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ABSTRACT 
The paper considers modelling of monthly rainfall pattern in Imo state using seasonal autoregressive integrated moving average 

(SARIMA) model. The univariate monthly rainfall data set used covered the period of 1981M1-2017M12.  The ADF and NP unit 

root tests showed that rainfall data is integrated order zero. But the ACF plot exhibits evidence of seasonal effect and the PACF 

plot reveals periodic peaks at lags 12 and 24, which indicates the need for seasonal differencing in the model. Sum of square 

deviation forecast criterion (SSDFC) was used to compare nine (9) different sub-classes of 

12),,(),,( QDPqdpSARIMA  models identified. And the result indicates that 12)1,1,1()0,0,0( SARIMA  is 

preferred to the other sub-classes of 12),,(),,( QDPqdpSARIMA 
 
models. This model choice was also supported by 

AIC. The diagnostic tests indicate the adequacy of the fitted model. However, 12)1,1,1()0,0,0( SARIMA
 
is recommended to 

predict seasonality of rainfall water for agriculture and hydrological purpose in Imo state. The model can also be useful in 

creating short term awareness against flood and control strategy in the state.
 

KEYWORDS: Rainfall, SARIMA, SSDFC and seasonality. 

 

1.0 INTRODUCTION 
Rainfall is one of the major components of the water cycle and is responsible for depositing most of the fresh 

water on the earth. Several methods have been proposed by various researchers for modelling rainfall data. The paper 
focuses on the sub-classes of seasonal autoregressive integrated moving average (SARIMA) model that is most 
appropriate for fitting monthly rainfall in Owerri, Imo state. Nigeria   Imo State is one of the five states in the South 
eastern Nigeria with Owerri as the capital,. located at 5.4850N latitude and 7.0350E longitudes. .Owerri as the capital  
consist of 3 Local Government Areas including Owerri Municipal, Owerri North and Owerri west having estimated 
population of about 400,000 based on 2006 census figure and it is approximately 40 square miles (100km2) Its 
topography ranges from flat plains, with a network of two rivers around it;  Otamiri River to the east and Nworie 
River to the South. 

Rainfall is generally seasonal, as well as heavy, and occurs between the months of March and October through 
November. The wet season peaks in July, lasting more than 290 days. The only dry months are December and 
January with February having little or no rainfall. Moreover, Rainfall is one of the most important natural factors that 
determine the agricultural production in and across the globe, particularly in Nigeria. The variability of rainfall and 
the pattern of extreme high or low precipitation are very important for agriculture as well as the economy of the state. 

2.0 LITERATURE REVIEW 
A lot of researchers have paid considerable attention towards modelling and forecasting the amount of rainfall 

pattern in various places. For instance, Nimarla and Sundaram (2010) fitted a SARIMA(0, 1, 1)x(0, 1, 1)12 model to 
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monthly rainfall in Tamilnadu, India. Adejuwon(2011 ) studied Power spectral analysis of annual rainfall for Edo and 
Delta States (formerly Mid-Western Region) in Nigeria using data for 1931 – 1997 in order to identify any regular 
periodicities which may be present. The Hanning filter was employed for the purpose of smoothing the power 
spectral. Irregular short-term periodicities were evident with significant cycles of between 3 and 6 years. 

Yusuf and Kane (2012) fitted the SARIMA models of orders (1, 1, 2)x(1, 1, 1)12 and (4, 0, 2)x(1, 0, 1)12 
respectively for monthly rainfall in Malaaca and Kuantan in Malaysia.  Abdul-Aziz et al. (2013) examined rainfall 
data pattern in Ashanti region of Ghana and fitted a SARIMA(0, 0, 0)x(2, 1, 0)12 to it.  Etuk et al (2013) modelled 
monthly rainfall in Port Harcourt, Nigeria, using seasonal ARIMA (5, 1, 0)x(0, 1, 1)12 model. The time-plot shows no 
noticeable trend. The known and expected seasonality is clear from the plot. Seasonal (i.e. 12-point) differencing of 
the data is done, then a nonseasonal differencing is done of the seasonal differences. The correlogam of the resultant 
series reveals the expected 12-monthly seasonality, and the involvement of a seasonal moving average component in 
the first place and a nonseasonal autoregressive component of order 5. Hence the model mentioned above. The 
adequacy of the modelled has been established. Osarumwese (2013) modelled quarterly rainfall in Port Harcourt, 
Nigeria, as a SARIMA(0, 0, 0)x(2, 1, 0)4 model.  

