

ISSN (Online) : 2455 - 3662 SJIF Impact Factor :3.395 (Morocco)

EPRA International Journal of

Multidisciplinary Research

Volume: 2 Issue: 5 May 2016

CC License

EPRA International Journal of Multidisciplinary Research (IJMR) ISSN (Online): 2455-3662

SJIF Impact Factor: 3.395 (Morocco)

Volume: 2 Issue: 5 May 2016

TOTAL COMPLEMENTARY TREE DOMINATION NUMBER OF GRAPHS

S. Muthammai¹

¹ Government Arts College for Women (Autonomous), Pudukkottai, Tamil Nadu, India

P. Vidhya²

²Assistant Professor, Department of Mathematics, S.D.N.B. Vaishnav College for Women (Autonomous) Chennai - 600 044, Tamil Nadu, India

ABSTRACT

Let G = (V, E) be a non-trivial, simple, finite and undirected graph. A dominating set D is called a complementary tree dominating set if the induced subgraph $\langle V-D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{trd}(G)$. A dominating set D is called a total complementary tree dominating set (tctd-set) if every vertex $v \in V$ is adjacent to an element of D and $\langle V-D \rangle$ is a tree. The minimum cardinality of a total complementary tree domination number of Gand is denoted by $\gamma_{tctd}(G)$. In this paper, bounds for $\gamma_{hctd}(G)$ and its exact values for particular classes of graphs are found. Some results on total complementary tree domination numbers are also established.

KEYWORDS: Total domination, total complementary tree domination. **AMS Subject Classification (2010):** 05C69.

1 INTRODUCTION

The graphs considered here are nontrivial, simple, finite and undirected. Let G be a graph with vertex set V(G) and edge set E(G). For $v \in V(G)$ the neighbourhood N(v) of v is the set of all vertices adjacent to v in G. $N[v] = N(v) \cup \{v\}$ is called the closed neighborhood of v. $N_i[v] = \{v \in V(G) : d(u, v) = i\}$ is called the ith neighbourhood of v. The corona $G_1 \odot G_2$ of two graphs G_1 and G_2 defined as the graph G of order p_1 and p_1 copies of G₂ and then joining the ith copy of G₂. It has $p_1(1 + p_2)$ vertices and $q_1 + p_1q_2 + p_1p_2$ edges. For any graph G, the corona G O K₁ is denoted by G⁺. $C_3^+ - v$, where v is a pendant vertex of C_3^+ is called a bull graph. The concept of domination was first studied by Ore [5]. A set $D \subseteq V$ is said to a dominating set of G, if every vertex in V–D is adjacent to some vertex in D. The minimum cardinality of a dominating set is called the domination number of G and is denoted by $\gamma(G)$. The concept of complementary tree domination was introduced by S. Muthammai, M. Bhanumathi and P. Vidhya in [4]. A dominating set $D \subseteq V$ is called a complementary tree dominating (ctd) set, if the induced subgraph $\langle V-D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domination number of G and is denoted by $\gamma_{ctd}(G)$. A dominating set D is called a total dominating set if every vertex $v \in V$ is adjacent to an element of D. The minimum cardinality of a total dominating set in G is denoted by $\gamma_1(G)$. A dominating set D is called a total complementary tree dominating set of every vertex $y \in V$ is adjacent to an element of D and $\langle V-D \rangle$ is a tree. The minimum cardinality of a total complementary tree dominating set is called the total complementary tree domination number of G and is denoted by $\gamma_{tctd}(G)$.

Kulli and Janakiram [7] introduced the concept of split domination in graphs. A dominating set D of a graph G = (V, E) is a split dominating set if the induced subgraph $\langle V-D \rangle$ is disconnected. The split domination

number $\gamma_s(G)$ of a graph G is the minimum cardinality of a split dominating set. Kulli and Janakiram [8] introduced the concept of non-split domination in graphs. A dominating set D of a graph G = (V, E) is a non split dominating set if the induced subgraph $\langle V-D \rangle$ is connected. The non split domination number $\gamma_{ns}(G)$ of a graph G is the minimum cardinality of a non split dominating set. In this paper bounds for $\gamma_{tetd}(G)$ and its exact values for particular classes of graphs are found. Some results on total complementary tree domination number are also established.

