 

known for its strong diversity related to the 

recognition of individual RNA polymerase-related 

factors. [15] 

 

III. METHODOLOGY 
Training and testing data 

In this study, in order to prove the universality 

of the proposed method for the problem of promoter 

prediction, we selected promoter sequences from a 

group of organisms far away: two kinds of bacteria, 

namely human, mouse and plant. Table 1 shows the 

number of studies of promoter and non-promoter 

sequences for each organism. We use bacterial 

promoter and non-promoter sequences with a length 

of 81 nt (nucleotides). The bacterial non-promoter 

sequence is taken from the corresponding genomic 

sequence: we randomly select the fragment of the 

protein-coding gene and use the opposite (non-

coding) strand sequence. The E. coli σ70 promoter 

sequence was extracted from RegulonDB managed 

manually. The promoter of Bacillus subtilis is from 

the described collection. For human, mouse, and 

Arabidopsis non-promoter sequences (251 nt in size), 

we use random fragments of genes located after the 

first exon. The eukaryotic promoter sequence is 

extracted from the famous EPD database. 

 

S. No. Organism #promoter 

sequences 

#non-promoter 

sequences 

Length/Location 

1.  Escherichia coli s70 839 3000 81/-60 - +20 

2.  Bacillus subtilis 746 2000 81/-60 - +20 

3.  Human TATA 1426 8256 251/-200 - +50 

4.  Human non-TATA 19811 27731 251/-200 - +50 

5.  Mouse TATA 1255 3530 251/-200 - +50 

6.  Mouse non-TATA 16283 24822 251/-200 - +50 

7.  Arabidopsis TATA 1497 2879 251/-200 - +50 

8.  Arabidopsis non-

TATA 

5905 11459 251/-200 - +50 

Table: 1 Training and Testing Data 

We used 20% of each set sequence in the test 

set. 70% of the remaining sequences are used as 

training and 10% are used as validation set. The 

training set provides data to generate the parameters 

of the CNN model, while the validation set is used to 

find the optimal number of learning periods (periods) 

that should be limited to avoid overfitting. 

 

Convolutional Networks 

The convolutional layer is the core building 

block of the convolutional network [20-23]. One 

layer is composed of filters. The filter is a small 

matrix (W), such as L×L×D, where D is the depth of 

the input data, and L is called the filter length. These 

filters are convolved with the input, that is, they 

move in space on the input and calculate a dot 

product for each position: W×x + b, where W is our 

filter and x is a small block of the input, b is the 

deviation. The local L×L area in the input is called 

the receiving field, and the distance of each step of 

the filter sliding on the input is called the stride. 

Calculating the dot product at each location provides 

an activation map for our filter. The next layer takes 

the activation maps of all filters as input. The 

activation map is actually partially connected 

neurons, they share the same weight, that is, the 

weight corresponding to the filter. This weight 

sharing is an important attribute of convolutional 

networks. Compared with fully connected layers, it 

greatly reduces the number of parameters required. 

The convolutional layer can be followed by another 

convolutional layer. In this case, the input depth is 

the number of filters from the previous layer. The 

convolutional layer is finally the pooling layer. This 

is a simple layer that runs on each activation map, 

making it smaller and easier to manage. The most 

common pooling technique is "Max-Pooling", which 

selects the largest value among multiple values for 

further representation. Max-Pooling enhanced 

convolutional layers are common among many 

modern deep learners [23]. They can be used to 

process biological sequences, because convolutional 

filters can capture information about functional 

sequence motifs. 
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CNN architecture for building promoter recognition models 

 
 

Figure : 2 Basic CNN architecture that was used in building promoter models implemented in the 

learnCNN.py program (see text for description) 

 

