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ABSTRACT 
In this paper, different methods to obtain non-zero distinct integer solutions to the system of double equations 

  2, wxzywzyx  are illustrated. 
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INTRODUCTION 

         Systems of indeterminate quadratic equations of the form 
22 , vdbxucax    where a, b, c, d are 

non-zero distinct constants, have been investigated for solutions by several authors [1, 2] and with a few possible 
exceptions, most of them were primarily concerned with rational solutions. Even those existing works wherein 
integral solutions have been attempted, deal essentially with specific cases only and do not exhibit methods of 
finding integral solutions is a general form. In [3], a general form of the integral solutions to the system of equations

22 , vdbxucax   where a, b, c, d are non-zero distinct constants is presented when the product ab is a 

square free integer whereas the product cd may or may not a square integer. For other forms of system of double 
diophantine equations, one may refer [4-25]. 
This communication concerns with yet another interesting system of double Diophantine equations namely 

  2, wxzywzyx   for its infinitely many non-zero distinct integer solutions. 

METHOD OF ANALYSIS 
 Let zyx ,, and w be four non-zero distinct integers such that the equations 

wzyx                    (1) 

  2wxzy                   (2) 
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are satisfied. Different methods to obtain non-zero distinct integer values to zyx ,, and w  satisfying (1) and (2) 

are exhibited below: 

Method 1: 
 Eliminating y between (1) and (2), the resulting equation is 

    0212 22  wzwxwx                (3) 

Treating (3) as a quadratic in x  and solving for x , one obtains 

  18812
2

1
 wzwx                (4) 

The square-root on the R.H.S of (4) is eliminated when 

 223
2

1
, 2  mnnwmz                (5) 

From (4) and (5), we get 

   625
2

1
,2

2

1 22  mnnmnnx               (6) 

In view of (1), note that 

44,12 22  mnnmnny                (7) 

Thus, (5) , (6) and (7) give two sets of non-zero distinct integer solutions to the system of equations (1) and (2). 

Method 2: 
The introduction of the transformations  

   0,0,4,4,,  lkvulykzvuwvux             (8)  

in (1) and (2) leads respectively to the equations  

  lkv  2                   (9) 

and 

lku 2
                (10) 

Observe that (10) is satisfied when  

   1,1,
2

 numnkml              (11) 

and from (9), we have 

   mnv 212
2
                (12) 

Using (11) and (12) in (8), we get 

1432

4484

4

3452

2

2

2









mnnw

mnnz

my

mnnx

 

which satisfy (1) and (2). 

Method 3: 
 Consider the transformations 

 0,,,,  sqpspwspzqpyqpx           (13) 

it is seen that (1) is automatically satisfied. 
The substitution of (13) in (2) leads to 

        0244
22  sqsqsqpp             (14) 

which is a quadratic in p and solving for p , we get, 

   sqqsp 88112
4

1
              (15) 

The square-root on the R.H.S of (15) is eliminated when 
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 mnnsmq 2
2

1
, 2                (16) 

From (15) and (16) we have, 

   23
4

1
,

4

1̀ 22  nnnnp               (17) 

Substituting (16) and (17) in (13), there are two sets of solutions to (1) and (2) and they are represented as below: 

Set 1: 

 

 

 

  mnnw

mnnz

mnny

mnnx









3
4

1

3
4

1

4

1

4

1

2

2

2

2

 

where 0, mn  

Note that, for the values of  zyx ,, and w to be in integers, choose n  such that 

 4mod1,0 n  and  0 zm  

Set 2: 

   

   

 

  mnnw

mnnz

mnny

mnnx









2
4

1

253
4

1

21
4

1

21
4

1

2

2

 

where 0, mn  

In this case for integer solutions n  should be such that  

 4mod2,1n  and  0 zm . 

However, by treating (14) as a quadratic in sq , in turn and following the above procedure different sets of values of 

zyx ,, and w  satisfying (1) and (2) are exhibited below in Table 1: 
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Table 1: Solutions 
Set x  y  z  w  

3 154 2  snn  1712 2  snn  snn 24  snn 24  

4 snn  34 2
 snn 212  snn 24  snn 24  

5 snn  34 2
 snn 212  snn 24  snn 24  

6 154 2  snn  1712 2  snn  snn 24  snn 24  

7 qnn 24  qnn 24  qnn 212  qnn  34 2
 

8 qnn 24  qnn 24  1712 2  qnn  154 2  qnn  

9 qnn 24  qnn 24  1712 2  qnn  154 2  qnn  

10 qnn 24  qnn 24  qnn 212  qnn  34 2
 

 
CONCLUSION 
 In this paper an attempt has been made to obtain all possible integer values of zyx ,, and w  satisfying 

(1) and (2). In conclusion one may search for other choices of integer solutions to the system of equations under 
consideration. 
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