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ABSTRACT 

Let G = (V, E) be a non-trivial, simple, 
finite and undirected graph.  A dominating set D is 
called a complementary tree dominating set if the 

induced subgraph <VD> is a tree.  The minimum 
cardinality of a complementary tree dominating set 
is called the complementary tree domination 

number of G and is denoted by ctd(G). A dominating 
set D is called a total complementary tree 
dominating set (tctd-set) if every vertex  

v  V is adjacent to an element of D and <VD> is a 
tree.  The minimum cardinality of a total 
complementary tree dominating set is called the 
total complementary tree domination number of G 

and is denoted by tctd(G).  In this paper, bounds for 

tctd(G) and its exact values for particular classes of 
graphs are found.  Some results on total 
complementary tree domination numbers are also 
established. 

KEYWORDS: Total domination, total 
complementary tree domination. 
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1 INTRODUCTION 
The graphs considered here are nontrivial, simple, finite and undirected.  Let G be a graph with vertex 

set V(G) and edge set E(G).  For v  V(G) the neighbourhood N(v) of v is the set of all vertices adjacent to v in 

G.  N[v] = N(v)  {v} is called the closed neighborhood of v.  Ni[v] = {v  V(G) : d(u, v) = i} is called the ith 

neighbourhood of v.  The corona G1 ʘ G2 of two graphs G1 and G2 defined as the graph G of order p1 and p1 
copies of G2 and then joining the ith copy of G2. It has p1 (1 + p2) vertices and q1 + p1q2 + p1p2 edges. For any 

graph G, the corona G ʘ K1 is denoted by G+. v,C3 


 where v is a pendant vertex of 


3C  is called a bull 

graph.  The concept of domination was first studied by Ore [5].  A set D  V is said to a dominating set of G, if 

every vertex in VD is adjacent to some vertex in D.  The minimum cardinality of a dominating set is called the 

domination number of G and is denoted by (G).  The concept of complementary tree domination was 

introduced by S. Muthammai, M. Bhanumathi and P. Vidhya in [4].  A dominating set D  V is called a 

complementary tree dominating (ctd) set, if the induced subgraph <VD> is a tree.  The minimum cardinality of 
a complementary tree dominating set is called the complementary tree domination number of G and is denoted 

by ctd(G).  A dominating set D is called a total dominating set if every vertex v  V is adjacent to an element of 

D.  The minimum cardinality of a total dominating set in G is denoted by t(G).  A dominating  set D is called a 

total complementary tree dominating set of every vertex v  V is adjacent to an element of D and <VD> is a 
tree.  The minimum cardinality of a total complementary tree dominating set is called the total complementary 

tree domination number of G and is denoted by tctd(G). 
Kulli and Janakiram [7] introduced the concept of split domination in graphs.  A dominating set D of a 

graph G = (V, E) is a split dominating set if the induced subgraph <VD> is disconnected.  The split domination 
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number s(G) of a graph G is the minimum cardinality of a split dominating set.  Kulli and Janakiram [8] 
introduced the concept of non-split domination in graphs. A dominating set D of a graph  

G = (V, E) is a non split dominating set if the induced subgraph <VD> is connected.  The non split domination 

number ns(G) of a graph G is the minimum cardinality of a non split dominating set.  In this paper bounds for 

tctd(G) and its exact values for particular classes of graphs are found.  Some results on total complementary tree 
domination number are also established. 

2 PRIOR RESULTS 
Theorem 2.1. [5] 
A dominating set D of a graph G = (V, E) is a minimal dominating set if and only if for each vertex v in D, one 
of the following two conditions hold 
(i) v is an isolatex vertex of D 

(ii) there exist a vertex u in VD for which N(u)  D = {v} 

Theorem 2.2. [1] 
(i) if G is a connected graph with p  3 vertices, then t(G) = 2p/3 

(ii) if G has p vertices and no isolated then t(G) = p  (G) + 1 

(iii) if G is connected (G)  p  1, then t(G) = p  (G) 

Observation 2.1. [4] 
(i) For any connected graph, (G)  ctd(G). 