2 PRIOR RESULTS

Theorem 2.1. [5]

A dominating set D of a graph G = (V, E) is a minimal dominating set if and only if for each vertex v in D, one of the following two conditions hold

(i) v is an isolatex vertex of D

(ii) there exist a vertex u in V–D for which $N(u) \cap D = \{v\}$

Theorem 2.2. [1]

(i) if G is a connected graph with $p \ge 3$ vertices, then $\gamma_t(G) = 2p/3$

(ii) if G has p vertices and no isolated then $\gamma_t(G) = p - \Delta(G) + 1$

(iii) if G is connected $\Delta(G) \le p - 1$, then $\gamma_t(G) = p - \Delta(G)$

Observation 2.1. [4]

(i) For any connected graph, $\gamma(G) \leq \gamma_{ctd}(G)$.

(ii) For any connected graph H of G, $\gamma_{ctd}(G) \leq \gamma_{ctd}(H)$.

(iii) For any connected graph G with $p \ge 2$, $\gamma_{ctd}(G) \le p-1$.

3 TOTAL COMPLEMENTARY TREE DOMINATION NUMBER OF GRAPHS Definition 3.1.

A complementary tree dominating set $D \subseteq V$ of a connected graph G = (V, E) is said to be a total complementary tree dominating set (tctd-set), if the induced subgraph $\langle D \rangle$ has no isolated vertices.

The minimum cardinality of a tctd-set D of a connected graph G is called the total complementary tree domination number, denoted by $\gamma_{tctd}(G)$ and such a set D is called a γ_{tctd} -set.

A total ctd-set D of G is minimal, if no proper subset of D is a tctd-set of G. It is to be

noted that γ_{tctd} -set exists for all connected graphs.

Observation 3.1.

Since every total complementary tree dominating set is a complementary tree dominating set, $\gamma_{ctd}(G) \leq \gamma_{tctd}(G)$ for any connected graph G. Also, every total complementary tree dominating set is a total dominating set. Therefore

 $\gamma_t(G) \leq \gamma_{tctd}(G)$ for any connected graph G.

Note.

If G is a connected graph and H is any connected spanning (induced) subgraph of G, then it is not necessary that the inequality $\gamma_{tctd}(G) \leq \gamma_{tctd}(H)$ holds.

Example 3.1.

For the graph G in Figure 1, H₁ is a spanning subgraph of G and H₂ is an induced subgraph of G.

 $\gamma_{tctd}(G) = 3$, whereas $\gamma_{tctd}(H_1) = 2$ and $\gamma_{tctd}(H_2) = 2$.

In analogous to Theorem 2.4 [4], following result characterizes minimal total complementary tree dominating sets and is stated without proof.

Theorem 3.1.

A total complementary dominating set $D \subseteq V$ of a connected graph G = (V, E) is minimal if and only if for each vertex $v \in D$, one of the following conditions hold

- (i) v is not an isolated vertex of G.
- (ii) There exists a vertex u in V–D such that $N(u) \cap D = \{v\}$
- (iii) $N(v) \cup (V D) = \phi$
- (iv) The subgraph $\langle (V D) \cup \{v\} \rangle$ of G either contains a cycle or disconnected.
- (v) $D \{v\}$ contains isolated vertices.

Observation 3.2.

- (i) For any connected graph G with atleast three vertices, $2 \le \gamma_{tctd}(G) \le p-1$. The lower bound is attained, when $G \cong W_p$, wheel on p vertices and the upper bound is attained, when $G \cong K_{1,p}$, $p \ge 3$.
- (ii) If $\gamma_{tctd}(G) \le p-2$, then pendant vertices and supports of G are members of every tctd-set and hence, $\gamma_{tctd}(G) \ge m+n$, where m and n are number of pendant vertices and supports of G, respectively.

Observation 3.3.

