
 ISSN (Online): 2455-3662
EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL:https://doi.org/10.36713/epra2013---267

FINDING AN INDEX OF GIVEN ELEMENT OF A VECTOR USING find_vect()

SEQUENTIAL SEARCH METHODOLOGY WITH FINDING AN ELEMENT

USING index() method OF A LIST. FURTHER COMPARISON BETWEEN

find_vect() OF SEARCHING AN INDEX WITH FINDING AN ELEMENT USING

index() METHOD OF LIST. - A CASE STUDY

6837 – Cadet A Vishnukumar1

Class- XII 2021-22, Sainik School Amaravathinagar

Post: Amaravathinagar,Udumalpet Taluka,Tirupur Dt,Tamilnadu State

ABSTRACT
The abstract of the comparison between find_vect() sequential search methodology and the index() method of a list for finding

the index of a given element is as follows:

Sequential search is a commonly used method to search for an element in a vector. The find_vect() function employs

sequential search to locate the index of a given element within a vector. On the other hand, the index() method of a list in Python

provides a direct way to find the index of an element.

This comparative analysis focuses on the efficiency and performance of these two methodologies in terms of finding an

element's index. The find_vect() function iteratively searches through the vector until it locates the element, while the index()

method directly returns the index of the element from the list.

In terms of time complexity, the find_vect() sequential search methodology has a time complexity of O(n), where n is the

size of the vector. This means that as the size of the vector increases, the searching process becomes slower due to having to

iterate through each element. On the other hand, the index() method of a list has an average time complexity of O(n), but it can

perform significantly faster, especially for large lists, due to its internal implementation.

However, the index() method is only available for lists in Python, whereas the find_vect() function can be implemented

for both vectors and lists. Additionally, if the vector or list is unsorted, the find_vect() method can still find the index of the

element, while the index() method assumes the list is sorted.

In conclusion, the find_vect() sequential search methodology provides a versatile approach for finding the index of a

given element, suitable for unsorted vectors or lists. On the other hand, the index() method of a list offers a direct and potentially

faster option, especially for large lists or sorted data. The choice between these methods depends on the specific requirements

and characteristics of the data being searched.

KEYWORDS: find_vect(), sequential search, index(), vector and list.

1. INTRODUCTION
In this analysis, we aim to compare two methodologies for

finding an index of a given element in a vector or a list. The first

methodology is a sequential search approach called find_vect()

specifically designed for vectors, while the second methodology

involves the use of the index() method of a list to find an element

2. SEQUENTIAL SEARCH METHODOLOGY

USING FIND_VECT()
Sequential search is a simple and straightforward algorithm that

involves iterating through each element of a vector to find the

desired element. The custom function `find_vect()` implements

this methodology by comparing each element sequentially until

a match is found. The index of the matched element is then

returned. If the element is not found, a specific value (e.g., -1)

can be returned to indicate the absence of the element in the

vector

3. COMPARISON WITH `INDEX()`

METHOD OF A LIST:
Python's built-in `index()` method provides a convenient way

to find the index of an element in a list. It returns the index of

the first occurrence of the element, and if the element is not

found, it raises a `ValueError`. This method internally applies

a similar sequential search technique to locate the desired

element efficiently.

4. PERFORMANCE & CONSIDERATIONS
While both ̀ find_vect()` and the ̀ index()` method achieve the

same goal, their performance may vary depending on the

specific use case. `index()` is optimized for lists and offers a

simpler syntax, which makes it a popular choice for locating

elements. On the other hand, `find_vect()` is a custom

function that can be adapted for other data structures like

vectors.

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL:https://doi.org/10.36713/epra2013---268

PYTHON PROGRAM TO FIND INDEX OF A

NUMBER IN A GIVEN LIST (CODE)

x=eval(input("enter a list="))

y=0

z=int(input("enter element to find="))

for i in x:

 if z==i:

 print(y)

 y+=1

 b=p

PYTHON PROGRAM TO FIND INDEX OF A GIVEN

NUMBER IN THE LIST(GENETALISED APPROACH)

x=eval(input("enter a list="))

y=int(input("index of the number you want="))

z=x.index(y)

print("index of the number is",z)

5. PYTHON’S BUILT IN FUNCTION

Python's built-in index() function is a useful tool for finding the

index of a specific element in a sequence. This function takes an

argument representing the value to search for and returns the

index of the first occurrence of that value in the sequence.

6. ALORITHM TO FIND INDEX OF A LIST
 1. Initialize a variable ̀ index` to -1 as the default value

if the number is not found.

2. Iterate through the list and compare each element

with the target number.

3. If the element matches the target number, set `index`

to the current index and break out of the loop.

4. After the loop completes, check if `index` is still -1.

If so, the number was not found in the list.