(ii) For any connected graph H of G, ctd(G)  ctd(H). 

(iii) For any connected graph G with p  2, ctd(G)  p1. 
 

3 TOTAL COMPLEMENTARY TREE DOMINATION NUMBER OF GRAPHS 
Definition 3.1. 

A complementary tree dominating set D  V of a connected graph G = (V, E) is said to be a total 
complementary tree dominating set (tctd-set), if the induced subgraph <D> has no isolated vertices.  

The minimum cardinality of a tctd-set D of a connected graph G is called the total complementary tree 

domination number, denoted by tctd(G) and such a set D is called a tctd-set. 
A total ctd-set D of G is minimal, if no proper subset of D is a tctd-set of G.  It is to be 

noted that tctd-set exists for all connected graphs. 

Observation 3.1. 
Since every total complementary tree dominating set is a complementary tree dominating set, ctd(G)  tctd(G) 
for any connected graph G.  Also, every total complementary tree dominating set is a total dominating set.  
Therefore  

t(G)  tctd(G) for any connected graph G. 

Note. 
If G is a connected graph and H is any connected spanning (induced) subgraph of G, then it is not necessary that 

the inequality tctd(G)  tctd(H) holds. 

Example 3.1. 
For the graph G in Figure 1, H1 is a spanning subgraph of G and H2 is an induced subgraph of G. 

tctd(G) = 3, whereas tctd(H1) = 2 and tctd(H2) = 2. 
In analogous to Theorem 2.4 [4], following result characterizes minimal total complementary tree dominating 
sets and is stated without proof. 

Theorem 3.1. 
A total complementary dominating set D  V of a connected graph G = (V, E) is minimal if and only if for each 

vertex v  D, one of the following conditions hold 
(i) v is not an isolated vertex of G. 

(ii) There exists a vertex u in VD such that N(u)  D = {v} 

(iii) N(v)  (V  D) =  

(iv) The subgraph <(V  D)  {v}> of G either contains a cycle or disconnected. 

(v) D  {v} contains isolated vertices. 

Observation 3.2. 
(i) For any connected graph G with atleast three vertices, 2  tctd(G)  p1. The lower bound is attained, 

when G  Wp, wheel on p vertices and the upper bound is attained, when G  K1,p ,  p  3. 

(ii) If tctd(G)  p2, then pendant vertices and supports of G are members of every tctd-set and hence, tctd(G) 

 m+n, where m and n are number of pendant vertices and supports of G, respectively. 

Observation 3.3. 
(i) For the path Pn, tctd(Pn) = n2, n  4. 
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(ii) For the cycle Cn, tctd(Cn) = n2, n  4. 

(iii) For the complete graph Kn, tctd(Kn) = n2, n  4. 

(iv) For the star K1,n, tctd(K1,n) = n, n  3. 

(v) For the complete bipartite graph Km,n, tctd(Km,n) = min(m, n), m, n  2. 

(vi) tctd(Cn ○ K1) = 2n1, n  3. 

Here, V(Cn ○ K1) - a pendant vetex forms a tctd-set. 

(vii) For the wheel Wn with n vertices, tctd(Wn) = 2, n  4. 

(viii) For the subdivision graph of star K1,n, tctd(G) = 2n, n  2. 

Here, all the n pendant vertices and n support vertices forms a tctd-set.  

Proposition 3.1. 

Let ,C(t)
n  t  2 be the one point union of t cycles of length n (n  3), then 
















5.n1,3)t(n
4n1,2)t(n
3n1)t,(n

)(Cγ (t)
ntctd  

Proof. 
(t)
nCG   and u be the point of union of t cycles of length n.   

G has t(n1)+1 vertices.  Let the vertex set of kth cycle in 
(t)
nC  be  

Vk = {u, uk1, uk2, ..., uk,n1}, k = 1, 2, ..., t. 