 Edwin and Martins(2014) examined the stochastic characteristics of the Ilorin monthly rainfall in Nigeria 
using four different modelling techniques (Decomposition, Square root transformation-deseasonalisation, Composite 
and Periodic Autoregressive) where they compared the results from the various methods employed. Again, Akpanta et 
al(2015) modelled the frequency of monthly rainfall in Umuahia, Aba state, Nigeria. They found that the plots of the 
ACF and PACF show spikes at seasonal lags respectively, suggesting SARIMA (0,0,0) (1,1,1)12. Though the 
diagnostic check on the model favoured the fitted model, the Auto Regressive parameter was found to be statistically 
insignificant and this led to a reduced SARIMA (0, 0, 0) (0, 1, 1)12 model that best fit the data and was used to make 
forecast. 

 Alawaye and Alao (2017), examined the Time Series Analysis on Rainfall in Oshogbo Osun State, Nigeria, 
using monthly data of rainfall between 2004-2015. The time plot reveals that the rainfall data show high level of 
volatility characterized by seasonal and irregular variations. And the logistic model applied showed to be better and 
then used to forecast the rainfall for the next 2 years. Amaefula(2018) examines the modelling of mean annual rainfall 
pattern in Port Harcourt, Nigeria using ARMA(p,q) model.. The data on rainfall used covered the period of 1981 to 
2016. Sum of squares deviation forecast criteria (SSDFC) was adopted to select the best performing sub-classes of 
ARMA(p, q) that fits the data. Among ARMA(1, 1), ARMA(1, 2) ARMA(2, 1) and ARMA(2, 2) models estimated, 
SSDFC chose ARMA(1, 2) as the best performing model. The selected model were supported by AIC and BIC 
respectively..And concluded that ARMA(1, 2) can be used to predict long term quality of water for agriculture and 
hydrological purpose and to create long term awareness against flood and control strategy for Port Harcourt. 

3.0 MATERIALS AND METHODOLOGY 
This section highlights the methods and sources of data collection, variable measurement, and method of unit 

root test, model specification, and model identification, method of data analysis, model comparison techniques and 
diagnostic checks. 

3.1 Source of Data and variable measurement 
The monthly  rainfall data was obtained from central bank of Nigeria (CBN) (2018) statistical bulletin. The 

univariate time series data collected covered the period of 1981M1-2017M12 (432 observations of monthly  rainfall 
data). Rainfall is usually measured in millimetre using rain gauge. 

3.2 Model Specification 

An integrated order one time series  tX  is said to follow an autoregressive moving average model of orders p and q   

denoted by ARMA(p, q) if it satisfies the difference equation 
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where tx  is the original series,   is the mean of the series,
 tu  is a sequence of random variables with zero mean and 

constant variance, called a white noise process, and the sj '  and sj '  are constants. Equation (1) can be 

summarized as follows; 
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 tt uLBxLA )()(  
        (3) 

where )(LA is the autoregressive (AR) operator, given by )(LA =
p

pLL   11  and )(LB is the moving 

average (MA) operator, given by )(LB =
q

qLL   11 . For L denotes the backshift operator defined by
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ktt

k xxL  . If  tt xX  and tu  is the shock at time t, then Equation(3) can be rewritten as presented in 

Equation (4) below; 

 tt uLBXLA )()( 
       (4) 

The process is stationary if , with stochastic initial conditions – the stability conditions of the AR term are fulfilled, 

i.e. if )(LA  only has roots that are larger than 1 in absolute value. If, likewise, all roots of )(LB are larger than 1 in 

absolute value, the ARMA(p,q) process is also invertible. A stationary and invertible ARMA(p,q) process may either 

be represented as an )(AR  or as an )(MA  process. 