(i) For the path P_n , $\gamma_{tctd}(P_n) = n-2$, $n \ge 4$.

www.eprajournals.com

- (ii) For the cycle C_n , $\gamma_{tctd}(C_n) = n-2$, $n \ge 4$.
- (iii) For the complete graph K_n , $\gamma_{tctd}(K_n) = n-2$, $n \ge 4$.
- (iv) For the star $K_{1,n}$, $\gamma_{tctd}(K_{1,n}) = n$, $n \ge 3$.
- (v) For the complete bipartite graph $K_{m,n}$, $\gamma_{tetd}(K_{m,n}) = \min(m, n)$, $m, n \ge 2$.
- $\begin{array}{ll} (vi) & \gamma_{tctd}(C_n \mathrel{\circ} K_1) = 2n{-}1, \, n \geq 3. \\ & \text{Here, } V(C_n \mathrel{\circ} K_1) \text{ a pendant vetex forms a } \gamma_{tctd}\text{-set.} \end{array}$
- (vii) For the wheel W_n with n vertices, $\gamma_{tctd}(W_n) = 2$, $n \ge 4$.
- (viii) For the subdivision graph of star $K_{1,n}$, $\gamma_{tctd}(G) = 2n$, $n \ge 2$.

Here, all the n pendant vertices and n support vertices forms a γ_{tctd} -set. **Proposition 3.1.**

Let $C_n^{(t)}$, $t \ge 2$ be the one point union of t cycles of length n (n ≥ 3), then

$$\gamma_{tctd}(C_n^{(t)}) = \begin{cases} (n-1)t, & n=3\\ (n-2)t+1, & n=4\\ (n-3)t+1, & n \ge 5. \end{cases}$$

Proof.

 $G = C_n^{(t)}$ and u be the point of union of t cycles of length n.

G has t(n-1)+1 vertices. Let the vertex set of kth cycle in $C_n^{(t)}$ be

 $V_k = \{u, \, u_{k1}, \, u_{k2}, \, ..., \, u_{k,n-1}\}, \, k = 1, \, 2, \, ..., \, t.$ Case 1. n = 3.

Let
$$D_k = \{u_{k1}, u_{k2}\}, k = 1, 2, ..., t \text{ and } D = \bigcup_{k=1}^t D_k \subseteq V(G)$$

Then, $\langle V-D \rangle \cong K_1$ and let $v \in D$, then $\langle V-(D-\{v\}) \rangle$ either contains a cycle or is disconnected and hence, D is a minimum tctd-set of G and $\gamma_{tctd}(G) = |D| = (n-1)t$. Case 2. n = 4.

Let $D_k = \{u_{k2}, u_{k3}\}, k = 1, 2, ..., t \text{ and } D = \bigcup_{k=1}^t D_k \cup \{u_{11}\} \subseteq V(G).$

Then, $\langle V-D \rangle \cong K_{1,t}$. As in case 1, D is a minimum totd-set of G and hence, $\gamma_{totd}(G) = |D| = (n-2)t+1$. Case 3. $n \ge 5$.

Let
$$D_k = \{u_{k2}, u_{k3}, ..., u_{k,n-2}\}, k = 1, 2, ..., t \text{ and } D = \bigcup_{k=1}^{t} D_k \cup \{u_{11}\} \subseteq V(G).$$

Then, $\langle V-D \rangle \cong K_{1,2t-1}$. As in case 1, D is a minimum tetd-set of G and hence $\gamma_{tetd}(G) = |D| = (n-3)t+1$.

4 BOUNDS AND SOME EXACT VALUES FOR THE TOTAL COMPLEMENTARY TREE DOMINATION NUMBER

In the following, a lower bound of $\gamma_{tetd}(G)$ in terms of order and size of the graph G is given. **Theorem 4.1.**

For any connected (p, q) $(p \ge 3)$ graph G,

$$\gamma_{tctd}(G) \ge \left\lfloor \frac{2(2p-q-1)}{3} \right\rfloor$$

Proof.

Let D be a γ_{tctd} -set of G. Let t be the number of edges in G having one vertex in D and the other in V–D and s be the number of edges in D. The number of vertices in $\langle V-D \rangle$ is $p-\gamma_{tctd}(G)$ and since $\langle V-D \rangle$ is a tree, number of edges in $\langle V-D \rangle$ is a tree, number of is

 $p-\gamma_{tctd}(G)-1$. Since there are atleast $p-\gamma_{tctd}(G)$ edges from V–D to D, $t \ge p-\gamma_{tctd}(G)$. Also, $\sum_{vD} \deg_{<D>}(v) = 2s$

and deg_{<D>}(v) ≥ 1 , for each v \in D implies that $2s \ge \gamma_{tctd}(G)$. Hence, $s \ge \frac{\gamma_{tctd}(G)}{2}$.