Case 1. n = 3. 

Let Dk = {uk1, uk2}, k = 1, 2, ..., t and V(G).DD
t

1k
k 



    

Then, <VD>  K1 and let v  D, then <V(D{v})> either contains a cycle or is disconnected and hence, D is 

a minimum tctd-set of G and tctd(G) = |D| = (n1)t. 

Case 2. n = 4. 

Let Dk = {uk2, uk3}, k = 1, 2, ..., t and V(G).}{uDD 11

t

1k
k 



    

Then, <VD>  K1,t.  As in case 1, D is a minimum tctd-set of G and hence,  

tctd(G) = |D| = (n2)t+1. 

Case 3. n  5. 

Let Dk = {uk2, uk3, ..., uk,n2}, k = 1, 2, ..., t and V(G).}{uDD 11

t

1k
k 



   

Then, <VD>  K1,2t1.  As in case 1, D is a minimum tctd-set of G and hence  

tctd(G) = |D| = (n3)t+1.             □ 
 

4 BOUNDS AND SOME EXACT VALUES FOR THE TOTAL COMPLEMENTARY 
TREE DOMINATION NUMBER 
In the following, a lower bound of tctd(G) in terms of order and size of the graph G is given. 

Theorem 4.1. 
For any connected (p, q) (p  3) graph G, 








 


3

1)q2(2p
(G)γ tctd  

Proof. 
Let D be a tctd-set of G. Let t be the number of edges in G having one vertex in D and the other in VD and s be 

the number of edges in D. The number of vertices in <VD> is p-tctd(G) and since <VD> is a tree, number of 

edges in <VD> is  

p-tctd(G)1.  Since there are atleast p-tctd(G) edges from VD to D, t  p-tctd(G).  Also, 2s(v)deg
vD

D    

and deg<D>(v)  1, for each v  D implies that 2s  tctd(G).  Hence, .
2

(G)γ
s tctd  

Therefore, q = number of edges in <D> + t + p  tctd(G)  1 
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          
2

(G)γ tctd  + p  tctd(G) + p  tctd(G)  1  

That is, q  2p  1  
2

(G)3γ tctd . 

Hence, 






 


3

1)q2(2p
(G)γctd . 

This bound is attained, if G  C4.             □ 

Corollary 4.1. 

If G is a tree on p vertices, then 
3

2p
(G)γ tctd   and is attained, if G is the graph obtained from 



mP  (m  2) by 

subdividing each pendant edge exactly once. 

Proof. 

Replacing q by p1 in Theorem 4.1 
3

2p
(G)γ tctd   is obtained.         □ 

Observation 4.1. 

Since 









Δ(G)

P
(G)γ t  for a connected graph G and t(G)  tctd(G), we have (G).γ

Δ(G)

P
t








 This bound 

is attained, if G  C4, C5, Wn, n  4. 

Theorem 4.2. 
Let G be a connected graph with (G)  2 and diam(G)  3.  If there exists a vertex v  V(G) such that the 
induced subgraph <N(v)> is totally disconnected, then  

tctd(G)  p  (G), where N(v) is the neighbourhood set of v. 

Proof. 
Let v  V(G) be such that <N(v)> is totally disconnected.  Then, <N[v]>  K1,t where t = deg(v)  (G). Let u  

N(v).  Then, D = V  N[v]  {u} is a total dominating of G.  Also, <V  D>  K1,t1. 
Therefore, D is a tctd-set of G and hence 

δ(G)p

tp

11)(tp

{u}N[v]V

D(G)γ tctd











 

Equality holds, if G  Cn, n  6.             □ 

Remark 4.1. 
Let G be a connected graph with diam(G) = 2 and (G)  2.  If there exists a vertex  

v  V(G) such that <N(v)> is totally disconnected and <N2(v)> contains no isolated vertices, then 

tctd(G)  p  (G), 
where N2(v) is the second neighbourhood set of v. 