 

If the time series  tX  is nonstationarity due to the presence of one or several of five conditions: outliers, random 

walk, drift, trend, or changing variance, it is conventional that first or second differencing (d) is necessary to achieve 
stationarity. Hence, the original series is said to follow an autoregressive integrated moving average model or orders 
p, d and q denoted by ARIMA(p, d, q).  For nonstattionary series,  Equation(4) can be of the form 

 tt

d uLBXLA )()( 
       (5)

 

 If the series  tX  exhibits seasonal patterns of nonstationarity, this may  be detected using time plot, correlograms 

or even unit root test. And according to Box and Jenkins(1976) Seasonal ARIMA models sometimes called SARIMA 

models  has the general form SQDPqdpSARIMA ),,(),,(  and it is given as  
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where  sL  and  sL  are lagged  seasonal AR and MA operators of order P and Q respectively. The operator 

d  denotes the difference operator defined by  Ld  1  and 2d .  The 
D

s  represents the seasonal 

difference operator defined by 
s

s L 1  and D  is the seasonal differencing order.  The seasonal differencing 

 sL1  is called the simplifying operator, insofar as it renders the residual series stationary and amenable to further 

analysis. 

3.3 Unit Root Test 
The unit root test here, is based on Augmented Dickey Fuller (ADF) test and is of the form 
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where k is the number of lag variables. In (7.1) there is intercept term, the drift term and the deterministic trend. The 
non deterministic trend term removes the trend term as seen in (7.2) And (7.3) removes both the constant and 

deterministic trend term in the above regression. ADF unit root  test null hypothesis 0:0 H  and alternative 

0: aH . According to Dickey and Fuller(1979), if the ADF test statistic is greater than 1%, 5% and 10% critical 

values, the null hypothesis of a unit root test is accepted.  NP unit root test will used to consolidate the result provided 
by ADF test. See the technical details in Ng Perron(2001). 

3.4 Model Identification 
The ACF of an MA(q) model cuts off after lag q whereas that of an AR(p) model is a combination of sinusoidals 
dying off slowly. On the other hand, the PACF of an MA(q) model dies off slowly whereas that of an AR(p) model 
cuts off after lag p. The AR and MA models are known to exhibit some duality relationships. Parametric parsimony 
consideration in model building entails the use of the mixed ARMA fit in preference to either the pure AR or the pure 
MA fit. 
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3.5 Model Comparison 
There are several model selection criteria in literature such as; Bayesian information criterion(BIC),Aikaike 
information criterion(AIC), residual sum of squares and so on. If n is the sample size and RSS is the residual sum of 
squares, then, BIC and AIC are given as follows; 

)/(ln)/ln(2 nnknRSSkBIC 
     

 (8) 

)/ln(2 nRSSnkAIC          (9) 

where, n is the sample size, k is the number of estimated parameters (for the case of regression, k is the number of 
regressors) and RSS is the residual sum of squares based on the estimated model. However, it is good to note that 
both BIC and AIC are affected by the number of parameters included to be estimated in a model. For the case of BIC, 
it penalizes free parameters while AIC becomes smaller as the number of free parameters to be estimated  increases. 
But for this study, sum of squares deviation forecast criterion introduced by Amaefula(2011) will be used for model 
selection. And it is of the form; 
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Where l is the lead time, m is the number of forecast values to be deviated from the actual values (m should be 

reasonably large), ),( ilty  is the actual values of the time series corresponding to the 
thi position of the forecast values 

and ),(,
ˆ

ilty  is the forecast values corresponding to the ith position of the actual values. In comparison, the model with 

the smallest value of SSDFC is the best fitted model that can describe, to the closest precision, the behaviour of the 
underlying fitted model. 

3.6 Model Estimation 
The coefficients are estimated using an iterative algorithm that calculates least squares estimates. At each point of 
iteration, the back forecasts are computed and sum of squares error (SSE) is calculated. For more details, see Box and 
Jenkins(1994). 

4.0 DATA ANALYSIS AND RESULTS 
This section presents the time series plot of monthly rainfall data, results of ADF unit root test, , plots of ACF and 

PACF and estimates of SQDPqdpSARIMA ),,(),,(   model.  
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Figure1. Plot of Monthly Rainfall in Owerri, Imo State, Nigeria(1981 – 2017) 

 
The plot of monthly rainfall in Figure1 exhibits seasonality. It is also observable that the time series plot lacks trend. 

4.1 ADF Unit Root Test 
In order to check the order of integration of the variables under study, ADF and NP unit root tests are carried out and 
the results are presented in Table1 and Table2 below; 

https://doi.org/10.36713/epra2013
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Table 1. Analysis of order of integration using ADF unit root test  
 Null Hypothesis: RAINFALL has a unit root  
Exogenous: Constant   
Lag Length: 5 (Automatic - based on SIC, maxlag=16) 

     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -13.17991  0.0000 

Test critical values: 1% level  -3.456950  
 5% level  -2.873142  
 10% level  -2.573028  
     
     *MacKinnon (1996) one-sided p-values.  

