
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---42

ENUMERATE A LIST OF INTEGER ELEMENTS OF A VECTOR

USING enumerate_elements_of_vector_for() PROCEDURE AND

ENUMERATION OF LIST OF INTEGER ELEMENTS USING

enumerate_elements_of_vector_while() PROCEDURE AND EXAMINING

THE TIME COMPLEXITY AND CALCULATING THE SPACE

COMPLEXITY OF THE FUNCTIONS OR ALGORITHMS. - A CASE

STUDY

6389 – Cadet P Dheva Dharshan1

Class- XII 2023-24, Sainik School Amaravathinagar
Post: Amaravathinagar, Udumalpet Taluka, Tirupur Dt, Tamilnadu State

ABSTRACT
In computer science effectiveness of algorithm is exclusively depend on time factor for the execution of included statements

within the block of code. Further the amount of memory it is being used for storing data also matters in calculating the space

complexity of the program.

 The 'enumerate_elements_of_vector_for()' procedure employs a 'for' loop to iteratively access and count elements

within the vector, while the 'enumerate_elements_of_vector_while()' procedure employs a 'while' loop for the same purpose.

Our case study investigates their respective efficiency, taking into account time complexity and space complexity as key metrics.

This manuscript specifically examines the time complexity and calculating the space complexity of the for and while

functions. By shedding light on the nuances of time and space complexity in the context of enumeration, this case study strives

to elucidate best practices for optimizing code and enhancing the overall efficiency of data processing algorithms..

KEYWORDS: enumerate_elements_of_vector_for (EVF), Runtime Complexity (rc), Big OO(n),

enumerate_elements_of_vector_while() (EVW), Big ThetaΘ(n), Big OmegaΩ(n)

1. INTRODUCTION
A ‘for’ loop is used for iterating over a sequence, that is a list,

a tuple, a dictionary, a set or a string. This is less like the ‘for’

keyword in other languages, and works more like an iterator

method as found in object-oriented programming languages.

With the ‘for’ loop we can execute a set of statements, once for

each item in a list, tuple, set etc.[1]

With the ‘while’ loop we can execute a set of statements as long

as a condition is true. And when the condition becomes false,

the line immediately after the loop in the program is executed.

It requires relevant variables to be ready.[4]

2. RELATED WORK
All computer languages in the world support sequencing,

selection and iteration methods. The syntax and semantics of a

language differs because of construction of a compiler or an

interpreter is of varied structure.

The construction of a compiler includes the control structures

which makes a structured programming language. The ‘for’

and ‘while’ are alternative methodologies for any iteration.

It is experienced by the programmers that the ‘for’ loop is far

easier than ‘while’ loop

3. METHODOLOGY
To conduct the efficiency comparison, the code generates a

dataset in the form of a list named L1.EVF employs a 'for' loop

to iteratively go through each element in the list.

A counter variable named v_count is incremented for each

element in the list, effectively enumerating the elements. The

time taken for enumeration using the 'for' loop is measured by

recording the start and end times.

Similar to the 'for' loop method, a 'while' loop is used for

enumeration in EVW.

A counter variable, v_count, is incremented during each

iteration of the 'while' loop until the end of the list is reached.

The time taken for enumeration using the 'while' loop is

measured.

The code provides a comparison of the two enumeration

methods by evaluating the time taken for each method and the

resulting length of the list after enumeration. Comparing these

metrics allows you to make an informed decision about the

efficiency and performance of 'for' and 'while' loops in this

specific context

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---43

 enumerate_elements_of_vector_for()and

enumerate_elements_of_vector_while().

After running the driver code, the code outputs the length of

the list and the time taken for enumeration for both 'for' and

'while' loop methods.

The results allow you to draw conclusions regarding the

relative efficiency of these two enumeration methods.

ALGORITHM ENUMERATE A LIST OF INTEGER

ELEMENTS OF A VECTOR USING FOR LOOP (EVF)

STEP 01: START

STEP 02: INITIALIZE AN EMPTY LIST L1 TO STORE

ELEMENTS

STEP 03: USING A 'FOR' LOOP, POPULATE THE LIST

L1 WITH NUMBERS

STEP 04: INITIALIZE A COUNTER VARIABLE

V_COUNT TO KEEP TRACK OF THE NUMBER OF

ELEMENTS.

STEP 05: RECORD THE START TIME OF THE

ENUMERATION PROCESS.

STEP 06: IN FOR LOOP ADD 1 TO V_COUNT EACH

ITERATION

STEP 07: RECORD THE END TIME OF THE

ENUMERATION PROCESS.