Theorem 4.3. 
Let G be a connected graph with diam(G) = 2.  If there exists a vertex v  V(G) such that <N2(v)> is a tree, then 

tctd(G)  (G) + 1. 

Proof. 
Let v  V(G) be such that <N2(v)> is a tree. 
Since diam(G) = 2, N(v) is a dominating set of G. 
Therefore, N[v] is a total dominating set of G. 
Since <N2(v)> is a tree, N[v] is a tctd-set of G. Hence, 

1Δ(G)

1(v)deg

N[v](G)γ

G

tctd







 

This bound is attained, if G  C5.             □ 
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Theorem 4.4. 
Let T be a tree with atleast three vertices. Then the set of all pendant vertices and supports of T are tctd-set if 
and only if 
(i) each nonsupport of T of degree atleast 2 is adjacent to exactly one support and 
(ii) no two nonsupports of degree atleast 2 is adjacent to the same support. 

Proof. 
Let D be the set of all pendant vertices and supports of T and be a tctd-set of T.  Then, <VD> is a tree and it 
contains nonsupports of T.  
If the above conditions do not hold, then T contains a cycle. 

Conversely, if the condition (i) and (ii) hold, then V(T)  nonsupports is a tctd-set  

of G.                □ 

Remark 4.2. 

From the above theorem, T is the tree obtained from 


nP  (n  2) by subdividing each pendant edge exactly once. 

Theorem 4.5. 
Let G be a connected graph with atleast four vertices, then tctd(G) = 2 if and only if G is one of the following 
graphs. 
(i) G is the graph obtained from K1 + T with one pendant edge attached at the vertex of K1, where T is any 

tree with atleast two vertices. 
(ii) G is the graph obtained from a tree by joining each of the vertices of the tree to atleast one of the vertices 

of K2 such that degG v  2, for all v  V(K2). 

Proof. 
Let G be one of the graph mentioned in (i) and (ii).  Since G is not isomorphic to  

K1 + T, for any tree T, tctd(G)  2. 
If G is the graph as in (i), the subset of V(G) consisting of the vertex of K1 and the pendant vertex of G forms a 
tctd-set of G. 

Therefore, tctd(G)  2 and hence tctd(G) = 2.  Conversely, assume tctd(G) = 2. Then, there exists a tctd-set D 
such that |D| = 2. 
Let D = {u, v}. 

(i) If u or v is a pendant vertex in G, then all the vertices of VD are adjacent to v or u.  Therefore, G is the 
graph mentioned in (i). 

(ii) Let degG(u)  2 and degG(v)  2.  Since <VD> is a tree and D is a total dominating set of G, each vertex 

in VD is adjacent to atleast one vertex in D.  Hence, G is the graph as in (ii).   

        □ 
Theorem 4.6. 
Let G be a connected (p, q) graph with p  3 and (G) = 1.  Then, tctd(G) = p1 if and only if either 
(i) every vertex of degree atleast 2 is a support (or) 
(ii) the subgraph of G induced by nonsupports of G of degree atleast 2 is either totally disconnected (or) 

contains exactly one vertex 

Proof. 
Let G be a connected graph with p  3 and (G) = 1 

Assume tctd(G) = p  1 

Let D be a tctd-set of G such that |D| = p  1.  Then VD contains exactly one vertex of G.  Let S be the set of 

all pendant vertices and supports of G.  Then, S  D.  

If S = D, then the vertex in VD is neither a pendant vertex nor a support of G and is adjacent to atleast two 
supports of G.  That is, subgraph of G induced by the vertices of degree atleast 2 and are not the supports 
contains exactly one vertex.  

If S = V(G), then since D contains (p1) vertices, one pendant vertex must be in VD. 
In this case, every vertex of degree atleast 2 is a support of G. 

Let v  VD, then v is adjacent to atleast one vertex, say w in D. 

