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ABSTRACT 
Effective fatigue management in the workplace is associated with employee well-being, safety, and productivity. Fatigue, often resulting 

from inadequate rest and high workloads, can lead to decreased cognitive function, diminished job performance, and increased risk of 

accidents, thus affecting both individual health and organizational efficiency. For this, we introduced an innovative approach to 

understanding and addressing workplace fatigue. By analyzing the interrelationships between employees' self-reported fatigue levels, their 

perceptions of managing fatigue, and their engagement with an AI-based coaching tool (AiCoach), we sought to uncover patterns that 

could inform more effective fatigue management strategies. Using advanced sentiment analysis adapted for the context of fatigue and 

Granger-causality tests, we examined these dynamics over time. Our findings highlight the importance of immediate perceptions of fatigue 

in predicting engagement with management interventions, underscoring the need for real-time monitoring and adaptive strategies in 

managing workplace fatigue.  
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1. INTRODUCTION 
Fatigue is recognized as a significant occupational hazard that has 

profound implications on the safety and health of employees and 

their co-workers. Fatigue poses a considerable challenge in 

today’s fast-paced society, primarily due to intense work 

demands, extended working hours, disrupted sleep-wake cycles, 

various social and surrounding pressures, and often inadequate 

sleep [1,2]. This condition is a multifaced issue that arises from a 

combination of factors including the duration of wakefulness, 

specific times of day, extremes in workload, personal health 

status, and the balance between professional and personal 

responsibilities and lifestyle choices. Modern industrial society 

inherently brings about fatigue for several reasons. Operations 

that run 24/7, irregular work schedules, and frequent travel across 

time zones can significantly disrupt natural circadian rhythms. 

Additionally, brief and inconsistent periods of rest, long travel 

times to and from work, and suboptimal sleeping conditions often 

comprise both the amount and quality of sleep. Furthermore, 

people vary significantly in their sleep needs and in how they 

tolerate fatigue, which means some are more susceptible to its 

effects than others. Fatigue, along with excessive sleepiness 

during the day, can also stem from disorders affecting the central 

or peripheral nervous systems, as well as from various other 

health conditions, including common ailments like infections, 

asthma, gastrointestinal issues, and metabolic disturbances [3].  

 

Even with advancements in technology and industry, the issue of 

work-related fatigue remains persistent. According to a report by 

the National Safety Council (NSC) in 2018, a significant portion 

of the United States workforce, about 107 million of the total 160 

million workers, experienced work-related fatigue. A study 

conducted in 2007 indicated that fatigue among workers leads to 

productivity loss and other problems, costing the U.S. economy 

around 101 billion dollars annually [4]. Furthermore, it has been 

found that 13% of injuries in the workplace are linked to fatigue. 

In Spain, fatigue affects 30.8% of workers. In Europe, 3.2% of 

people aged between 15 to 64 experienced at least one work-

related accident in the past year. About 70% of these non-deadly 

accidents happened because of losing control or failing, often due 

to stress or fatigue from work [5].  

 

Given the aforementioned factors and to circumvent them, it 

becomes crucial to identify and quantify work-related fatigue. 

This step is essential to prevent injuries, accidents, or illness. 

Additionally, accurate detection and measurement of fatigue 

enable the provision of tailored recommendations aimed at 

reducing stress in the workplace.   

 

In a previous study [6], we proposed a platform to analyze the 

fatigue level in patients with Multiple sclerosis (MS). Now in this 

study, we are trying to understand and manage workplace fatigue, 

leveraging the advanced data analysis techniques used in our 

previous research to explore the dynamic relationships between 

https://doi.org/10.36713/epra2013
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employees' self-reported fatigue levels, their perceptions of 

managing fatigue, and their engagement with an AI-assisted 

coaching tool (AiCoach). By employing different data analysis 

techniques adapted to the specific context of workplace fatigue, 

our research aims to unravel the complex interplay between these 

factors over time. Furthermore, we employed the Valence Aware 

Dictionary for sEntiment Reasoning (VADER) methodology and 

conducted the Granger-Causality Test to the open-ended question 

to estimate the fatigue level of the participants. This approach not 

only provides a deeper insight into the immediate and evolving 

impacts of fatigue on employee engagement with fatigue 

management interventions but also offers a data-driven 

foundation for developing more effective, responsive, and 

personalized strategies to address fatigue in the workplace. 

Through this study, we seek to contribute to the growing field of 

occupational health psychology by offering empirical evidence 

and analytical perspectives on fatigue management, a critical 

aspect of employee well-being and productivity. 

 

2. LITERATURE REVIEW  
To identify and quantify fatigue, various methods are employed. 

These include objective techniques, which analyze the body parts 

exerting force during a task, and subjective methods which gauge 

fatigue through the use of rating scales and questionnaires. These 

questionnaires assess an individual's perceived stress [11]. 