5. Return the value of `index`.

WHEN THE CODE IS

def find_index(number, lst):

 index = -1

 for i in range(len(lst)):

 if lst[i] == number:

 index = i

 break

 return index

7. COMPLEXITY OF ALGORITHM
In computer science, analysis of algorithms is a very crucial part.

It is important to find the most efficient algorithm for solving a

problem. It is possible to have many algorithms to solve a

problem, but the challenge here is to choose the most efficient

one.[1]

There are multiple ways to design an algorithm, or considering

which one to implement in an application. When thinking

through this, it’s crucial to consider the algorithm’s time

complexity and space complexity.[2]

8. SPACE COMPLEXITY
 The space complexity of an algorithm is the amount of space

(or memory) taken by the algorithm to run as a function of its

input length, n. Space complexity includes both auxiliary space

and space used by the input.[2]

Auxiliary space is the temporary or extra space used by the

algorithm while it is being executed. Space complexity of an

algorithm is commonly expressed using Big (O(n)) notation.[2]

The Space complexity is ignored in this research paper, since the

space complexity of particular problem is not considered so

important.

9. TIME COMPLEXITY
The time complexity of an algorithm is the amount of time taken

by the algorithm to complete its process as a function of its input

length, n. The time complexity of an algorithm is commonly

expressed using asymptotic notations:[2]

Big O - O(n)

Big Theta - Θ(n)

Big Omega - Ω(n)

It’s valuable for a programmer to learn how to compare

performances of different algorithms and choose the best time-

space complexity to solve a particular problem in the most

efficient way possible.[2]

Big O specifically defines the worst-case scenario of an

algorithm, and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm. here O stands for order of growth.

Big Theta(Θ) is used to represent the average case scenario of

an algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

Big Omega (Ω)is used to represent the best case scenario of an

algorithm and can be used to describe the execution time

required or the space used (e.g. in memory or on disk) by an

algorithm.

These three methods are the most common and very popular

methods of design and analysis of an algorithm which are used

for finding the efficiency of the program.

10. RUNTIME COMPLEXITY OF FINDING

INDEX OF NUMBER IN A LIST

Input (No

of Digits)

find_vect()

function
index() method

100 0.012575492 0.010575492

1000 0.013789515 0.010695421

10000 0.015637874 0.015637874

50000 0.119718418 0.010993957

100000 0.118007764 0.020989698

200000 0.011995544 0.052467088

300000 0.126982545 0.078321424

400000 0.141989564 0.095634537

500000 0.180964345 0.125586376

https://doi.org/10.36713/epra2013

 ISSN (Online): 2455-3662
EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
 Volume: 9| Issue: 12| December 2023|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2023: 8.224 || ISI Value: 1.188

2023 EPRA IJMR | http://eprajournals.com/ | Journal DOI URL:https://doi.org/10.36713/epra2013---269

GRAPHICAL REPRESENTATION OF RUNTIME

COMPLEXITY OF BOTH THE METHODS

11. CONCLUSION
In conclusion, if you are looking for the index of a given element

in a list, using the `index()` method is a straightforward and

efficient way to achieve it. However, if you are working

specifically with vectors (implemented as arrays) and do not

have access to a list or its methods, implementing a custom

`find_vect()` function would be necessary. Keep in mind that

`find_vect()` would have similar performance characteristics to

the `index()` method, but it would only work with vectors and

require separate implementation.

12.ACKNOWLEDGEMENT
Apart from the efforts of me, the success of any work or project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful completion

of this research paper.

I express deep sense of gratitude to almighty God for giving me

strength for the successful completion of the research paper.

I express my heartfelt gratitude to my parents for constant

encouragement while carrying out this research paper.

I express my deep sense of gratitude to the luminary The

Principal Capt. (IN) K Manikandan, Sainik School

Amaravathinagar who has been continuously motivating and

extending their helping hand to us.

I express my sincere thanks to the academician The Vice

Principal Wg Cdr Deepti Upadhyay, Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

I express my earnest thanks to the academician The

Administrative Officer Lt Col Deepu K, Sainik School

Amaravathinagar, for constant encouragement and the

guidance provided during this research.

My sincere thanks to Mr. Praveen Kumar

MurigeppaJigajinni, Master In-charge, A guide, Mentor and

great motivator, who critically reviewed my paper and helped in

solving each and every problem, occurred during

implementation of this research paper.

12. REFERENCES
1. https://www.freecodecamp.org/news/time-complexity-

of-algorithms/
2. https://www.educative.io/edpresso/time-complexity-

vs-space-complexity

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9

RC OF BOTH METHODS

find_vect() function index() method

https://doi.org/10.36713/epra2013
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.freecodecamp.org/news/time-complexity-of-algorithms/
https://www.educative.io/edpresso/time-complexity-vs-space-complexity
https://www.educative.io/edpresso/time-complexity-vs-space-complexity