Therefore, q = number of edges in $\langle D \rangle + t + p - \gamma_{tctd}(G) - 1$

www.eprajournals.com

$$\geq \frac{\gamma_{tctd}(G)}{2} + p - \gamma_{tctd}(G) + p - \gamma_{tctd}(G) - 1$$

That is, $q \ge 2p - 1 - \frac{3\gamma_{tctd}(G)}{2}$.

Hence, $\gamma_{ctd}(G) \ge \left\lfloor \frac{2(2p-q-1)}{3} \right\rfloor$.

This bound is attained, if $G \cong C_4$. Corollary 4.1.

If G is a tree on p vertices, then $\gamma_{tctd}(G) \ge \frac{2p}{3}$ and is attained, if G is the graph obtained from P_m^+ (m ≥ 2) by subdividing each pendant edge exactly once.

Proof.

Replacing q by p-1 in Theorem 4.1 $\gamma_{tctd}(G) \ge \frac{2p}{3}$ is obtained.

Observation 4.1.

Since $\gamma_t(G) \ge \left\lceil \frac{P}{\Delta(G)} \right\rceil$ for a connected graph G and $\gamma_t(G) \ge \gamma_{tctd}(G)$, we have $\left\lceil \frac{P}{\Delta(G)} \right\rceil \le \gamma_t(G)$. This bound

is attained, if $G \cong C_4$, C_5 , W_n , $n \ge 4$.

Theorem 4.2.

Let G be a connected graph with $\delta(G) \ge 2$ and diam $(G) \ge 3$. If there exists a vertex $v \in V(G)$ such that the induced subgraph $\langle N(v) \rangle$ is totally disconnected, then $\gamma_{tctd}(G) \le p - \delta(G)$, where N(v) is the neighbourhood set of v.

Proof.

Let $v \in V(G)$ be such that $\langle N(v) \rangle$ is totally disconnected. Then, $\langle N[v] \rangle \cong K_{1,t}$ where $t = deg(v) \ge \delta(G)$. Let $u \in N(v)$. Then, $D = V - N[v] \cup \{u\}$ is a total dominating of G. Also, $\langle V - D \rangle \cong K_{1,t-1}$. Therefore, D is a totd-set of G and hence

$$\begin{split} \gamma_{tctd}(G) &\leq \left| D \right| \\ &= \left| V - N[v] \cup \{u\} \right| \\ &= p - (t+1) + 1 \\ &= p - t \\ &\leq p - \delta(G) \end{split}$$

Equality holds, if $G \cong C_n$, $n \ge 6$. **Remark 4.1.**

Let G be a connected graph with diam(G) = 2 and $\delta(G) \ge 2$. If there exists a vertex $v \in V(G)$ such that $\langle N(v) \rangle$ is totally disconnected and $\langle N_2(v) \rangle$ contains no isolated vertices, then

$$\gamma_{\text{tctd}}(G) \leq p - \delta(G),$$

where $N_2(v)$ is the second neighbourhood set of v.

Theorem 4.3.

Let G be a connected graph with diam(G) = 2. If there exists a vertex $v \in V(G)$ such that $\langle N_2(v) \rangle$ is a tree, then $\gamma_{\text{tctd}}(G) \leq \Delta(G) + 1$.

Proof.

Let $v \in V(G)$ be such that $\langle N_2(v) \rangle$ is a tree.

Since diam(G) = 2, N(v) is a dominating set of G.

Therefore, N[v] is a total dominating set of G.

Since $\langle N_2(v) \rangle$ is a tree, N[v] is a tetd-set of G. Hence,

$$\gamma_{\text{tctd}}(G) \leq |N[v]|$$
$$= \deg_{G}(v) + 1$$
$$\leq \Delta(G) + 1$$

This bound is attained, if $G \cong C_5$.

П

Theorem 4.4.

Let T be a tree with atleast three vertices. Then the set of all pendant vertices and supports of T are tctd-set if and only if

(i) each nonsupport of T of degree atleast 2 is adjacent to exactly one support and

(ii) no two nonsupports of degree atleast 2 is adjacent to the same support.

Proof.

Let D be the set of all pendant vertices and supports of T and be a tctd-set of T. Then, $\langle V-D \rangle$ is a tree and it contains nonsupports of T.

If the above conditions do not hold, then T contains a cycle.

Conversely, if the condition (i) and (ii) hold, then V(T) – nonsupports is a tctd-set of $G.\hfill \Box$

Remark 4.2.