If w  DS and is adjacent to a vertex in DS, then D{w} is a tctd-set of G.  Therefore, w is adjacent to a 
vertex in S. That is, w is adjacent to atleast one support of G. 
Hence, vertices in D-S are independent.  That is, the vertices of G, which are neither pendant vertices nor 
supports, are independent in G. 

Conversely, if every vertex of degree atleast 2 in G is a support, then V  {a pendant vertex} is a tctd-set of G 

and no vertex in D can be included in VD and hence tctd(G) = p1. 
Let the subgraph, say U of G induced by nonsupport vertices of degree atleast 2 either totally connected or 

contains exactly one vertex, then V  {u}, where u  U is a  

tctd-set of G and hence, tctd(G) = p1.            □ 



 EPRA International Journal of Multidisciplinary Research (IJMR)   |   ISSN (Online): 2455 -3662  |   SJIF Impact Factor : 3.395 ( Morocco) 

 

         www.eprajournals.com                                                                                                                                                               Volume: 2 Issue:5  May  2016                                                                
6 

Theorem 4.7. 
Let G be a connected graph with p  4. If there exists an induced path P of length 2 in G such that central vertex 

of P has degree atleast 3 and none of the vertices of P are supports and <V(G)  V(P)> has no isolated vertices, 

then tctd(G)  p3. 

Proof. 
Let D = V(G)  V(P). 
Since central vertex of P has degree atleast 3, each vertex in P is adjacent to atleast one vertex in D. 

Also <V  D> = <V(P)>  P3. 
Hence, D is a ctd-set of G. 
Since <D> has no isolated vertices, D is a total ctd-set of G. 

Therefore, tctd(G)  |V(G)  V(P)| = p3.           □ 

Theorem 4.8. 
Let G be a connected graph with atleast four vertices and let D be a t-set of G such that <VD> is complete or 

<VD>  mK2, m  1. Then tctd(G) = p2. 

Proof. 
Let D be a t-set of G such that <VD> is complete.  If <VD>  K2, then D itself is a tctd-set of G and hence 

tctd(G) = t(G) = p2. 

Let <VD>  Km, m  3.  Then, D  V(Km2) is a tctd-set of G. Similarly, if  

<VD>  mK2, m  2, then D  V((m1)K2) is a tctd-set of G.  In both the cases, tctd(G)  p2.  Also, since 

<VD> is a tree, no subset of V(G) containing atmost (p3) vertices is a tctd-set of G and hence, tctd(G) = p2.  

        □ 
Theorem 4.9. 

Let G be a connected graph with atleast three vertices, then tctd(G) = p2 if and only if  

(i) G  Kp, p  4 

(ii) G  Cp, p  3, Pp, p  6 
(iii) G has atleast one of the following 

(a) If G has an induced path of length 2 in G, then the central vertex is of degree 2 in G. 
(b) If G has an induced path P of length 2 in G and if the central vertex of P is of degree atleast three 

in G, then either central vertex of P is a support of G or atleast one of the pendant vertices of P is a 
support or a pendant vertex of G such that either G has atleast two adjacent nonsupport vertices of 

degree atleast 2 (or) V(G)  V(P) has isolated vertices. 

Proof. 
Let G be a connected graph with tctd(G) = p2 

Let D be a tctd-set of G such that |D| = p2.  Then <VD>  K2. 
By the Theorem 4.7, if there exists an induced path P of length 2 in G such that 
(a) the central vertex of P has degree atleast three in G 
(b) None of the vertices of P are supports of G, and 

(c) <V(G) - V(P)) has no isolated vertices, then tctd(G)  p3. 
Hence, atleast one of the following holds 
(i) There exists no induced path of length 2 in G 
(ii) The central vertex of induced path of length 2 in G is of degree 2 in G 
(iii) If the central vertex of an induced path P of length 2 in G is of degree atleast three, then either  

(a) central vertex of P is a support (or) atleast one of the pendant vertices of P is a support or a 
pendant vertex of G (or) 

(b) <V(G) - V(P)> has atleast one isolated vertex. 