Perceived stress, a common metric for quantifying fatigue, is 

described by Borg as an individual's sense of how hard their body 

is working during an activity. This sense is a holistic 

interpretation based on various sensory inputs and perceptions 

[12]. In studying work-related fatigue, it's important to assess 

symptoms and discomfort subjectivity. Therefore, three 

psychophysical measurement techniques for perceived stress 

have been developed over recent decades: ratio scaling, category 

scaling, and acceptability scaling [13]. Ratio scaling aims to 

achieve the same metric qualities as those in physics and 

physiology, with absolute zero and equal distances between scale 

values [14]. A notable example is the Magnitude Estimation 

scale, introduced by Stevens in 1975. This perceptual scaling 

method asks participants to assign numbers proportional to their 

perceptual intensities [12]. Borg later introduced the Rating of 

Perceived Exertion (RPE) scale, which allows subjects to rate 

their effort and stress during physical tasks on a scale from 6 (no 

stress) to 20 (maximum stress) [15]. Borg also developed the 

CR10 scale, a category scale ranging from 0 to 10 with verbal 

anchors, where 10 represents extremely strong stress, categorized 

as ‘maximal’ [16]. The RPE scale is often preferred in simple 

applied studies of perceived stress and for predicting physical 

intensities, while the CR10 scale is more suitable for assessing 

subjective symptoms [15]. Other category scales include the 

CR100 (centiMax), ranging from 0 to 100, and the OMNI-RPE 

scale, which goes from O to 10 and includes mode-specific 

pictures [17].  

 

In addition to the methods previously discussed, questionnaires 

are another effective tool for evaluating perceived stress. One 

such example is the Fatigue Severity Scale (FSS), a self-report 

questionnaire consisting of nine items, specifically designed for 

monitoring fatigue related to various diseases [18]. Another is the 

Multidimensional Fatigue Inventory (MFI-20), which is a more 

extensive 20-item questionnaire. It is divided into five 

subcategories: general fatigue, physical fatigue, reduced activity, 

reduced motivation, and mental fatigue, allowing for a 

comprehensive assessment of fatigue [19]. Additionally, there’s 

the Chadler Fatigue Scale (CFQ), which focuses on both the 

physical and psychological aspects of fatigue. It comprises an 11-

item questionnaire where responses are rated on a scale with four 

options: 0 (better than usual), 1 (not worse than usual), 2 (worse 

than usual), and 3 (much worse than usual), providing a nuanced 

view of fatigue levels [20].  

 

Recently, there has been a surge in the utilization of wearable 

technology, which offers real-time monitoring, recording, and 

communication of an individual’s physical activities and 

environmental conditions. These technological innovations come 

in various forms, including smartwatches, wristbands, eyeglasses, 

jewelry, skin patches, and even textiles embedded with smart 

technology [21]. Sensors are a key component in these wearable 

devices, and their application is predominantly seen in the sports 

sector. With the advances in semiconductor technology, these 

devices are now capable of monitoring a comprehensive range of 

parameters. This technological progress is bringing the use of 

wearable devices closer to practical applications in the field of 

medicine [22]. Various health monitoring wearables, such as 

ECG monitors, blood pressure monitors, and biosensors are some 

examples [23]. The integration of these devices into the 

healthcare sector has been gradual, mainly due to the necessity 

for their validation in the context of various medical conditions. 

However, numerous studies have shown the potential of these 

devices in research, demonstrating their feasibility for predicting, 

monitoring, or assessing a range of diseases and disabilities 

[24,25].      

 

Beyond the previously discussed ratings of perceived fatigue for 

evaluating work-related stress, there is ongoing research into the 

potential use of wearable devices for monitoring bodily functions. 

Such devices could quantify physical exposures in the workplace 

by tracking brain activity with electroencephalography (EEG) or 

by observing changes in muscle activity using electromyography 

(EMG) [26]. However, methods based on EEG and EMG for 

measuring physical fatigue are considered intrusive, as they 

require the attachment of multiple electrodes. These methods are 

also not ideally suited for dynamic work environments, as they 

are better suited for stationary tasks, and they represent costly 

technologies [27,28]. Due to these limitations, researchers are 

exploring the use of non-intrusive wearable sensors in the 

workplace to monitor physical activities and movements. These 

devices are not only more affordable but also simpler to operate 

[29]. Among the various wearable sensors, one of the most 

frequently used is the inertial measurement unit (IMU), which 

provides valuable data on angular velocity and acceleration, 

aiding in the detection of subject movement.   

https://doi.org/10.36713/epra2013
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In recent years, a growing number of workplace-related studies 

have incorporated Inertial Measurement Units (IMUs) for various 

purposes. These include ergonomic evaluations [30], analyzing 

postures [31], assessing musculoskeletal disorders [32], 

examining body motion and the risks associated with lifting 

during manual handling tasks [33], and evaluating the risk of falls 

during everyday activities [34,35]. Additionally, more recent 

studies have started using IMUs to detect physical activity levels 

and fatigue [36,37,38].  

