
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---55

IMPLIMENTATION OF randomize_traverse() MATHEMATICAL

MODEL TO CHECK THE OCCURANCE OF GIVEN NUMBER IN A

VECTOR. FURTHER COMPARISON BETWEEN randomize_traverse()

AND STANDARD linear_search() FUNCTION. - A CASE STUDY

6371 – Cadet A Vinoth Kumar1

Class- XII 2023-24, Sainik School Amaravathinagar
Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT
In computer science efficiency of a particular software is determined by the two factors and they are, the amount of memory

that is being used to store the data and the amount of time used for processing .These two parameters are used in calculating

the space complexity and time complexity of the program.

 This manuscript specifically examines the execution of checking the given number exists in a vector or not, if it exists

how many times the number occurred by using randomize_traverse() and further comparing with the standard searching

methodology linear_search() function. The purpose is to provide a alternative methodology for counting the occurrence of a

given number in a vector.

KEYWORDS: linear search(ls), randomize traverse(rt), Runtime Complexity (rc), Big OO(n), Big ThetaΘ(n), Big

OmegaΩ(n), Generalised approach (ga)

1. INTRODUCTION
Searching means locating a particular element in a collection of

elements. Searching allows you to find if a particular element is

present in the list or not. You can use searching to count the

number of occurrences of a specific element in a list. This is

beneficial when you need to determine how many times a

particular value appears in the list.

The uses of searching the occurance of a element in vector is:

Counting the occurrences can be helpful in removing duplicate

elements from a list and when working with data, counting

occurrences can be helpful for summarizing and understanding

the distribution of values. It allows you to see how often each

value appears and identify outliers.

2. RELATED WORK
Linear search and binary search are two common searching

algorithms used in computer science to find the position of a

target value within a list or array. Linear search is a simple

algorithm that sequentially checks each element of a list until it

finds a match with the target value. It starts from the first

element and compares it with the target value. If the values are

equal, the search is complete. If there is no match, it moves to

the next element until the end of the list is reached. Linear search

has a time complexity of O(n), where n is the number of

elements in the list.

Binary search is a more efficient algorithm for searching

elements in a sorted list or array. It compares the target value

with the middle element of the list. If they match, the search is

complete. If the target value is greater than the middle element,

the search continues in the right half of the list. Otherwise, it

continues in the left half. This process is repeated by dividing

the list in half until the target value is found or the list is

exhausted. Binary search has a time complexity of O(log n),

where n is the number of elements in the list.

3. METHODOLOGY
The randomize traverse(rt) and linear search(ls) method is used

for checking the occurance of a number in a vector ,the

randomize traverse(rt) will generate numbers and store it in a list

and with the help of this list it will check the occurrence of a

number in a vector.

Further to check the efficiency of randomize traverse approach

with the linear search methodology of checking the occurance

of a number in a vector and examining the length of the input.

ALGORITHM FOR randomize_traverse()

MATHEMATICAL MODEL TO CHECK THE

OCCURANCE OF GIVEN NUMBER IN A VECTOR

STEP 01: START

STEP 02: IMPORT RANDOM

STEP 03: ENTER A LIST

STEP 04: ENTER THE SEARCHING KEY

STEP 05: COUNT=0

STEP 06: GENERATE RANDOM NUMBERS IN A LIST

a

STEP 07:FOR I IN RANGE(0,LEN(l1))

STEP 08: IF SK==l1[a[i]]:

STEP 09: COUNT+=COUNT

STEP 10: PRINT COUNT

STEP 11: STOP

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---56

PYTHON PROGRAM TO CHECK THE

OCCURRANCE OF A NUMBER IN A VECTOR

USING randomize traverse(rt).

import random

L1=eval(input("enter a list"))

sk=int(input("enter the search number:"))

count=0

a=random.sample(range(0,len(L1)),len(L1))

for i in range(0,len(L1)):

 if sk==L1[a[i]]:

 count=count+1

print(count)

ALGORITHM FOR linear search(ls) MATHEMATICAL

MODEL TO CHECK THE OCCURANCE OF GIVEN

NUMBER IN A VECTOR

STEP 01: START

STEP 02: ENTER A LIST

STEP 03: ENTER THE SEARCHING KEY

STEP 04: COUNT=0

STEP 05: FOR I IN L1:

STEP 06: IF I==SK:

STEP 07: COUNT=COUNT+1

STEP 08: PRINT (COUNT)

STEP 09: STOP

PYTHON PROGRAM TO CHECK THE OCCURRANCE

OF A NUMBER IN A VECTOR USING linear search(ls).

L1=eval(input("enter a list"))

sk=int(input("enter the search number:"))

count=0

for i in L1:

 if i==sk:

 count=count+1

print("no of numbers:",count)

4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one.[1]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity.[2]

5. SPACE COMPLEXITY
 The space complexity of an algorithm is the amount of space

(or memory) taken by the algorithm to run as a function of its

input length, n. Space complexity includes both auxiliary space

and space used by the input.[2]

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation.[2]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations:[2]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible.[2]

Big O notation is used in Computer Science to portrait the

performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

7. RUNTIME COMPLEXITY OF CHECKING A

randomize_traverse

Input
Linear

search

Randomize

traverse

100 0.0 0.0

1000 0.0 0.0

10000 0.0 0.015637874

50000 0.009718418 0.010993957

100000 0.008007764 0.020989698

200000 0.021995544 0.052467088

300000 0.026982545 0.078321424

400000 0.041989564 0.095634537

500000 0.060964345 0.125586376

Graphical Representation of Runtime complexity of both the

methods

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL: https://doi.org/10.36713/epra2013---57

8.RANDOMIZE TRAVERSE-rc
In the randomize traverse approach the program checks for the

occurrence of a number in a vector. The time complexity of the

algorithm for any value of n is denoted as;

Big (O(n))

9.LINEAR SEARCH-rc
The time complexity of the linear search is calculated as

Big (O(14))

10. CONCLUSION
The Linear search has the greater efficiency for checking

occurrence of a number in a vector when comparing with

randomize traverse.The linear search proves to be very efficient

as it uses the iterative process to check each and every element

of the list in order.This proves to be very efficient while dealing

with very huge numbers like in zillions.

11.ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper.

I express my deep sense of gratitude to the luminary The

Principal Capt. (IN) K Manikandan, Sainik School

Amaravathinagar who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the academician The Vice

Principal Wg Commander Deepti Upadhyaya, Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

My sincere thanks to Mr.Praveen Kumar

MurigeppaJigajinni, Master In-charge, A guide, Mentor and

great motivator,who critically reviewed my paper and helpedin

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/
2. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9

Linear_search

Randomize_traverse

https://doi.org/10.36713/epra2013
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