From the above theorem, T is the tree obtained from P_n^+ ($n \ge 2$) by subdividing each pendant edge exactly once.

Theorem 4.5.

Let G be a connected graph with atleast four vertices, then $\gamma_{tctd}(G) = 2$ if and only if G is one of the following graphs.

- (i) G is the graph obtained from $K_1 + T$ with one pendant edge attached at the vertex of K_1 , where T is any tree with atleast two vertices.
- (ii) G is the graph obtained from a tree by joining each of the vertices of the tree to atleast one of the vertices of K_2 such that deg_G v ≥ 2 , for all v $\in V(K_2)$.

Proof.

Let G be one of the graph mentioned in (i) and (ii). Since G is not isomorphic to $K_1 + T$, for any tree T, $\gamma_{tctd}(G) \ge 2$.

If G is the graph as in (i), the subset of V(G) consisting of the vertex of K_1 and the pendant vertex of G forms a tctd-set of G.

Therefore, $\gamma_{tctd}(G) \le 2$ and hence $\gamma_{tctd}(G) = 2$. Conversely, assume $\gamma_{tctd}(G) = 2$. Then, there exists a tctd-set D such that |D| = 2.

Let $D = \{u, v\}$.

- (i) If u or v is a pendant vertex in G, then all the vertices of V–D are adjacent to v or u. Therefore, G is the graph mentioned in (i).
- (ii) Let $deg_G(u) \ge 2$ and $deg_G(v) \ge 2$. Since $\langle V-D \rangle$ is a tree and D is a total dominating set of G, each vertex in V–D is adjacent to atleast one vertex in D. Hence, G is the graph as in (ii).

Theorem 4.6.

Let G be a connected (p, q) graph with $p \ge 3$ and $\delta(G) = 1$. Then, $\gamma_{tctd}(G) = p-1$ if and only if either

- (i) every vertex of degree atleast 2 is a support (or)
- (ii) the subgraph of G induced by nonsupports of G of degree atleast 2 is either totally disconnected (or) contains exactly one vertex

Proof.

Let G be a connected graph with $p \ge 3$ and $\delta(G) = 1$

Assume $\gamma_{tctd}(G) = p - 1$

Let D be a tetd-set of G such that |D| = p - 1. Then V–D contains exactly one vertex of G. Let S be the set of all pendant vertices and supports of G. Then, S \subseteq D.

If S = D, then the vertex in V–D is neither a pendant vertex nor a support of G and is adjacent to atleast two supports of G. That is, subgraph of G induced by the vertices of degree atleast 2 and are not the supports contains exactly one vertex.

If S = V(G), then since D contains (p-1) vertices, one pendant vertex must be in V–D.

In this case, every vertex of degree atleast 2 is a support of G.

Let $v \in V-D$, then v is adjacent to atleast one vertex, say w in D.

If $w \in D-S$ and is adjacent to a vertex in D-S, then $D-\{w\}$ is a tetd-set of G. Therefore, w is adjacent to a vertex in S. That is, w is adjacent to atleast one support of G.

Hence, vertices in D-S are independent. That is, the vertices of G, which are neither pendant vertices nor supports, are independent in G.

Conversely, if every vertex of degree atleast 2 in G is a support, then V – {a pendant vertex} is a tctd-set of G and no vertex in D can be included in V–D and hence $\gamma_{tctd}(G) = p-1$.

Let the subgraph, say U of G induced by nonsupport vertices of degree at least 2 either totally connected or contains exactly one vertex, then V _ {u}, where u e U is а tctd-set of G and hence, $\gamma_{tctd}(G) = p-1$.

Theorem 4.7.

Let G be a connected graph with $p \ge 4$. If there exists an induced path P of length 2 in G such that central vertex of P has degree at least 3 and none of the vertices of P are supports and $\langle V(G) - V(P) \rangle$ has no isolated vertices, then $\gamma_{tetd}(G) \le p-3$.

Proof.

Let D = V(G) - V(P).

Since central vertex of P has degree atleast 3, each vertex in P is adjacent to atleast one vertex in D.

Also $\langle V - D \rangle = \langle V(P) \rangle \cong P_3$.

Hence, D is a ctd-set of G.

Since <D> has no isolated vertices, D is a total ctd-set of G.