 

To create comprehensive systems capable of identifying fatigue 

states by processing vast amounts of data, the application of 

Artificial Intelligence (AI) has been increasingly utilized. Several 

past research projects have employed Machine Learning (ML) or 

Deep Learning (DL) techniques on physiological signals. These 

techniques help in developing systems that more effectively 

extract pertinent features from the collected data sets, simplifying 

the process of data analysis [40].          

                          

In the realm of Deep Learning (DL) for fatigue classification, 

Maman et al. (2017) [11], utilized IMUs to gather data on 

acceleration and jerk from participants engaged in manufacturing 

tasks. This data, combined with Heart Rate (HR) readings and 

Rated Perceived Exertion (RPE) values, was used to implement a 

Least Absolute Shrinkage and Selection Operator (LASSO) 

model. This model helped in selecting significant features from 

the data for applying regression and logistic models to estimate 

levels of physical fatigue. Later, Maman et al., in 2020 [39], 

proposed a comprehensive framework focused on the detection, 

identification, diagnosis, and recovery from fatigue, aiming to 

quantify and predict shifts in worker’s performance.  

   

In a different approach, Karvekar et al., (2019) [36], employed 

accelerometers integrated into smartphones to measure the 

motion and gait parameters of participants, alongside RPE values 

for data labeling. They then applied a Machine Learning (ML) 

algorithm, specifically a Support Vector Machine (SVM) model, 

to classify the fatigue levels of subjects. This methodology was 

similarly adopted in studies by Zhang et al., (2013), Baghdadi et 

al., (2018), and Kuschan and Krüger (2021), who also used SVM 

models for physical fatigue detection [41,42,43].  

 

Another research focus in this area involved measuring the cycle 

acceleration of workers performing various tasks with IMUs for 

fatigue detection, employing Statistical Process Control (SPC) 

techniques [37]. More recently, Lambay et al. (2021) leveraged 

the dataset from Sedighi Maman et al. (2017) to conduct fatigue 

prediction for manual material handling tasks [44]. These studies 

collectively contribute to the development of a proactive 

approach to the continuous monitoring of operator’s fatigue 

levels, with the potential to enhance work performance and 

mitigate the earlier-mentioned risks [45,46].   

      

3. METHODOLOGY  
3.1 Study Population 

This study was conducted with employees from multiple 

industrial plants across Hungary. The focus was on understanding 

the dynamics of workplace fatigue and the effectiveness of an AI-

assisted coaching tool (AiCoach) in managing it. Our study 

particularly targeted the industrial workforce, a demographic 

where fatigue management is crucial yet often under-researched. 
The participant pool consisted of employees from various 

industrial sectors, representing a broad spectrum of occupational 

roles and environments. The inclusion criteria were: (1) being 

currently employed in one of the participating industrial plants, 

(2) willingness to engage with the AiCoach tool over the study 

period, and (3) providing informed consent for participation in the 

study. Employees with any known medical conditions that could 

significantly impact fatigue levels were excluded to ensure the 

reliability of the data regarding occupational fatigue 

 

3.2 Study Design 

The study was designed as a longitudinal observational study, 

where participants were asked to respond to a series of questions 

including both open and closed-ended, over five epochs, in two 

different phases with a duration of approximately three months. 

This design allowed for the monitoring of changes in fatigue 

levels and engagement with the AiCoach tool over time. 
Participants were introduced to the AiCoach tool and trained on 

its use at the onset of the study. They were asked to report their 

perceived fatigue levels and their experiences with managing 

fatigue using the tool. The data collected included not only their 

responses to the survey but also their engagement metrics with 

the developed software. 

 

To ensure the robustness of the data, the study employed 

advanced analytical techniques, including an adapted version of 

the VADER sentiment analysis to interpret the textual responses 

and Granger-causality tests to explore the predictive relationships 

between reported fatigue levels, perceptions of fatigue 

management, and engagement with AiCoach. The study collected 

data in two different phases. The first phase lasted from 

2021.05.10 to 2021.08.31, while the second phase lasted from 

2021.09.01 to 2022.04.30. A total of 168 employees were 

recruited for the study. All participants provided written informed 

consent in accordance with the study protocol. Participants who 

completed all survey epochs and met the engagement criteria with 

the proposed tool were offered a nominal remuneration for their 

time and contribution to the research.

Table 1. Balance of Enrollment During the Study Period 

Participants Number Percentage 

Total enrolled 168 100% 

Fully completed the study 105 62.5% 

Partially completed the study 63 37.5% 

https://doi.org/10.36713/epra2013
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3.3 Development of the mobile application  

Mobilengine, an interdisciplinary team of physicians and 

scientists, developed the AiCoach mobile application. The 

organization has a long track record of developing mobile apps 

for monitoring and recording healthcare data [53]. The 

application development process involved collaboration across 

teams, including physicians and engineers, achieved through a 

series of virtual workshops. During the study, participants were 

asked to install the AiCoach app on their own Android 

smartphones. The study was conducted over approximately 3 

months, and divided into two phases. During this time, 

participants integrated the use of AiCoach into their daily 

routines, providing valuable data for analysis by the Mobilengine 

research team. 