If (i) holds, then any two vertices of G are adjacent and hence G  Kp, p  3.  If the central vertex of each 

induced path of length 2 in G is of degree 2 in G, then G  Pp (or) Cp, p  3.  But, if G  Pp, p = 3, 4, 5, tctd(G) = 

p1. Hence, G  Pp, p  6. Let the central vertex of each induced path of length 2 in G is of degree atleast 3 in 

G. If each vertex of G of degree atleast 2 is a support, then tctd(G) = p1. (by Theorem 4.6).  Similarly, if the 
subgraph of G induced by nonsupports of G of degree atleast 2 is either totally disconnected or contains exactly 

one vertex, then tctd(G) = p1.  
Hence, if the central vertex of an induced path P of length 2 in G is of degree atleast three in G, then either 
central vertex of P is a support of G or atleast one of the pendant vertices of P is a support of G or a pendant 

vertex of G such that G has atleast two adjacent nonsupport vertices of degree atleast 2 (or) V(G)  V(P) has 
isolated vertices.  Therefore, G is one of the graphs given in (i), (ii) and (iii).  

Conversely, let G be one of the graphs given in (i), (ii) and (iii). If G  Kp, p  4, Pp,  

p  6, Cp, p  3, then tctd(G) = p2. If G is the graph satisfying (iii), then every  
tctd-set of G contains both supports and pendant vertices, all the vertices of G except two adjacent vertices, 
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which are nonsupports of degree atleast 2, are to be included in the tctd-set and hence, tctd(G)  p2.   

         □ 

Theorem 4.10. 

Let G be a connected graph with (G) = 1 and let S  V(G) be the set consisting of supports and pendants 

vertices of G. If <VS> is a tree and each vertex in VS is adjacent to a support in G, then tctd(G) = m+n. 

Proof. 
Since S has no isolated vertices, S is a tctd-set of G. Therefore, tctd(G)  |S| = m+n. Also, tctd(G)  m+n and 

hence, tctd(G) = m+n.           □ 

5 Relationship between Total Complementary Tree Domination Number and 
other Parameters 
In this section, the relationship between tctd(G) and t(G), tns(G), s(G) are found. 

Theorem 5.1. 
Let G be a connected graph.  If (G) > t(G) and if there exists a t-set D of G such that <VD> is acyclic, then 

tctd(G) = t(G). 

Proof. 
Let D be a t-set of G.  Since (G) > t(G), <VD> is connected and since <VD> is acyclic, and is a tree. 

Therefore, D is a tctd-set of G and tctd(G)  |D| = t(G). 

But, t(G)  tctd(G). 

Therefore, tctd = t(G).             □ 

Observation 5.1. 
Every connected graph contains a spanning connected subgraph H such that  

tctd(H) = tns(G), where tns(G) is the minimum cardinality of a nonsplit dominating set having no isolated 
vertices. 

Theorem 5.2. 
Let G be a connected graph and let D be a tctd-set of G.  If there exists a vertex v  D such that N(v)  D, then 

s(G) < tctd(G), where s(G) is the split domination number of G. 

Proof. 
Let D be a tctd-set of G.  Therefore, <VD> is a tree and |D|  tctd(G).  Let v  D be such that N(v)  D, then D 

 {v} is a split dominating set of G, since V  [D  {v}] is disconnected with an isolated vertex. 

Hence, s(G)  |D  {v}|  tctd(G) + 1. 

Therefore, s(G) < tctd(G).              □ 
In the following, Nordhaus-Gaddum type result for total complementary tree domination number is established. 

Theorem 5.3. 

Let G be a graph such that both G and its complement G  are connected.  Then 

2
tctdtctd

tctdtctd

1)(p)G((G).γγ4

1)2(p)G(γ(G)γ4




 

The upper bound is attained, if G  Bull graph and the lower bound is attained, if G is the cycle C4 with one 
pendant edge attached at a vertex of C4. 
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