STEP 08: DISPLAY THE LENGTH OF L1

STEP 09: DISPLAY THE TOTAL TIME TAKEN FOR

ENUMERATION

STEP 10: STOP

PYTHON PROGRAM TO ENUMERATE A LIST OF

INTEGER ELEMENTS OF A VECTOR USING FOR

LOOP (EVF)

 L1=[]

 for i in range(1,100):

 L1.append(i)

 v_count=0

 start = time.time()

 for i in L1:

 v_count=v_count+1

 end = time.time()

print("Length of L1 using For Loop=",v_count)

print("Total Time For Enumeration Using 'For' Loop:

",end - start)

ALGORITHM TO ENUMERATE A LIST OF INTEGER

ELEMENTS OF A VECTOR USING WHILE LOOP

(EVW)

STEP 01: START

STEP 02: INITIALIZE AN EMPTY LIST L1 TO STORE

ELEMENTS

STEP 03: USING A LOOP, POPULATE THE LIST L1

WITH NUMBERS

STEP 04: INITIALIZE A COUNTER VARIABLE

V_COUNT TO KEEP TRACK OF THE NUMBER OF

ELEMENTS.

STEP 05: INITIALIZE A VARIABLE ELE WITH THE

NUMBER OF ELEMENTS USING IN BUILT

FUNCTION

STEP 06: RECORD THE START TIME OF THE

ENUMERATION PROCESS.

STEP 07: IN WHILE LOOP ADD 1 TO V_COUNT EACH

ITERATION WHILE i IS LESS THAN ELE

STEP 08: RECORD THE END TIME OF THE

ENUMERATION PROCESS.

STEP 09: DISPLAY THE LENGTH OF L1

STEP 10: DISPLAY THE TOTAL TIME TAKEN FOR

ENUMERATION

STEP 11: STOP

PYTHON PROGRAM TO ENUMERATE A LIST OF

INTEGER ELEMENTS OF A VECTOR USING WHILE

LOOP (EVW)

L1=[]

for i in range(1,100):

 L1.append(i)

ele=len(L1)

i=0

v_count=0

start = time.time()

while(i<ele):

 v_count=v_count+1

 i=i+1

end = time.time()

print("Length of L1 using 'While' Loop=",v_count)

 print("Total Time For Enumeration Using 'While'

Loop: ",end - start)

4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one. [2]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity. [3]

5. SPACE COMPLEXITY
 The space complexity of an algorithm is the amount of space

(or memory) taken by the algorithm to run as a function of its

input length, n. Space complexity includes both auxiliary space

and space used by the input.[3]

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---44

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation.[3]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations:[3]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible. [3]

Big O notation is used in Computer Science to portrait the

performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

7. RUNTIME COMPLEXITY OF ENUMERATION OF A

VECTOR

No. of

Elements
Using EVF Using EVW

100 0 0

1000 0 0

10000 0.00199461 0.000994205

50000 0.00794816 0.002991438

100000 0.007977724 0.004986525

250000 0.008976698 0.014961004

700000 0.026955366 0.0369828892

1000000 0.03824217 0.062833071

10000000 0.412894726 0.620584965

Graphical Representation of Runtime complexity of both the

methods

8.‘WHILE’ LOOP METHOD – rc
In the EVW the program enumerate the list of integers, the time

complexity of the algorithm for worst case is denoted as:

Big (O(n))

9.‘FOR’ LOOP METHOD – rc
The time complexity of the EVF is calculated as

Big (O(n))

10. CONCLUSION
The EVF has the greater efficiency for counting when

comparing EVW for large number of elements while EVW is

more efficient for less number of elements. Further it is also

observed that generating integers and storing in a list is one time

process and it is time consuming but once the list is prepared the

performance of EVF is much higher than the EVW. In addition

to this it is also observed that the execution of expression also

depends on the hardware configuration. The space complexity

for the EVF and EVW is identical.

11.ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper

.

I express my deep sense of gratitude to The Principal Capt.

(IN) K Manikamdan, Sainik School Amaravathinagar who

has been continuously motivating and extending their helping

hand to us.

I express my sincere thanks to the academician The Vice

Principal Wg Cdr Deepti Upadhyaya, Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---45

I express my earnest thanks to the academician The

Administrative Officer Lt Col Deepu, Sainik School

Amaravathinagar, for constant reassurance and the guidance

provided during this research.

My sincere thanks to Mr. Praveen Kumar Murigeppa

Jigajinni, Master In-charge. A guide, Mentor and great

motivator, who critically reviewed my paper and helped in

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://www.w3schools.com/python/python_for_loops.asp
2. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/
3. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity
4. https://www.w3schools.com/python/python_while_loops.as

p

https://doi.org/10.36713/epra2013
https://www.w3schools.com/python/python_for_loops.asp
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.w3schools.com/python/python_while_loops.asp
https://www.w3schools.com/python/python_while_loops.asp