 

The mobile app is structured into two distinct modules, which are 

elaborated upon below. (1) the first module consists of a series of 

one-time questions that participants were required to complete 

within the first three days post-enrollment. (2) The second module 

includes Visual Analog Scales (VASs) that participants used to 

self-report their level of fatigue, depression, anxiety, and pain 

twice a day.  

 

It is important to note that the data collection through VAS was 

consistently conducted over around 200±30 days, commencing 

once all one-time questionnaires were completed. Consequently, 

the total duration for data collection varied between 10 to 13 days, 

depending on the time taken by each participant to answer all one-

time questionnaires. Additionally, participants were given the 

flexibility to pause their entries in the app and return at a later 

time to complete the remaining questions.         

     

Table 2. Overview of standardized survey questionnaires integrated into our one-time questionnaire module. 

Questionnaire Domain Assessed Study 

The Fatigue Severity Scale Fatigue Krupp et al (1989) [18] 

The Neuro-QoLa fatigue questionnaire Fatigue Cella et al (2012) [47] 

The Neuro-QoL depression questionnaire Depression Cella et al (2012) [47] 

The Neuro-QoL anxiety questionnaire Anxiety Cella et al (2012) [47] 

The Neuro-QoL sleep questionnaire Sleep Quality Cella et al (2012) [47] 

The Modified Fatigue Impact Scale Fatigue Amtmann et al (2012) [48] 

Symptoms of depression questionnaire (7 

questions only) 

Vegetative symptoms of 

depression 

Pedrelli et al (2014) [49] 

The Epworth Sleepiness Scale Sleepiness Johns (1991) [50] 

The Godin Leisure-Time Exercise 

Questionnaire 

Physical activity Godin (1985) [51] 

The Behavioral Approach System and 

Behavioral Avoidance System scale 

Drive; fun seeking; 

reward responsiveness 

Carver and White (1994) [52] 

 

To mitigate the occurrence of slip errors in our study, the 

following protocols were established: (1) User-initiated response 

submission: answers were recorded only after the participant 

selected the navigational arrows to move forward or backward; 

(2) Navigational flexibility: participants could seamlessly 

traverse through questions within the same section, permitting on-

the-fly amendments; (3) Uniform interface design: all visual 

scales were standardized in size with questions, options, and 

navigational cues consistently positioned on the interface. 

Additionally, the application supported a landscape orientation, 

offering expanded spacing on visual analog scales; and (4) 

Progress transparency: a counter indicating the number of 

questions completed relative to the total was displayed 

prominently at the interface's lower segment. 

 

3.4 One-time questionnaire module  

In the study, we incorporated a one-time questionnaire module 

comprising a total of 168 questions which encompassed a mix of 

validated questionnaires (Table 2) and newly developed inquiries 

tailored to investigate various facets of fatigue relevant to our 

research objectives. These additional questions aimed to explore 

specific aspects of fatigue such as (1) variations in fatigue severity 

over the day, (2) the potential influence of caffeine and nicotine 

consumption on perceived fatigue levels, and (3) open-ended 

queries to uncover other potential factors contributing to or 

alleviating fatigue among the participants. The questionnaire 

module retained the original wording and response formats, 

including single-choice, multiple-choice, free-text, analog scale, 

and date selection, which were consistent with the formats used 

in the source questionnaires. Questions were logically grouped 

into distinct sections that mirrored the structure of the original 

questionnaires, allowing participants to navigate through the 

questions one at a time. Importantly participants were alerted that 

they could not revisit previous sections after completing them, 

emphasizing the importance of careful consideration before final 

submission of their responses.  

https://doi.org/10.36713/epra2013
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Figure 1: Sample interfaces for different types of questions within the one-time questionnaire module, including single-answer 

are depicted. 

 

The developed questionnaire is in Hungary as local participants 

were selected and to facilitate their involvement in the study. In 

image (A) the participants are being greeted to take part in the 

study. The image (B) asks the participants how tired they are 

feeling right now. The image (C) translated that “I would prefer 

to work alone today”. And the translation of image (D) says that 

“I feel like I need a lot of coffee/energy drinks”.  

 

3.5 VAS Module 

The VAS (Visual Analog Scale) module was utilized to evaluate 

an individual’s existing level of fatigue, anxiety, depression, and 

pain. Each of these four VASs is rated on a scale ranging from 0 

to 10, where 0 signifies the absence (none) of the symptom (e.g., 

no fatigue), and 10 indicates the extreme presence of the symptom 

(as depicted in Figure 2). Prior research has demonstrated a 

substantial correlation between VAS scores and a series of visual 

depictions of facial expressions depicting increasing distress 

[7,8].  

