
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL:https://doi.org/10.36713/epra2013--165

IMPLIMENTATION OF replica_vector() TO CHECK THE EFFICIENCY

OF REPLICATION OF THE ELEMENTS OF GIVEN VECTOR USING

append() METHOD OF LIST, TO CREATE AND REPLICATE VECTOR

WITH THE copy() function of the copy module WITH RESPECT TO THE

AMOUNT OF ELEMENTS OF A VECTOR. - A CASE STUDY

6394 – Cadet M P Indresh1

Class- XII 2023-24, Sainik School Amaravathinagar
Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT

All the programming languages support copying functions which is used to copy or create replica of objects these objects

represent the set of possible interpretations of any possibly-infinite sequence of symbols.

This manuscript reveals replica of vector using replica_vector () function and examines the execution of replication of

elements of the vector. Further comparing of replica_vector () approach with the replicating of vector elements using copy()

function in copy module in python. In addition to this time complexity and space complexity of an algorithm is examined. The

purpose of this manuscript is to examine two different approaches efficiency when it comes to handling large data sets.

KEYWORDS: replica vector (Rv), copy() function (Cf), Runtime Complexity (rc), Big OO(n), Big ThetaΘ(n), Big

OmegaΩ(n), Generalised approach (ga)

1. INTRODUCTION
The copying modules are basically functions which are

generally used to create a new object of same data type of the

data which is to be copied and copies all the objects present in it

to the old object into the newly created object. This function is

usually found in nearly all programming languages available

across the world under different names usually providing the

same feautures

The Copying modules mostly consists of two types of copying

namely deep copy and shallow copy. In deep copy a collection

of objects is constructed at first and the newly created object is

recursively populated with copies of object found in the

original.Wheras in shallow copy we create a duplicate of the

original element but do not make copies of any elements

referenced by the original element. In copy() function (Cf) we

use the methodology of shallow copy .Therefore we tend to

duplicate the elements in a new object rather than copying every

elements like deep copy as it tends to be more effevtive.

In replica_vector(Rv) we use the append() fuction of list data

type in Python to copy every object individually.

2. RELATED WORK
Many programmers around the world have researched

thoroughly about the copying function around the world and

have increased the number of ways through which the elements

in a list can be copied very efficiently even while dealing with

number of elements numbering upto zillions .

3. METHODOLOGY
The copy() function(Cf) is used to copy the elements of a list

using the method of shallow copying.The time module will be

imported using the import function.Two list data types will be

created using the list function.

Inside a iteration upto certain number till which the number of

elements in the first list or the list to be copied is needed.

Then using the copy() function(Cf) of the copy module of the

Python you can assign the second list to the copy() function(Cf)

and in the function where the argument of the list to be copied

is required put the name of the first list.

In the replica_vector(Rv) we first create two list data types

using the list function. The first list is then iterated to a certain

number of times and the number of times the iteration is

completed a new number will be added to the first list data

type.

After creating a list data type of certain number of elements

,once again a new iteration is created to transverse through

each and every elements of the first data type and each element

transverse individually is then individually appended into the

second list data type using the append() function in Python.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL:https://doi.org/10.36713/epra2013--166

ALGORITHM FOR COPYING ELEMENTS OF A LIST

DATA TYPE USING copy() function(Cf)

STEP 01: START

STEP 02: L1=LIST

STEP 03: L2=LIST

STEP 04: FOR I IN RANGE (1,N):

STEP 05:APPEND IN L1

STEP 06:L2=copy.copy(L1)

STEP 07: STOP

PYTHON PROGRAM TO COPY THE ELEMENTS OF A

LIST DATA TYPE USING THE copy() function(Cf)

import copy

def copy_():

 l1=list()

 l2=list()

 for i in range(1,N):

 l1.append(i)

 l2=copy.copy(l1)

copy_()

ALGORITHM TO COPY THE ELEMENTS IN A LIST

DATA TYPE USING replica_vector()(Rv)

STEP 01: START

STEP 02: L1=LIST

STEP 03:L2=LIST

STEP 04:FOR I IN RANGE (1,N):

STEP 05: APPEND IN THE L1

STEP 06: FOR I IN L1:

STEP 07: APPEND IN THE L2

STEP 08: STOP

PYTHON PROGRAM TO COPY THE ELEMENTS OF A

LIST DATA TYPE USING THE replica_vector()(Rv)

def list_method():

 l1=list()

 l2=list()

 for i in range(1,N):

 l1.append(i)

 begin=time.time()

 for i in l1:

 l2.append(i)

list_method()

4. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one.[1]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity.[2]

5. SPACE COMPLEXITY
 The space complexity of an algorithm is the amount of space

(or memory) taken by the algorithm to run as a function of its

input length, n. Space complexity includes both auxiliary space

and space used by the input.[2]

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation.[2]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

6. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations:[2]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible.[2]

Big O notation is used in Computer Science to portrait the

performance or complexity of an algorithm.

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL:https://doi.org/10.36713/epra2013--167

7. RUNTIME COMPLEXITY OF CHECKING A

PRIME NUMBER

Input
copy()

function(Cf)

replica_vector

(Rv)

100 0.0 0.0

10000 0.0 0.0

20000 0.0 0.0

100000 0.0 0.015615940

200000 0.0 0.016032696

1000000 0.015654087 0.078124761

2000000 0.0156323909 0.140627384

10000000 0.0937488079 0.765634536

20000000 0.2343809604 1.6406536102

Graphical Representation of Runtime complexity of both the

methods

8.Time Complexity of copy() function (Cf)

In the copy() function of the program the time copmplexity of

the code for any value of N in the given code is given as

Big (O(n))

9.Time Complexity of replica_vector(Rv)

The time complexity of the replica_vector()(Rv) for any value

of N of the given code is

Big (O(n))

10. CONCLUSION
The copy() function(Cf) of the copy module of the Python has

greater efficiency compared to that of the replica_vector(Rv)

which employs the append() function of the list data type in

Python.Further the copy function also uses a method of shallow

copying which allows it to work very efficiently when dealing

with bigger number of elements in the list data type of the

Python.

11.ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper.

I express my deep sense of gratitude to the luminary The

Principal Capt. (IN) K.MANIKANDAN, Sainik School

Amaravathinagar who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the academician The Vice

Principal Wg Cdr Deepti Upadyay,Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

My sincere thanks to Mr.Praveen Kumar Murigeppa

Jigajinni, Master In-charge, A guide, Mentor and great

motivator,who critically reviewed my paper and helpedin

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://www.freecodecamp.org/news/time-complexity-of-

algorithms/
2. https://www.educative.io/edpresso/time-complexity-vs-

space-complexity

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9

copy()

function(Cf)

replica_vector

(Rv)

https://doi.org/10.36713/epra2013
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