Therefore, $\gamma_{tctd}(G) \leq |V(G) - V(P)| = p-3$.

Theorem 4.8.

Let G be a connected graph with at least four vertices and let D be a γ_t -set of G such that $\langle V-D \rangle$ is complete or $\langle V-D \rangle \cong mK_2$, $m \ge 1$. Then $\gamma_{tctd}(G) = p-2$.

Proof.

Let D be a γ_t -set of G such that $\langle V-D \rangle$ is complete. If $\langle V-D \rangle \cong K_2$, then D itself is a γ_{tctd} -set of G and hence $\gamma_{tctd}(G) = \gamma_t(G) = p-2$.

Theorem 4.9.

Let G be a connected graph with atleast three vertices, then $\gamma_{tctd}(G) = p-2$ if and only if

- (i) $G \cong K_p, p \ge 4$
- (ii) $G \cong C_p, p \ge 3, P_p, p \ge 6$
- (iii) G has atleast one of the following
 - (a) If G has an induced path of length 2 in G, then the central vertex is of degree 2 in G.
 - (b) If G has an induced path P of length 2 in G and if the central vertex of P is of degree atleast three in G, then either central vertex of P is a support of G or atleast one of the pendant vertices of P is a support or a pendant vertex of G such that either G has atleast two adjacent nonsupport vertices of degree atleast 2 (or) V(G) V(P) has isolated vertices.

Proof.

Let G be a connected graph with $\gamma_{tetd}(G) = p-2$

Let D be a totd-set of G such that |D| = p-2. Then $\langle V-D \rangle \cong K_2$.

- By the Theorem 4.7, if there exists an induced path P of length 2 in G such that
- (a) the central vertex of P has degree at least three in G
- (b) None of the vertices of P are supports of G, and
- (c) $\langle V(G) V(P) \rangle$ has no isolated vertices, then $\gamma_{tetd}(G) \leq p-3$.
 - Hence, atleast one of the following holds
 - (i) There exists no induced path of length 2 in G
 - (ii) The central vertex of induced path of length 2 in G is of degree 2 in G
 - (iii) If the central vertex of an induced path P of length 2 in G is of degree at least three, then either
 - (a) central vertex of P is a support (or) atleast one of the pendant vertices of P is a support or a pendant vertex of G (or)
 - (b) $\langle V(G) V(P) \rangle$ has at least one isolated vertex.

If (i) holds, then any two vertices of G are adjacent and hence $G \cong K_p$, $p \ge 3$. If the central vertex of each induced path of length 2 in G is of degree 2 in G, then $G \cong P_p$ (or) C_p , $p \ge 3$. But, if $G \cong P_p$, $p = 3, 4, 5, \gamma_{tetd}(G) = p-1$. Hence, $G \cong P_p$, $p \ge 6$. Let the central vertex of each induced path of length 2 in G is of degree atleast 3 in G. If each vertex of G of degree atleast 2 is a support, then $\gamma_{tetd}(G) = p-1$. (by Theorem 4.6). Similarly, if the subgraph of G induced by nonsupports of G of degree atleast 2 is either totally disconnected or contains exactly one vertex, then $\gamma_{tetd}(G) = p-1$.

Hence, if the central vertex of an induced path P of length 2 in G is of degree atleast three in G, then either central vertex of P is a support of G or atleast one of the pendant vertices of P is a support of G or a pendant vertex of G such that G has atleast two adjacent nonsupport vertices of degree atleast 2 (or) V(G) - V(P) has isolated vertices. Therefore, G is one of the graphs given in (i), (ii) and (iii).

Conversely, let G be one of the graphs given in (i), (ii) and (iii). If $G \cong K_p$, $p \ge 4$, P_p , $p \ge 6$, C_p , $p \ge 3$, then $\gamma_{tctd}(G) = p-2$. If G is the graph satisfying (iii), then every tctd-set of G contains both supports and pendant vertices, all the vertices of G except two adjacent vertices,

which are nonsupports of degree at least 2, are to be included in the tctd-set and hence, $\gamma_{tctd}(G) \leq p-2$.

П

Theorem 4.10.

Let G be a connected graph with $\delta(G) = 1$ and let $S \subseteq V(G)$ be the set consisting of supports and pendants vertices of G. If $\langle V-S \rangle$ is a tree and each vertex in V-S is adjacent to a support in G, then $\gamma_{tctd}(G) = m+n$.