The result of ADF unit root test in Table1 specifies that monthly rainfall variable is integrated order zero I(0) since 
the p-value is significance under 1% level. Hence, the monthly rainfall under investigation is stationary. Having the 
monthly rainfall variable exhibiting stationarity, the variable will be model using seasonal autoregressive moving 

average SQDPqdpSARIMA ),,(),,(  . 

  
Table 2 Analysis of order of integration using Ng Perron  unit root test  

Null Hypothesis: RAINFALL has a unit root  
Exogenous: Constant   
Lag length: 0 (Spectral GLS-detrended AR based on SIC, maxlag=16) 
Sample (adjusted): 1981M01 2016M11  
Included observations: 371 after adjustments  

      
           MZa    MZt    MSB    MPT 
      
      Ng-Perron test statistics -86.4988 -6.57330 0.07599 0.28961 

Asymptotic critical values*: 1% -13.8000 -2.58000 0.17400 1.78000 
 5% -8.10000 -1.98000 0.23300 3.17000 
 10% -5.70000 -1.62000 0.27500 4.45000 
      
      *Ng-Perron (2001, Table 1)    

 
The NP test values in Table 2 are all less than asymptotic critical values at 1%, 5% and 10% significant levels. This 
indicates that rainfall variable is integrated order zero as reported by ADF test. Hence, the rainfall variable is 
stationary.. 

4.2 Correlogram 
The correlogram presents the plots of autocorrelation function (ACF) and the partial autocorrelation function (PACF) 
for model identification as presented in Figure2 and Figure3 below. 
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Figures2. ACF of monthly rainfall in Owerri, Imo State, Nigeria(1981 – 2017) 
 
The plot of autocorrelation in Figure2 exhibits presence of seasonal effect. The result indicates the need for seasonal 
differencing in the model.  The time plot revealed   seasonality in the series. But where this is not too clear via time 
plot, the autocorrelation function (ACF) could reveal the value of s, as the significant lag of the ACF. The 
differencing operators d for nonstationary series could be atmost 2  and the seasonal difference D may be  chosen to 
be at most equal to 1. The nonseasonal and seasonal AR orders p and P are estimated by the nonseasonal and the 
seasonal cut-off lags of the partial autocorrelation function (PACF) respectively. Similarly the nonseasonal and the 
seasonal MA orders q and Q are estimated respectively by the nonseasonal and seasonal cut-off points of the ACF. 
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Figure3. PACF of monthly rainfall in Owerri, Imo State, Nigeria (1981 – 2017) 
 
There appear to be annual or 12-month spikes in the ACF and PACF correlograms. The ACF in Figure2 clearly 
exhibits this prima facie evidence of seasonal nonstationarity. The PACF in Figure3  reveals the seasonal spikes as 
well. Slow attenuation of the seasonal peaks in the Figure2 ACF signifies seasonal nonstationarity. The 12-month 
PACF periodicity can be seen in the periodic peaks at lags 12 and 24, suggestive of seasonal differencing at lag 12. 

4.3 Model Comparison 
This section presents compared 9 possible models using SSDFC as presented in Table3 below; 
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Tabel3. Model comparison using SSDFC 
S/N Model RSS AIC BIC SSDFC 
1 

12)0,1,1()0,0,1( SARIMA  3879279 3938.38 15.1449 72015.5 

2 
12)1,1,0()1,0,0( SARIMA  2747666 3789.39 14.8000 291.039 

3 
12)1,1,1()1,0,1( SARIMA  2735451 3791.46 18.8236 563.123 

4 
12)1,1,1()0,0,0( SARIMA

 
2757893 3787.46 14.7955 5.25123* 

5 
12)1,1,0()0,0,0( SARIMA

 
2766268 3790.30 12.7927 12.2040 

6 
12)0,1,1()0,0,0( SARIMA

 
3910010 3939.79 13.1387 70370.9 

7 
12)1,1,1()0,0,1( SARIMA

 
2736086 3789.56 16.8098 204.175 

8 
12)1,1,1()1,0,0( SARIMA

 
2736605 3789.64 16.8100 177.149 

9 
12)0,0,2()0,0,2( SARIMA

 
3739102 3926.48 19.1362 22411.1 

 

The model comparison using SSDFC in Table3 indicates that 12)1,1,1()0,0,0( SARIMA  is preferred to the other 

sub-classes of 12),,(),,( QDPqdpSARIMA 
 
models since it has the smallest value of SSDFC. This model 

choice is also supported by AIC. 