 

Our primary objective was to investigate circadian variations in 

fatigue, anxiety, depression, and pain by measuring these 

symptoms once in the morning (2 hour after starting work) and 

once in the afternoon (2 hour before finishing work). The 

participants were given the flexibility to choose preferred times 

for completing their VAS (Visual Analog Scale) assessments, 

once before going to work and once in the afternoon. To facilitate 

this, the AiCoach app was programmed to send reminders. These 

reminders took the form of notifications, tailored to each 

participant's chosen times for the survey.  

https://doi.org/10.36713/epra2013


                                                                                                                                            ISSN (Online): 2455-3662 
EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188 

 
 

2023 EPRA IJMR    |    http://eprajournals.com/   |    Journal DOI URL:https://doi.org/10.36713/epra2013-----------------------------------------------------------------------184 

 
Figure 2: Workflow of the data collection process using survey questionnaire 

In our study, participants were required to respond to all questions 

within a questionnaire before they could submit it. A progress bar 

at the bottom of the screen visually displayed the participant's 

advancement through the one-time questionnaires or VAS 

assessments (as shown in Figure 1). The app recorded the exact 

date and time when each question was opened and submitted. 

Every participant was assigned a unique subject ID to maintain 

anonymity, and no additional personally identifiable information 

was collected or stored within the app.     

  

3.6 Extracting Fatigue level from Open-ended texts 

Adapting the Valence Aware Dictionary for sEntiment Reasoning 

(VADER) methodology [9], we propose an engine specifically 

tuned for assessing fatigue levels from free text. This adaptation 

maintains the original system's advantages, such as no 

requirement for a training phase, suitability for short texts, and 

rapid processing for near real-time applications. Its domain-

agnostic nature and white-box model approach ensure 

interpretability and adaptability across various languages. The 

foundation of this system is a modified sentiment lexicon, now 

focused on fatigue-related terms. This lexicon is an extension of 

the original VADER lexicon, supplemented with terms and 

expressions commonly associated with fatigue and tiredness. 

These terms are annotated to reflect varying degrees of fatigue on 

a scale (e.g., [0, 4], where 0 is no fatigue and 4 is extreme fatigue), 

using a crowd-sourcing platform similar to Amazon Mechanical 

Turk [10]. 

 

The key step in this fatigue assessment engine is the identification 

of linguistic patterns and cues that are indicative of fatigue. To 

this end, we adapt the VADER's sentiment polarity shifters to 

fatigue-specific shifters, identifying terms and constructs that 

either amplify or diminish the expression of fatigue. For instance: 

• Punctuation: Repetitive punctuation (e.g., ellipsis ...) 

may indicate a trailing off of thought, potentially a sign 

of fatigue. 

• Capitalization: Random or inconsistent capitalization 

could reflect a lack of attention or focus, often associated 

with fatigue. 

• Degree modifiers: Certain adverbs and adjectives (e.g., 

'extremely tired', 'barely awake') will be key in 

determining the level of fatigue expressed. 

https://doi.org/10.36713/epra2013
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• Contrastive particles: Phrases like 'but still tired' can 

indicate a persistent state of fatigue, despite changing 

circumstances. 

• Negation: The use of negation in the context of rest or 

sleep (e.g., 'not rested', 'couldn't sleep') can be a strong 

indicator of fatigue. 

The extension to languages other than English, such as 

Hungarian, involves translating and adapting these fatigue-

specific terms and rules. Just as in VADER, certain universal 

aspects, like the use of punctuation and capitalization, remain 

consistent across languages, while others, like specific idioms or 

culturally specific expressions of tiredness, require localization. 

This adapted method aims to provide a nuanced analysis of 

fatigue levels in text, offering valuable insights in domains such 

as health monitoring, workplace wellbeing assessments, and 

psychological studies. 

 

3.7 Granger-Causality Testing 

In the context of analyzing fatigue levels from textual data, 

Granger-causality is utilized as a statistical hypothesis testing 

model to determine if there is a directed relationship between two 

time series in terms of fatigue expression [7]. Specifically, a time 

series X, representing a measure of fatigue indicators in text, is 

said to be Granger-cause time series Y, which could be a series of 

outcomes or states related to fatigue (e.g., performance metrics, 

error rates, health indicators), if it can be shown that including 

past values of X (i.e., lagged values of fatigue indicators) 

alongside Y significantly improves the prediction of future values 

of Y. 