There are many network architectures, and the 

task is to select the appropriate architecture for a 

specific research problem. In the learningCNN.py 

program, we use Keras to implement the CNN 

model, which is a minimalist and highly modular 

neural network library written in Python [32]. It uses 

the Theano library [33, 34] as a backend and utilizes 

GPU [35] for fast neural network training. Adam 

optimizer [36] is used for training of classification 

cross entropy as a loss function. In most cases, our 

CNN architecture (Figure 1) consists of only one 

convolutional layer and 200 filters of length 21. After 

the convolutional layer, we have a standard Max-

Pooling layer. The output of the Max-Pooling layer is 

fed to a standard fully connected ReLU layer with 

128 neurons. The combined size is usually 2. Finally, 

the ReLU layer is connected to the output layer 

through S-type activation, where neurons correspond 

to promoter and non-promoter subcategories. The 

batch size used for training is 16. The input of the 

network consists of nucleotide sequences, where each 

nucleotide is coded by a three-dimensional vector A 

(1,0,0,0), T (0,1,0,0), G (0,0,1 ,0) and C(0,0,0,1). The 

output is a two-dimensional vector: promoter (1, 0) 

and non-promoter (0, 1) predictions. Training on 

GTX 980 Ti GPU takes several minutes. In most 

cases, we intentionally use one layer of CNN 

architecture, but sometimes in order to strike the right 

balance between positive examples (initiators) and 

negative examples (non-initiators), two or three 

layers can be applied. A typical example of model 

calculation is shown in Figure 2. 

 

Integrated Algorithms 

For ab initio promoter prediction, it is 

important to select the feature with the highest 

discriminative power and the discriminant model 

(statistical model). Some programs integrate different 

functions to achieve better predictions (Zeng et al., 

2010). ARTS (Sonnenburg et al., 2006), CoreBoost 

(Zhao et al., 2007), PromoterExplorer (Xie et al., 

2006) and SCS (Zeng et al., 2010) are just a few 

examples of such new-generation algorithms. Two or 

more features are used to predict the promoter. PPP, 

such as MetaProm (Wang and Ungar 2007), 

integrates many algorithms to predict promoters. 

Compared with the algorithm described earlier, the 

integrated algorithm is usually a better promoter 

region identifier. 

 

Hybrid Methods 

Hybrid PPP has been developed recently. In 

addition to the inherent characteristics of the 

promoter sequence, they also use experimental 

information, such as gene expression and histone 

modification data (Wang et al., 2012). 

CoreBoost_HM (Wang et al., 2009) and the method 

of enriching data using ChIP-seq Pol-II (Gupta et al., 

2010) belong to the category of hybrid PPP. 

CoreBoost_HM integrates specific histone 

modification profiles and DNA sequence features 

(core promoter elements, TFBS, flexibility) to predict 

the human Pol II promoter. Similarly, another recent 

method integrates gene expression data of Chip-seq 

and CAGE methods (average number of tags per 

million and maximum number of tags) and DNA 

sequence characteristics (10 sequence composition 

variables and 22 attribute variables) to predict 

humans In the promoter region. In terms of 

sensitivity and specificity, these two methods are 

superior to earlier methods. 
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CONCLUSIONS AND FUTURE SCOPE  

Identifying promoters on a computer is a huge 

challenge in computer biology. A large number of 

promoter prediction programs are available, and they 

differ in the features used to distinguish promoter 

regions from a large amount of genomic sequence 

information. Search by structure or ensemble 

algorithms seem promising because they are 

applicable to different model systems, while hybrid 

algorithms are usually effective but limited to the 

availability of auxiliary experimental information 

(such as epigenetic features and CAGE tag counts) 

system. With the rapid development of high-

throughput technologies, which provide genome-

wide information about transcription, our 

understanding of promoter characteristics is 

changing. Promoter identification is an important 

step in understanding drug discovery and gene 

transcription regulation in academia. This paper 

proposes a new computational model that can 

identify prokaryotic promoters and their strength 

through deep learning and pseudo-dinucleotide 

composition. The proposed model has been evaluated 

on the benchmark data set, and is better than the 

current state-of-the-art model in both the promoter 

identification and promoter strength identification 

tasks. 
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