Chief Editor

Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor

Mrs.M.Josephin Immaculate Ruba Editorial Advisors

1. Dr. Yi-Lin $Y u, P_{\text {Ph }}$ D

Associate Professor,
Department of Advertising \& Public Relations,
Fu Jen Catholic University,
Taipei, Taiwan.
2. Dr.G. Badri Narayanan, PhD,

Research Economist,
Center for Global Trade Analysis,
Purdue University,
West Lafayette,
Indiana, USA.
3. Dr. Gajendra Naidu.J., M.Com, LL.M., M.B.A., PhD. MHRM Professor \& Head, Faculty of Finance, Botho University, Gaborone Campus, Botho Education Park, Kgale, Gaborone, Botswana.
4. Dr. Ahmed Sebihi

Associate Professor
Islamic Culture and Social Sciences (ICSS), Department of General Education (DGE), Gulf Medical University (GMU), UAE.
5. Dr. Pradeep Kumar Choudhury, Assistant Professor,
Institute for Studies in Industrial Development, An ICSSR Research Institute, New Delhi- 110070.India.
6. Dr. Sumita Bharat Goyal

Assistant Professor,
Department of Commerce, Central University of Rajasthan, Bandar Sindri, Dist-Ajmer, Rajasthan, India
7. Dr. C. Muniyandi, M.Sc., M. Phil., Ph. D, Assistant Professor, Department of Econometrics, School of Economics, Madurai Kamaraj University, Madurai-625021, Tamil Nadu, India.
8. Dr. B. Ravi Kumar,

Assistant Professor
Department of GBEH,
Sree Vidyanikethan Engineering College,
A.Rangampet, Tirupati,

Andhra Pradesh, India
9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET

Associate Professor \& HOD
Department of Biochemistry,
Dolphin (PG) Institute of Biomedical \& Natural Sciences, Dehradun, Uttarakhand, India.
10. Dr. D.K. Awasthi, M.SC., Ph.D.

Associate Professor
Department of Chemistry, Sri J.N.P.G. College, Charbagh, Lucknow,
Uttar Pradesh. India

EPRA International Journal of Multidisciplinary Research (IJMR) Peer Reviewed Journal

ON THE PAIR OF EQUATIONS

$$
a \pm b=p^{3}, a b=q^{2}
$$

M.A.Gopalan
Professor, Department of Mathematics, SIGC, Trichy-620002,
Tamilnadu,India.

Abstract

This communication aims at determining pairs of non-zero distinct integers (a, b) such that, in each pair (i). the sum is a cubic integer and the product is a square integer (ii). the difference is a cubical integer and the product is a square integer

KEYWORDS: system of double equations, integer solutions

1. INTRODUCTION

In the history of number theory, the Diophantine equations occupy a remarkable position as it has an unlimited supply of fascinating and innovating problems [1-9]. This communication concerns with the problem of obtaining two non-zero distinct integers a and b such that
(i). $\quad a+b=p^{3}, a b=q^{2}$ and
(ii). $a-b=p^{3}, a b=q^{2}$
2. METHOD OF ANALYSIS
(I) On the system $a+b=p^{3}, a b=q^{2}$

Let a, b be two non-zero distinct positive integers such that
$a+b=p^{3}, a b=q^{2}$
where $p, q>0$
The elimination of b between (1) and (2) leads to
$a^{2}-a p^{3}+q^{2}=0$
which is satisfied by
$a=\frac{1}{2}\left(p^{3}+\sqrt{p^{6}-4 q^{2}}\right)$
The square root on the RHS is eliminated when
$q=r s, p^{3}=r^{2}+s^{2}, \quad r>s>0$
and thus, note that

$$
\begin{equation*}
a=r^{2}, b=s^{2} \tag{6}
\end{equation*}
$$

Now, note that the values of r and $s \quad$ should satisfy (5). After some algebra, it is seen that there are two sets of values of r, s given as below:

Set 1: $r=m\left(m^{2}+n^{2}\right), s=n\left(m^{2}+n^{2}\right)$
Set 2: $r=m^{3}-3 m n^{2}, s=3 m^{2} n-n^{3}$
where $m, n \neq 0$
Using Set 1 , the values of a, b satisfying $(1,2)$ are given by
$a=m^{2}\left(m^{2}+n^{2}\right)^{2}, b=n^{2}\left(m^{2}+n^{2}\right)^{2}$
and in view of set 2 , one has
$a=\left(m^{3}-3 m n^{2}\right)^{2}, b=\left(3 m^{2} n-n^{3}\right)^{2}$
However, it is worth to mention that the square root on the RHS of (3) is also eliminated when
$q=2\left(r^{2}-s^{2}\right), p^{3}=4\left(r^{2}+s^{2}\right)$
and we obtain
$a=2(r+s)^{2}, b=2(r-s)^{2}$
Now, observe that r and s should satisfy (8). It is seen that there are two sets of values to r, s as presented below:

Set 3:

$$
\begin{aligned}
& r=\alpha^{3}-3 \alpha \beta^{2}-3 \alpha^{2} \beta+\beta^{3} \\
& s=\alpha^{3}-3 \alpha \beta^{2}+3 \alpha^{2} \beta-\beta^{3} \\
& p=\alpha^{2}+\beta^{2}
\end{aligned}
$$

Set 4:
$r=\frac{m\left(m^{2}+n^{2}\right)}{2}$
$s=\frac{n\left(m^{2}+n^{2}\right)}{2}$
$p=m^{2}+n^{2}$
where m and n are of the same parity
Employing Set 3 in (9), the values of a and b satisfying (1,2) are given by
$a=2\left(\alpha^{3}-3 \alpha \beta^{2}\right)^{2}, b=2\left(\beta^{3}-3 \alpha^{2} \beta\right)^{2}$
and using Set 4 in (9), the corresponding values of a and b satisfying $(1,2)$ are obtained as
$a=\frac{1}{2}(m+n)^{2}\left(m^{2}+n^{2}\right)^{2}$,
$b=\frac{1}{2}(m-n)^{2}\left(m^{2}+n^{2}\right)^{2}$
where in the values of m and n are both even or both odd.
(II) On the system $a-b=p^{3}, a b=q^{2}$

Let a, b be two non-zero distinct positive integers such that
$a-b=p^{3}, a b=q^{2}$
Elimination b between (10) and (11), one gets
$a=\frac{1}{2}\left(p^{3}+\sqrt{p^{6}+4 q^{2}}\right)$
The square root on the RHS of (12) is eliminated when
$q=r s, p^{3}=r^{2}-s^{2}, \quad r>s>0$
and thus,

$$
\begin{equation*}
a=r^{2}, b=s^{2} \tag{15}
\end{equation*}
$$

It is to be noted that the values of r and s should satisfy (14). After a few calculations, it is seen that there are two sets of values to r, s as given below:

Set 3: $r=t_{3, p}, s=t_{3, p-1}, t_{3, p}$ - triangular number of rank p
Set 4:
$r=4 k^{3}+6 k^{2}+3 k+1$
$s=4 k^{3}+6 k^{2}+3 k$
$p=2 k+1$
Using set 3 , the values of a, b satisfying $(10,11)$ are given by
$a=t_{3, p}^{2}, b=t_{3, p-1}^{2}$
and in view of set 4 , one has
$a=\left(4 k^{3}+6 k^{2}+3 k+1\right)^{2}$
$b=\left(4 k^{3}+6 k^{2}+3 k\right)^{2}$
Also, the square- root on the RHS of (12) is eliminated for the following choices of p and q :
Choice (i) $\quad p=2 k s \quad, \quad q=2 s^{2}\left(k^{6} s^{2}-1\right)$
Choice (ii) $p=2 \alpha \beta, q=2\left(\alpha^{6}-\beta^{6}\right)$
and thus, one obtains
$a=2 s^{2}\left(k^{3} s+1\right)^{2} \quad, \quad b=2 s^{2}\left(k^{3} s-1\right)^{2}$
and
$a=2\left(\alpha^{3}+\beta^{3}\right)^{2}, b=2\left(\alpha^{3}-\beta^{3}\right)^{2}$ respectively.

REFERENCES

1. Dickson L.E., (1952), History of Theory of Numbers, Chelsea Publishing Company, Newyork, Vols.I and II.
2. Gopalan, M.A. and Devibala, .S., (2002), "A remark on $X+Y=U^{2}, X-Y=V^{2}, X Y+1=W^{2}$ ", Acta Ciencia Indica, No.4, Vol.XXVIII M, P-699.
3. Gopalan, M.A. and Devibala, .S., (2004) , " On the system of double equations $x^{2}+y^{2}-N=u^{2}, x^{2}-y^{2}-N=v^{2} "$ Bulletin of Pure and Applied Mathematics, No.2, Vol.23E, P-279-280.
4. Gopalan, M.A. and Devibala, .S., (2002) , "Note on the double equations $Y-X=U^{2}, Y^{2}+X^{2}=U^{6}$ ", Acta Ciencia Indica, No.4, Vol.XXVIII M, P-697.
5. M.A.Gopalan, S.Devibala, (2006), "On the system $x \pm y=$ square, $X y=$ cube", Acta Ciencia Indica, Vol.XXXII M, No.3, P-1469-1470.
6. J.N. Kapur, (1994), "Fascinating world of Mathematical Sciences", Vol 14, Mathematical Sciences Trust Society, New Delhi.
7. Shailesh Shivali, Mathematical Marvels, (2001), "A Primes on number sequences", Universities Press, India.
8. Titu Andreescu, Dorin Andrica and Zuming Feng, (2007), "104 Number Theory Problems", Birkhauser Boston Inc.,
9. Titu Andreescu and Dorin Andrica , (2009) , "Number Theory", Birkhauser Boston Inc.,