 

For this adaptation, the Granger-causality test was applied to the 

lagged values of the fatigue indicator time series (X). All lags 

ranging from one to four were tested, aligning with the considered 

periods of data collection or observation epochs minus one. The 

alternative hypothesis in this context is that the time series of 

fatigue levels derived from textual analysis Granger causes the 

time series representing the related outcomes or states. The level 

of significance for these tests was set at 5%, i.e., a p-value < 0.05 

was considered statistically significant. It's important to note that 

the Granger-causality test presupposes that the time series being 

investigated are stationary. Therefore, to ensure the validity of the 

test, the augmented Dickey–Fuller method was employed to 

verify the stationarity conditions of both the fatigue indicator 

series and the outcome series [8]. This adaptation of Granger-

causality testing is aimed at understanding the impact of textual 

expressions of fatigue over time on various outcome measures, 

providing a novel approach to assessing and predicting the 

implications of fatigue in different contexts, such as workplace 

productivity, academic performance, or health-related quality of 

life." 

 

3.8 Monitoring the Database 

The application functioned entirely offline, storing all responses 

from participants on the smartphone’s internal memory. The 

survey data from the participant's phones were collected by the 

Mobilengine server only when they were connected to Wi-Fi. 

This setup enabled real-time, on-demand monitoring of data 

collection. The developed database also categorized participants 

based on their activity. Participants who actively completed the 

surveys were marked green and participants lagging in their daily 

tasks were marked in red.   

Once a participant completed the VASs, their monitoring period 

ended, and they were no longer able to respond to further 

questions. Subsequently, their code was removed from the daily 

update emails. This monitoring capability was crucial, as it 

allowed investigators to quickly follow up with participants not 

adhering to the study timeline, rather than waiting until the end of 

the period. The database was designed for easy data extraction, 

with each response stored in a table format that included the 

subject ID, individual question ID, response, and time of 

response, with each response generating a new row in the table, 

following a long data format.  

 

4. RESULT   
4.1 Exploratory Data Analysis 

The research focused on identifying fatigue levels among 

employees, and exploratory data analysis was conducted on 

responses gathered from various industrial plant workers. A total 

of 105 fully completed and 63 partially completed responses were 

collected and analyzed in line with the system architecture 

outlined in the previous section. This analysis is critical for 

gleaning insights into data collection and integration processes 

related to workplace fatigue.  

 

Responses were submitted over five subsequent periods, 

approximately 3 months in two different phases, to track changes 

and trends in fatigue over time. To visualize the distribution of 

fatigue levels across these different time points, a violin plot was 

generated (Figure 5). This plot illustrates the variation in fatigue 

scores (expressed as a percentage) corresponding to each 

submission epoch. Concurrently, Table 3 presents this data in a 

tabular format for a more detailed examination. While the mean 

fatigue scores were found to range between [38.67%, and 

51.45%] across different epochs, the standard deviation, as well 

as the minimum and maximum values, highlighted significant 

variations in fatigue levels among the employees. These 

variations were evident from the extremes of some employees 

reporting minimal fatigue to others indicating levels considerably 

higher than average. Such disparities underscore the complex 

nature of workplace fatigue and its varied manifestations among 

employees in different roles and working conditions. 
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Figure 3: Distribution of fatigue percentage across five subsequent submission epochs. 

 

Table 3. Fatigue Score (%): Descriptive Statistics Across Five Subsequent Epochs 

 Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 

Mean 42.67 41.77 38.67 47.39 51.45 

Std 57.25 57.70 59.64 59.54 51.82 

Min 0.00 0.00 0.00 0.00 0.00 

Max 100% 100% 100% 100% 100% 

 

The data presented in Table 3 reveals an intriguing pattern in the 

fatigue scores of employees over five different epochs. Initially, 

the average fatigue score starts at 42.67% in Epoch 1, slightly 

decreases to 41.77% in Epoch 2, and reaches its lowest at 38.67% 

in Epoch 3. This trend could suggest an initial adaptation or 

improvement in managing fatigue. However, this trend reverses 

in the later epochs, with a notable increase to 47.39% in Epoch 4 

and further up to 51.45% in Epoch 5. This upward trend could be 

indicative of accumulating fatigue over time or changes in 

workplace dynamics or stressors. The standard deviation remains 

consistently high across all epochs, hovering around the high 50s, 

which indicates a substantial variation in individual fatigue levels 

within the workforce. This high variability suggests that while 

some employees might be coping well, others are experiencing 

significantly higher levels of fatigue. The minimum values across 

all epochs stand at 0.00%, indicating that there are individuals 

who report no fatigue. However, the maximum values show an 

extreme range, peaking at 100% in all Epochs. These maxima are 

notably higher and reflect instances of extreme fatigue or possibly 

the way fatigue is being reported or calculated, suggesting a need 

for closer examination of these outlier responses.  

 

4.2 Testing Granger-Causality 

A comprehensive analysis of the responses to the fatigue 

identification survey is beyond the scope of this paper. Instead, 

only answers to two open-ended questions collected from the 

survey are discussed for testing Granger-Causality.  

Q1: “Explain how fatigued you are now?” 

Q2: “How successful are you in managing fatigue since using 

AiCoach?” 

