
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---46

REVERSE A GIVEN VECTOR USING LINEAR APPROACH rev_vect()

function AND REVERSE A VECTOR USING vect_slice() method.

EXAMINING AND COMPARING THE EFFICIENCY OF ALGORITHM

OF REVERSING VECTOR USING SLICING vect_slice() function WITH

REVERSING VECTOR USING LINEAR APPROACH rev_vect() function -

A CASE STUDY

6840 – Cadet D Deepak1

Class- XII 2023-24, Sainik School Amaravathinagar
Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT
In computer science, design analysis of algorithms is a very significant part. It is crucial to find the most efficient algorithm for

solving a problem. There can be many algorithms to solve a problem, but the challenge here is to choose the most efficient one.

There are multiple ways to design an algorithm, or taking into account which one to implement while solving critical applications

in day to day life. When thinking about this, it is crucial to consider the algorithm’s time complexity and space complexity.

 This manuscript specifically examines the execution of reversing a vector using rev_vect() function with vect_slice().

Further comparing with the linear or sequential approach of reversing a vector with slicing methodology by calculating the time

complexity of both the algorithms. In addition space complexity is also examined. The purpose is to provide efficient algorithm

to reverse a vector.

KEYWORDS: Linear Approach(la), Vector Slice (vs), Reverse Vector(rv), Runtime Complexity (rc), Big OO(n), Big

ThetaΘ(n), Big OmegaΩ(n), Generalised approach (ga).

1. INTRODUCTION
A vector, in programming, is a type of array that is one

dimensional. A vector is often represented as a 1-dimensional

array of numbers, referred to as components and is displayed

either in column form or row form. Vector is a logical element

in programming languages that are used for storing data. Vector

plays a crucial role in storing the data.

In modern programming libraries this name

"vector" has come to generally mean a variable

sized sequence of values.Vectors are the same

as dynamic arrays with the ability to resize itself

 automatically when an element is inserted or deleted.

2. RELATED WORK
Many mathematics research scholars have done extensive

research and have changed the way we reverse a number. There

are many methods discovered by many programmers but this is

one of the efficient methods where time consumption is very less

.

3. METHODOLOGY
Slicing is the extraction of a part of a string, list, or tuple. It

enables users to access the specific range of elements by

mentioning their indices. Syntax: Object [start:stop:step] “Start”

specifies the starting index of a slice. “Stop” specifies the ending

element of a slice. It is simple to execute. First import the

time module and use the function. Then get the input from the

user in vector i.e, in list form. Assign values m=0 and n=len(l1)-

1 then use assignment operator and assign k=l1[m] ,

l1[m]=l1[n] and l1[n]=k.Increase the value of m by 1 and

decrease the value of 1.Then using slicing method that is l1[::-

1] finish the code.

ALGORITHM

STEP 01: START

STEP 02: IMPORT TIME

STEP 03: GET INPUT OF LIST l1

STEP 04: ASSIGN M=0 AND N=LEN(L1)-1

STEP 05: START TIME FOR rev_vect()

STEP 06: WHILE M<N REPEAT STEPS 6 TO 8

STEP 07: ASSIGN K=L1[M] AND L1[M]=L1[N]

STEP 08: SET VALUE OF L1[N]=K

STEP 09:INCREASE THE VALUE OF M AND

REDUCE THE VALUE OF N BY 1

STEP 10: END TIME FOR vect_slice()

STEP 11: START TIME FOR vect_slice()

STEP 12: USE l1[::-1]

STEP 13: END TIME FOR vect_slice()

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---47

PYTHON PROGRAM TO REVERSE A VECTOR AND

FINDING THE EFFICIENCY OF THE CODE.

import time

def rev_vect(l1):

 m=0

 n=len(l1)-1

 start=time.time()

 while m<n:

 k=l1[m]

 l1[m]=l1[n]

 l1[n]=k

 m+=1

 n-=1

 end=time.time()

 print("Time taken for completion of execution by

method 1:",(end-start)*10**3)

 return l1

def vect_slice(l1):

 start=time.time()

 l1[::-1]

 end=time.time()

 print("Time taken for completion of execution by

method 2:",(end-start)*10**3)

 return l1

def main():

 l1=eval(input("Enter a list:"))

 a=rev_vect(l1)

 print("The reversed list method 1:",a)

 l=vect_slice(l1)

 print("The reversed list method 2:",l)

main()

4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one.[2]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity.[3]

5. SPACE COMPLEXITY
 The space complexity of an algorithm is the amount of space

(or memory) taken by the algorithm to run as a function of its

input length, n. Space complexity includes both auxiliary space

and space used by the input.[3]

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation.[3]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations:[3]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible.[3]

Big O notation is used in Computer Science to portrait the

performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

7. RUNTIME COMPLEXITY OF REVERSING A

VECTOR

Input rv vs

1000 0.0 0.0

6000 0.001994609 0.0

50001 0.002992391 0.0

76789 0.010969877 0.001000642

83567 0.004987955 0.000997066

98765 0.006981372 0.001996994

100000 0.005983829 0.000998020

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---48

Graphical Representation of Runtime complexity of both the

methods

8.GENERALISED APPROACH - rc
In the normal approach the program reverses the vector. The

time complexity of the algorithm for worst case is denoted as:

Big (O(n))

9.LUCAS METHOD (LMM) - rc
The time complexity of the reversing a vectoris calculated as

Big (O(14))

10. CONCLUSION
The Linear method and slice method have the greater efficiency

for reversing a vector when comparing with general approach.

Further it is also observed that reversing a vectors and storing in

a file is one time process and it is time consuming but once the

file is prepared the performance of the code is much higher than

the normal approach. In addition to this it is also observed that

the execution of expression also depends on the hardware

configuration.

11.ACKNOWLEDGEMENT

Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper.

I express my deep sense of gratitude to the luminary The

Principal Capt. (IN) K MANIKANDAN, Sainik School

Amaravathinagar who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the academician The Vice

Principal Wing Commander DEEPTI UPPADHAYAY and

Administrative officer Lieutenant colonel DEEPU for

constant encouragement and the guidance provided during this

research.

My sincere thanks to Mr.Praveen Kumar

MurigeppaJigajinni, Master In-charge, A guide, Mentor and

great motivator,who critically reviewed my paper and helped in

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/
2. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity

0

0.002

0.004

0.006

0.008

0.01

0.012

1 2 3 4 5 6 7

rv

vs

https://doi.org/10.36713/epra2013
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