Proof.

Since S has no isolated vertices, S is a tctd-set of G. Therefore, $\gamma_{tctd}(G) \le |S| = m+n$. Also, $\gamma_{tctd}(G) \ge m+n$ and hence, $\gamma_{tctd}(G) = m+n$.

5 Relationship between Total Complementary Tree Domination Number and other Parameters

In this section, the relationship between $\gamma_{tctd}(G)$ and $\gamma_t(G)$, $\gamma_{tns}(G)$, $\gamma_s(G)$ are found.

Theorem 5.1.

Let G be a connected graph. If $\kappa(G) > \gamma_t(G)$ and if there exists a γ_t -set D of G such that $\langle V-D \rangle$ is acyclic, then $\gamma_{tctd}(G) = \gamma_t(G)$.

Proof.

Let D be a γ_t -set of G. Since $\kappa(G) > \gamma_t(G)$, $\langle V-D \rangle$ is connected and since $\langle V-D \rangle$ is acyclic, and is a tree. Therefore, D is a tctd-set of G and $\gamma_{tctd}(G) \leq |D| = \gamma_t(G)$.

But, $\gamma_t(G) \leq \gamma_{tctd}(G)$.

Therefore, $\gamma_{tctd} = \gamma_t(G)$.

Observation 5.1.

Every connected graph contains a spanning connected subgraph H such that $\gamma_{tctd}(H) = \gamma_{tns}(G)$, where $\gamma_{tns}(G)$ is the minimum cardinality of a nonsplit dominating set having no isolated vertices.

Theorem 5.2.

Let G be a connected graph and let D be a tctd-set of G. If there exists a vertex $v \in D$ such that $N(v) \subseteq D$, then $\gamma_s(G) < \gamma_{tctd}(G)$, where $\gamma_s(G)$ is the split domination number of G.

Proof.

Let D be a totd-set of G. Therefore, $\langle V-D \rangle$ is a tree and $|D| \leq \gamma_{totd}(G)$. Let $v \in D$ be such that $N(v) \subseteq D$, then D $-\{v\}$ is a split dominating set of G, since $V - [D - \{v\}]$ is disconnected with an isolated vertex.

Hence, $\gamma_s(G) \leq |D - \{v\}| \leq \gamma_{tctd}(G) + 1$.

Therefore, $\gamma_s(G) < \gamma_{tetd}(G)$.

In the following, Nordhaus-Gaddum type result for total complementary tree domination number is established. **Theorem 5.3.**

Let G be a graph such that both G and its complement G are connected. Then

$$4 \le \gamma_{tctd}(G) + \gamma_{tctd}(\overline{G}) \le 2(p-1)$$
$$4 \le \gamma_{tctd}(G) \cdot \gamma_{tctd}(\overline{G}) \le (p-1)^2$$

The upper bound is attained, if $G \cong$ Bull graph and the lower bound is attained, if G is the cycle C₄ with one pendant edge attached at a vertex of C₄.

REFERENCES

- 1. Cockayne. E.J. Dawes. R.M. and Hedetniemi. S.T. (1980), "Total domination in graphs", Networks, 10, p.p: 211–219.
- 2. Harary. F. (1969), "Graph Theory", Addison Wesley, Reading Mass.
- 3. Kulli. V.R. and Janakiram. B. (1996), "The nonsplit domination number of a graph", Indian J. Pure Appl. Math., 27(6), p.p: 537–542.
- 4. Muthammai. S. Bhanumathi. M. and Vidhya. P. (2011), "Complementary tree domination number of a graph", International Mathematical Forum, 6, p.p: 1273–1282.
- 5. Ore. O. (1962), "Theory of Graphs", Amer. Math Soc. Colloq. Publ., 38, Providence.
- 6. Terra W. Haynes. Stephen T. Hedetniemi and Peter J. Slater. (1998), "Fundamentals of Domination in Graphs", Marcel Dekker Inc., New York.
- 7. Kulli. V.R. and Janakiram. B. (2000), "The nonsplit domination number of a graph", Indian J. Pure Appl. Math., 31, p.p: 545–550.
- 8. Kulli. V.R. and Janakiram. B. (1997), "The split domination number of a graph," Graph Theory Notes of New York, New York Academy of Sciences, XXXII, p.p: 16–19.

П