 

Three-time series were evaluated: the fatigue intensity scores 

corresponding to Q1 ("Explain how fatigued you are now?") and 

Q2 ("How successful are you in managing fatigue since using 

AiCoach?"), as well as the time series of engagement levels with 

the AiCoach program. The Augmented Dickey–Fuller Test 

confirmed that each of the three-time series met the stationarity 

condition (p-value = 4.6124 × 10−18, p-value = 3.2185 × 10−7, and 

p-value = 0.0035, respectively). Two Granger-causality tests 

were carried out to examine responses to Q1 Granger-cause 

engagement scores and responses to Q2 Granger-cause 

engagement scores. Additionally, given the concurrent 

consideration of all three series, it was also necessary to assess 

whether engagement scores Granger-cause responses to Q1 and 

Q2. Three different test statistics—F-test, chi-square, and 

likelihood-ratio—were utilized, with the number of lags tested 

ranging from one to four. The outcomes, presented in terms of p-

values in Tables 4 and 5, indicate that both Q1 and Q2 have a 

Granger-causal relationship with engagement scores at lag = 1. 

Conversely, engagement scores do not appear to Granger-cause 

the responses to Q1 or Q2.   
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Table 4: Q1 and Engagement Score: p-value of Granger-causality test performed with three different statistics and four 

different lags. 

Lag Q1 → 

Engagement 

Score F-test 

Q1 → 

Engagement 

Score Chi2 

test 

Q1 → 

Engagement 

Score 

Likelihood-

ratio 

Engagement 

Score → Q1 

F-test 

Engagement 

Score → Q1 

Chi2 test 

Engagement 

Score → Q1 

Likelihood-

ratio 

1 0.0368 0.0339 0.0350 0.4076 0.4027 0.4031 

2 0.0998 0.0908 0.0936 0.6667 0.6585 0.6592 

3 0.1063 0.0917 0.0963 0.6628 0.6479 0.6496 

4 0.2032 0.1760 0.1833 0.8200 0.8061 0.8064 

 

 
Figure 4: Granger-Causality Analysis of Fatigue Levels and Engagement Scores for Q1 

Figure 6 presents the Granger-causality test p-values for the 

relationship between employee-reported fatigue levels (Q1) and 

their Engagement Scores with the AiCoach tool over four 

sequential time lags. A striking feature of the graph is the initial 

set of p-values for Q1 influencing Engagement Scores at Lag 1, 

where all three statistical tests—the F-test, Chi2 test, and 

Likelihood-ratio—yield p-values below the 0.05 significance 

threshold. This suggests a statistically significant relationship at 

this initial lag, indicating that earlier reported fatigue levels can 

predict subsequent engagement with the AiCoach tool. As the 

lags increase, however, the p-values rise above the 0.05 threshold, 

indicating that the predictive power of Q1 decreases, implying 

that fatigue levels reported further in the past are less indicative 

of future engagement behaviors. Conversely, the Engagement 

Scores do not present a significant Granger-causal influence on 

Q1 at any lag, as evidenced by the consistently high p-values 

across all tests. This lack of statistical significance suggests that 

how employees engage with the AiCoach tool does not serve as a 

reliable indicator of their future self-reported fatigue levels. 

 

Table 5: Q2 and Engagement Score: p-value of Granger-causality test performed with three different statistics and four 

different lags. 

Lag Q1 → 

Engagement 

Score F-test 

Q1 → 

Engagement 

Score Chi2 

test 

Q1 → 

Engagement 

Score 

Likelihood-

ratio 

Engagement 

Score → Q1 

F-test 

Engagement 

Score → Q1 

Chi2 test 

Engagement 

Score → Q1 

Likelihood-

ratio 

1 0.0020 0.0339 0.0350 0.4076 0.4027 0.4031 

2 0.0174 0.0908 0.0936 0.6667 0.6585 0.6592 

3 0.0547 0.0917 0.0963 0.6628 0.6479 0.6496 

4 0.0865 0.1760 0.1833 0.8200 0.8061 0.8064 

 

    

https://doi.org/10.36713/epra2013


                                                                                                                                            ISSN (Online): 2455-3662 
EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188 

 
 

2023 EPRA IJMR    |    http://eprajournals.com/   |    Journal DOI URL:https://doi.org/10.36713/epra2013-----------------------------------------------------------------------188 

 
Figure 5: Granger-Causality Analysis of Fatigue Levels and Engagement Scores for Q2 

 

Figure 5 illustrates the Granger-causality test p-values between 

responses to Q2 and Engagement Scores. A key observation from 

this graph is the marked significance of the causal relationship 

from Q2 responses to Engagement Scores, especially at Lag 1, 

where the p-values for all tests (F-test, Chi2 test, and Likelihood-

ratio) fall significantly below the 0.05 threshold. This indicates a 

strong predictive relationship, suggesting that responses to Q2 

have a substantial impact on predicting subsequent Engagement 

Scores. As the lags increase, the p-values for the relationship from 

Q2 to Engagement Scores rise, but they remain below the 

threshold in some tests up to Lag 4, pointing to a sustained, albeit 

diminishing predictive influence. In contrast, the relationship 

from Engagement Scores back to Q2 does not exhibit statistical 

significance at any lag. The p-values in this direction remain 

consistently high, well above the 0.05 significance threshold for 

all lags and statistical tests. This lack of significance suggests that 

the Engagement Scores do not have a predictive effect on the 

subsequent responses to Q2. 

