

A TRIVIALLY PROPOSED FORMALISM OF MONSTROUS* WAY OF UNIFICATION OF RELATIVITY AND QUANTUM PHYSICS USING 11– HYPERDIMENSIONAL HYPERCOMPLEX NUMBER SYSTEM UPTO DEKACADINION BASED ON THE ALGEBRAIC NORM OF THE GENERALIZED CAYLEY–DICKSON CONSTRUCTION

Deep Bhattacharjee^{1*}, Sanjeevan Singha Roy^{1,2}, Pradipta Narayan Bose³

¹Electro – Gravitational Space Propulsion Laboratory India ²Birla Institute of Technology, Mesra, Ranchi, 835215 ³Researcher at Dr. A. P. J. Abdul Kalam Technical University, India

*Corresponding Author

Article DOI: <u>https://doi.org/10.36713/epra13026</u> DOI No: 10.36713/epra13026

ABSTRACT

From 1 to Monocadinion and extending till Dekacadinion a trivial wayout is presented for a unified approach of relativity and quantum mechanics in a trivial formulation using the Cayley – Dickson constructions in all the algebraic, modified and generalized forms subject to further research.

KEYWORDS: Hyperdimensions – Hypercomplex – Zorn Ring – Dekacadinion

FORMULATIONS

The Cayley–Dickson construction, starting from the real numbers \mathbb{R} generates the composition algebras of the complex numbers \mathbb{C} , the quaternions \mathbb{H} , the octonions \mathbb{O} and so on... where the construction itself defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way having an involution known as conjugation.

There can also be the split–complex numbers being ring – isomorphic R_{iso} resulting in the split–complex approach of Cayley–Dickson as split-quaternions and then the split-octonions where in further terms for all the concerned functions and operators of C-D constructions the symmetry approach can be given as disappearance in below - number wise forms of^[1-5,9,10],

- 1. Losing order
- 2. Commutativity of multiplication
- 3. Associativity of multiplication
- 4. Alternativity
 - a. In the ordering,
 - i. Complex numbers lose the ordering of the reals
 - ii. Quaternions are multiplicative non commutative
 - iii. Octonions being associative while alternative (for vulnerability conditions)
 - iv. Sedenions non alternative but power associative with a properly defined lowest degree polynomials

forming -

 $\begin{cases} 2 \times 2 \text{ real matrices} \implies \text{split} - \text{quaternions for an associative algebra isomorphim} \\ \text{Zorn}(R) \implies \text{split} - \text{octonions for } R_{iso} \text{ formmalisms} \\ and \text{ so on } \dots \end{cases} \qquad Eq(A)$

The chain takes place in orders of [4-8]:

- Complex = Monocadinion (2¹ = 2 dimensions)
- Quaternion = Dicadinion $(2^2 = 4 \text{ dimensions})$
- Octonion = Tricadinion $(2^3 = 8 \text{ dimensions})$
- Sedenion = Tetracadinion $(2^4 = 16 \text{ dimensions})$
- Trigintaduonion = Pentacadinion $(2^5 = 32 \text{ dimensions})$
- Sexagintaquatronion = Hexacadinion $(2^6 = 64 \text{ dimensions})$

📧 2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013------

- Centumduodetrigintanion = Heptacadinion (2⁷ = 128 dimensions)
- Ducentiquinquagintasexion = Octocadinion $(2^8 = 256$ dimensions
- Ennecadinion $(2^9 = 512 \text{ dimensions})$
- Dekacadinion $(2^{10} = 1024 \text{ dimensions})$
- Hendekacadinion $(2^{11} = 2048 \text{ dimensions})$
- Dodekacadinion $(2^{12} = 4096 \text{ dimensions})$
- Tridekacadinion (2¹³ = 8192 dimensions)
- ...and so on.

Thus, it is easy to conclude the relativistic and Quantum Physics unification (in a trivial way) of 11 hyperdimenions and hypercomplexes taking gravity as 1D, time as 2D, space-time as 4D, magnetism as 8D, electricity as 16D, weak nuclear force as 32D, strong nuclear force as 64D, space-time-light as 1024D while each of the 11 hyperdimensions are not all same size^{NOTE}. While further research is needed to justify this.

REFERENCES

- 1. There are higher dimensional algebras, too. We have: 4-dimensional quaternions, . . . / Hacker News. (n.d.). https://news.ycombinator.com/item?id=17661971
- 2. Uchil, N. (n.d.). hypercomplex-math. Retrieved February 15, 2023, from https://nitinuchil.wordpress.com/2020/09/09/hypercomplex-math/
- 3. What comes after the ducentiquinquagintasexions? (n.d.). English Language & Usage Stack Exchange. https://english.stackexchange.com/questions/234607/what-comes-after-the-ducentiquinquagintasexions
- 4. Dickson, L. E. (1919). On Quaternions and Their Generalization and the History of the Eight Square Theorem. Annals of Mathematics, 20(3), 155. https://doi.org/10.2307/1967865
- Bhattacharjee, D. (2022c). Establishing equivalence among hypercomplex structures via Kodaira embedding theorem for nonsingular quintic 3-fold having positively closed (1,1)-form Kähler potential Ω⁻¹∂∂*ρ. Research Square. https://doi.org/10.21203/rs.3.rs-1635957/v1
- 6. Albert, A. A. (1942). Quadratic Forms Permitting Composition. Annals of Mathematics, 43(1), 161. https://doi.org/10.2307/1968887
- 7. Bhattacharjee, D. (2022i). An outlined tour of geometry and topology as perceived through physics and mathematics emphasizing geometrization, elliptization, uniformization, and projectivization for Thruston's 8-geometries covering Riemann over Teichmuller spaces. TechRxiv. https://doi.org/10.36227/techrxiv.20134382.v1
- 8. Visualization of the Cayley-Dickson Hypercomplex Numbers Up to the Chingons (64D) ------ by Michael Carter -MaplePrimes. (n.d.). https://www.mapleprimes.com/posts/124913-Visualization-Of-The-CayleyDickson
- 9. Bhattacharjee, D. (20220). Establishing Equivariant Class [O] for Hyperbolic Groups. Asian Research Journal of Mathematics, 362–369. https://doi.org/10.9734/arjom/2022/v18i11615
- 10. Bhattacharjee D, Roy, S. S., Sadhu, R., & Das, S. (n.d.). Mathematical Inequalities over Hypercomplex Structures and Infinities with Related Paradoxes. EasyChair Preprint No. 8377. https://easychair.org/publications/preprint/Nh9w

NOTE: The 2 – multiplier form is used to double the previous dim through a (trivial) split formalism of the later dim to the former dim by $/_2$ as depicted for (*numbers in eq(A*)) which would be justified properly via further research.

*Monster group is not concerned and is not to be confused with these constructions. The authors have no conflict of interest related to this paper.