
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---52

CONCATENATION OF TWO OR MORE VECTORS USING concat_vect()

function A LINEAR METHOD AND CONCATENATION OF TWO OR

MORE VECTORS USING concat_assign_vect() FUNCTION USING

SIMPLIFIED ASSIGNMENT OPERATION. FURTHER ASSESSING

THE TIME COMPLEXITY OF BOTH ALGORITHMIC FUNCTIONS - A

CASE STUDY

6440– Cadet Prasant Kumar1

Class- XII 2023-24, Sainik School Amaravathinagar
Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT

Design and analysis of algorithm is one of the core component of implementation of any software. Its a very pivotal part. It is

important to plan and design the most efficient algorithm for solving a problem. There are various means of algorithms to solve

a problem, but the challenge here is to choose the most effectual and well organised algorithm.

This manuscript indeed describes the concatenation of list of elements using a linear method called concat_vetc()

function and concatenates two or more vectors, further the same functionality is being executed by using concat_assign_vect()

function simplified assignment operation, in addition to it the time complexity of the function is being calculated to examine the

performance of both the algorithms. The purpose is to provide efficient algorithm for concatenation of more than one vector.

KEYWORDS: Simplified Assignment operations(sa), concatenation of vector (cv), linear method(lm), Runtime Complexity

(rc), Big OO(n), Big ThetaΘ(n), Big OmegaΩ(n), Generalised approach (ga)

1. INTRODUCTION
A List is an ordered data structure with elements separated by

comma and enclosed within square brackets. The operation of

joining string end to end. A list is one of the most common data

structures used, not just in Python but in programming in

general. It is an ordered and mutable Python container. To create

a list, the elements are placed inside square brackets ([]) and

each element is separated by a comma

2. RELATED WORK
The most conventional method to perform the list concatenation,

the use of “+” operator can easily add the whole of one list

behind the other list and hence perform the concatenation.

List comprehension can also accomplish this task of list

concatenation. In this case, a new list is created, but this

method is a one-liner alternative to the loop method discussed

above.

3. METHODOLOGY
concat_assign_vect() function utilizes the

input_vector_elements() function twice to get two lists, L1

and L2, from user input. After obtaining both lists, it

concatenates them into a new list L3 using the + operator and

then prints the concatenated list.

concat_vect() function collects two lists, L1 and

L2,fromtheuserusingtheinput_vector_elements()

function. However, instead of using the + operator for

concatenation, it uses a for loop to iterate through the

elements in L2 and appends each element to L1. It then prints

L1 after each element is appended. This function essentially

prints the intermediate state of the L1 list as elements from

L2 are added to it.

ALGORITHM FOR concat_assign_vect() and

concat_vect()

STEP 01: START

STEP 02: ASK THE USER TO INPUT THE NUMBER OF

ELEMENTS, N.

STEP 03: INITIALIZE AN EMPTY LIST, L1.

STEP 04: Use A For Loop To Iterate From 0 To N-1.

STEP 05: INSIDE THE LOOP, ASK THE USER TO

INPUT AN ELEMENT, ELE.

STEP 06: APPEND THE ELEMENT ELE TO THE LIST

L1.

STEP 07: RETURN THE LIST L1 CONTAINING THE

INPUT ELEMENTS.

STEP08: DEFINE THE

CONCAT_ASSIGN_VECT()FUNCTION

STEP09: CALL THE INPUT_VECTOR _ELEMENTS

FUNCTIONS TWICE TO GET TWO LISTS,L1 AND L2,

FROM USERS.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---53

STEP 10: CONCATENATE THE TWO LISTS USING

THE + OPERATOR AND STORE THE RESULT IN A

NEW LIST, L3.

STEP 11: PRINT THE CONCATENATED LIST, L3.

STEP 12: DEFINE THE CONCAT_VECT() FUNCTION

STEP13: CALL THE INPUT

VECTOR_ELEMENT()FUNCTION TWICE TO GET

TWO LISTS, L1 AND L2, FROM THE USER.

STEP 14: INITIALIZE A LOOP TO ITERATE

THROUGH ELEMENTS IN L2.

STEP 15: INSIDE THE LOOP,TAKE AN

 ELEMENT, X, FROM L2.

STEP 16: APPEND THIS ELEMENT TO THE LIST L1.

STEP 17: APPEND THIS ELEMENT TO THE LIST L1.

STEP 18: PRINT THE UPDATED LIST L1 AFTER

ADDING EACH ELEMENT FROM L2.

STEP 19:STOP

PYTHON PROGRAM FOR concat_vect()

AND concat_assign_vect():

import time

import random

def concat_assign_vect():

 L1=[]

 L2=[]

 for i in range(0,100):

 L1.append(random.randint(0, i))

 for i in range(0,100):

 L2.append(random.randint(0, i))

 start = time.time()

 L3=L1+L2

 end = time.time()

 print("Total Time For Enumeration Using Assign

Vector is : ",end - start)

 print(L3)

def concat_vect():

 L1=[]

 L2=[]

 for i in range(0,100):

 L1.append(random.randint(0, i))

 for i in range(0,100):

 L2.append(random.randint(0, i))

 start = time.time()

 for x in L2:

 L1.append(x)

 print(L1)

 end = time.time()

 print("Total Time For Enumeration Using CONCAT

VECTOR is : ",end - start)

concat_assign_vect()

concat_vect()

4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one.[2]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity. [3]

5. SPACE COMPLEXITY
The space complexity of an algorithm is the amount of space (or

memory) taken by the algorithm to run as a function of its input

length, n. Space complexity includes both auxiliary space and

space used by the input. [3]

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation. [3]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations: [3]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible.[3]

Big O notation is used in Computer Science to portrait the

performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---54

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

7. RUNTIME COMPLEXITY

Input concat_vect() concat_assign_vect()

5 0.015622138 0.0

10 0.031253814 0.0

100 1.890174627 0.0

500 40.86535811 0.0

1000 87.53732275 0.0

10000 6073.405734 0.0

100000 80735.405734 0.0

500000 100735.40573 0.0

Graphical Representation of Runtime complexity of both the

methods

8.GENERALISED APPROACH - rc
In the normal approach the program checks for the given number

prime or not. The time complexity of the algorithm for worst

case is denoted as:

Big (O(n))

9.concat_vect() METHOD (LMM) - rc
The time complexity of the concat_vect() Method is calculated

as

Big (O(n))

10. CONCLUSION
The concat_vect() mathematical methodology has the greater

efficiency for checking prime when comparing with general

approach. Further it is also observed that generating prime series

and storing in a file is one time process and it is time consuming

but once the file is prepared the performance of the code is much

higher than the normal approach. In addition to this it is also

observed that the execution of expression also depends on the

hardware configuration.

11.ACKNOWLEDGEMENT

Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper.

I express my deep sense of gratitude to the luminary The

Principal Capt. (IN)K.Manikandan, Sainik School

Amaravathinagar who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the academician The Vice

Principal Wg Cmd Deepti Upadhyay, Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

My sincere thanks to Mr.Praveen Kumar

MurigeppaJigajinni, Master In-charge, A guide, Mentor and

great motivator,who critically reviewed my paper and helped in

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://en.wikipedia.org/wiki/Concat_vect()_number
2. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/
3. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity

-20000

0

20000

40000

60000

80000

100000

120000

-100000 0 100000 200000 300000 400000 500000 600000

RUN TIME COMPLEXITY - rc

concat_vect() concat_assign_vect()

https://doi.org/10.36713/epra2013
https://en.wikipedia.org/wiki/Concat_vect()_number
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