 

4.3 Fatigue level analysis  

 
Figure 6: Average fatigue level of participant 

Figure 6 demonstrates the statistical analysis conducted on a 

single randomly selected participant's aggregated fatigue scores 

over a five-day workweek. The statistic reveals a distinct pattern 

in the variance of fatigue levels between morning and afternoon. 

In the morning, the participant exhibited a moderate level of 

fatigue with a mean score of 3.27 and a closely aligned median of 

3.20, indicating a symmetrical and consistent distribution of 

fatigue levels. The standard deviation of 0.38 for these morning 

scores suggests minimal variability, with fatigue levels generally 

confined to a moderate range, as evidenced by the narrow range 

of scores (minimum of 2.69 and maximum of 3.86). 

 

In stark contrast, the afternoon fatigue scores were significantly 

higher, with a mean of 8.66, reflecting a pronounced increase in 

fatigue as the day progressed. This increase is further underscored 

by the median score of 8.58, which, like the morning, suggests a 
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symmetrical distribution of scores in the afternoon. However, the 

afternoon scores exhibited a higher standard deviation of 0.93, 

indicating a greater fluctuation in fatigue levels. The broader 

range of scores in the afternoon, from a minimum of 7.53 to a 

maximum of 9.85, highlights a more varied experience of fatigue, 

encompassing moderately high to very high levels. 

 

The analysis underscores a clear escalation in fatigue levels from 

the morning to the afternoon for the participant. The consistency 

in morning fatigue levels contrasts sharply with the more varied 

and elevated levels of afternoon fatigue. This pattern could have 

significant implications for understanding individual energy 

cycles, optimizing work schedules, and tailoring personal health 

and wellness strategies. 

 

5. DISCUSSION  
This research aimed to understand the dynamic relationship 

between employees' self-reported fatigue levels, their perceptions 

of managing fatigue, and their engagement with the AiCoach 

program. Utilizing Granger-causality analysis over multiple time 

lags, our study revealed several key insights that can inform 

future workplace fatigue management strategies. The results from 

the Granger-causality tests for Q1 ("Explain how fatigued you are 

now?") indicated a significant predictive relationship between 

employees' reported fatigue levels and their subsequent 

engagement with the AiCoach program, particularly at the 

immediate lag (Lag 1). This finding suggests that employees' 

current perception of their fatigue levels is a strong predictor of 

how actively they engage with interventions designed to manage 

fatigue. The significance of this relationship diminishes with 

time, which could be attributed to the evolving nature of fatigue 

and its management over longer periods. 

 

The dynamics in Figures 4 and 5 for the two causal directions 

diverge as the number of lags increases, further reinforcing the 

one-way predictive relationship from fatigue reports to 

engagement levels, specifically in the short term. This 

unidirectional causality highlights the potential impact of 

immediate fatigue perceptions on the engagement with 

interventions but does not support the reverse; that is, engagement 

with the AiCoach does not appear to influence how employees 

will report fatigue levels thereafter.  
 

6. CONCLUSION  
In this research, we investigated workplace fatigue through the 

lens of self-reported metrics and engagement with an AI-based 

coaching tool that has yielded significant insights. The research 

found a clear and immediate relationship between employees' 

reported fatigue levels and their interaction with the AiCoach 

program. This underscores the potential of real-time monitoring 

and intervention in the management of workplace fatigue. The 

absence of a reciprocal predictive relationship suggests that while 

the AiCoach tool is a valuable resource in responding to fatigue, 

its impact on subsequent self-reported fatigue levels is not 

immediate or direct. This may indicate the need for a sustained 

and adaptive engagement strategy to see a measurable change in 

fatigue over time. Furthermore, the research emphasizes the 

importance of user-friendly interfaces in digital health tools. By 

allowing participants to navigate freely, make corrections, and 

track their progress, we minimized user errors and enhanced the 

accuracy of the collected data. The study's findings advocate for 

the integration of such design considerations in the development 

of digital health interventions. 

 

In conclusion, the implementation of AI-assisted tools in the 

workplace for fatigue management holds promise. It encourages 

active employee participation and offers organizations a proactive 

approach to addressing fatigue. However, it also highlights the 

complexity of fatigue as a multifaceted issue that requires 

comprehensive strategies, including but not limited to digital 

intervention. Future research should aim to longitudinally assess 

the impact of such tools on fatigue and explore the integration of 

these tools with broader organizational health initiatives for a 

holistic approach to employee well-being and productivity. 
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