Table 4.  Estimates of 12)1,1,1()0,0,0( SARIMA  model 

Final Estimates of Parameters 
 

Type         Coef  SE Coef      T      P 
SAR  12   -0.0571   0.0513  -1.11  0.266 
SMA  12    0.9567   0.0242  39.54  0.000 
Constant  -0.2418   0.2825  -0.86  0.393 

 
Differencing: 0 regular, 1 seasonal of order 12 
Number of observations:  Original series 432, after differencing 420 
Residuals:    SS =  2757893 (backforecasts excluded) 
              MS =  6614  DF = 417 
 

Table 5 Model diagnostic using Ljung-Box Test 
Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

 
Lag            12     24      
Chi-Square   15.7   29.7   
DF              9     21     
P-Value     0.074  0.098   

 
The result of Table5 shows that the probability of Modified Box-Pierce (Ljung-Box) Chi-Square statistic is greater 

than 5% significant level, this indicates that the residuals of the 12)1,1,1()0,0,0( SARIMA  are not correlated. 

Hence the model is adequate. 
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Figure4. Plot of ACF of residuals  for 12)1,1,1()0,0,0( SARIMA fitted for Imo rainfall 
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Figure5. Plot of PACF of residuals  for 12)1,1,1()0,0,0( SARIMA
 
fitted for Imo rainfall 

 
The ACF  and PACF of residuals  in Figure4 and Figure5 for the Imo rainfall data show nonsignificant spikes (the 
spikes are within the confidence limits) indicating that the residuals seem to be uncorrelated. Therefore, the 

12)1,1,1()0,0,0( SARIMA  model appears to fit well and can be used to make forecasts. 
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Figure6. Normal Probability Plot of residuals  for 12)1,1,1()0,0,0( SARIMA
 
model fitted 

 
The diagnostic test using normal probability plot of residuals in Figure6 above indicates that the model 

residuals are normally distributed. Hence, the model fitted is adequate. 

4.4 DISCUSSION OF RESULTS  
The monthly rainfall variable in Imo state is integrated order zero as reported by ADF test and confirmed using 

NP test. Hence, the rainfall variable is stationary. But the correlogram exhibited presence of seasonal effect. The 
results indicate the need for seasonal differencing in the model. The periodic peaks at lags 12 and 24 observable in 
Figure3 indicates the need for seasonal differencing at lag 12. And the model comparison in Table3 using SSDFC 

favoured the choice of fitting 12)1,1,1()0,0,0( SARIMA . This fitted model agrees with that of Akpanta et 

al,(2015) who modelled the frequency of monthly rainfall in Umuahia, Aba state, south eastern Nigeria  suggesting 
SARIMA (0,0,0) x(1,1,1)12. And fitted model differs with that of  Etuk et al (2013) who modelled monthly rainfall in 
Port Harcourt, River State Nigeria, the closest State nearest to Imo  in the south-south using seasonal ARIMA (5, 1, 
0)x(0, 1, 1)12 model. 

The Modified Box-Pierce (Ljung-Box) Chi-Square statistic in Table5 is not significant indicating that the 

residuals of the fitted 12)1,1,1()0,0,0( SARIMA  are not correlated. Hence the model is adequate. The ACF and 

PACF of the model residuals in Figure 4 and Figure 5 respectively showed that the residuals are uncorrelated. The 
probability plot in Figure 6 reveals that the residuals are normally distributed; hence, the fitted model is adequate. 

5.0 CONCLUSION AND RECOMMENDATIONS 

The paper examines monthly rainfall pattern in Imo state using SQDPqdpSARIMA ),,(),,(  model. And 

nine(9) different sub-classes /order of SQDPqdpSARIMA ),,(),,(   models were identified and compared using 

model information criteria, specifically the SSDFC introduced by Amaefula(2011). The model comparison showed 

that 12)1,1,1()0,0,0( SARIMA  is preferred. This choice was also supported by AIC and all the diagnostic tests 

indicated that the model is adequate.  

However, the 12)1,1,1()0,0,0( SARIMA
 
can be recommended to predict seasonality of rainfall in Imo state 

and seasonal quality of water for agriculture and hydrological purpose.. The model may also be useful in creating 
short term awareness against flood and control strategy in the state.
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