INVESTIGATION OF THERMAL STABILITY, MODIFICATION OF THE TRANSITION, AND SPLITTING OF AMMONIUM NITRATE WITH DOLOMITE ADDITIVES

Nabiev Abdurakhim Abdukhamidovich

Head of the Department of General and Inorganic Chemistry, Tashkent Chemical Technology Institute PhD, 32 Navoi Street, 100011, Tashkent, Uzbekistan, Yuldashev Bakhodir Abdumalikovich Senior Lecturer of Military Department under the Tashkent State Technical University after Islam Karimov.

ANNOTATION

Thermal analysis, deformation modification of thermal cooling, thermal analysis of limestone-ammonium nitrate samples obtained after adding dolomite flour at the Shursu, Dekhkanabad, Navbakhor, Karnob and Ketmonchi deposits with a temperature of $175 \circ C$ and 100 wt. and the results of determining the strength of grains, grain stability. The initial decomposition temperature and the activation energy of the obtained samples were studied in the range from 25 to 300 $\circ C$, and the production of grain grains was carried out in accordance with the grinding process in columns. The thermal stability of magnesium limestone-ammonium nitrate grain was studied during heating and cooling cycles of 20-60 $\circ C$.

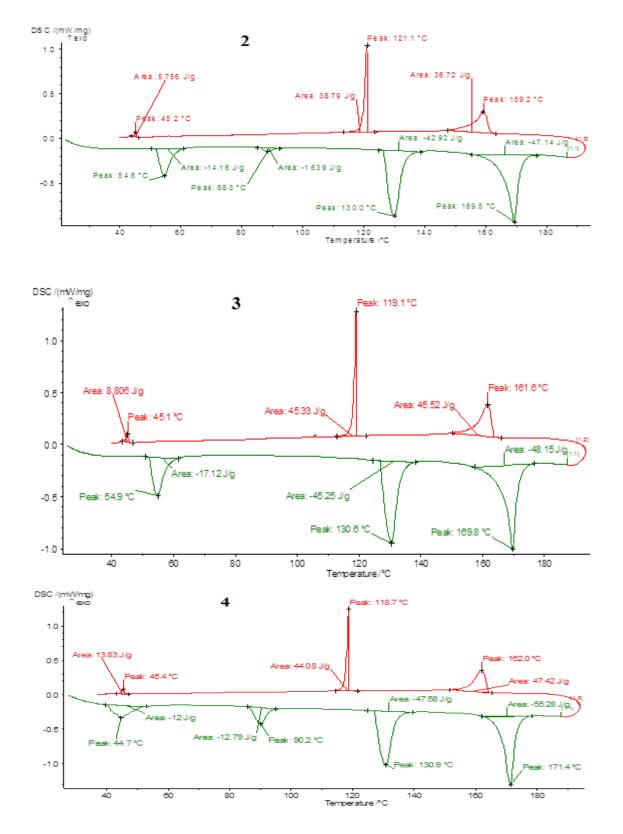
KEYWORDS: Polymorphic changes, dolomite flour (DF), ammonium nitrate (AN), viscosity, hardness, modification change, thermocycles, properties, detonation ability, viscosity, buffer effect, pH (hydrogen indicator), lime nitrate (LN).

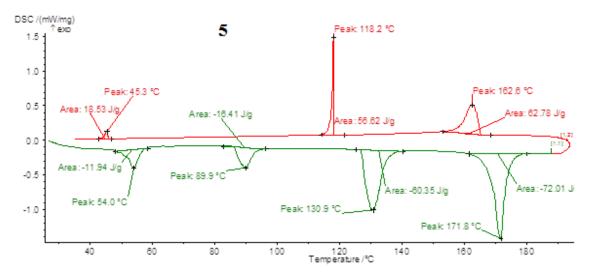
INTRODUCTION

The influence of lime nitrate (LN) on the heat treatment of polymorphic changes in lime nitrate is studied. Thermal analysis of the samples was carried out on NETSCH STA 409 PC / PG equipment (manufactured in Germany) by heating and cooling at a temperature from 25 to 175 °C - from 175 to 25 °C. It was shown that pure NH₄NO₃ liquid is usually IV \rightarrow III; III \rightarrow II; II \rightarrow I and I \rightarrow passes fluid changes. At the same time, the polymorphic transitions IV \rightarrow III are 46 °C, III \rightarrow II - 85 °C, II \rightarrow I - 126 °C and I \rightarrow 169 °C. For samples of

magnesium, lime, and ammonium nitrate, there were also 4 modifications in the sequence that were specific for NH₄NO₃ but differed in the transition temperature. Liquid cooling of NH₄NO₃; I \rightarrow II; II \rightarrow III and III \rightarrow IV changes 169; 125; Goes between 48 and 30 °C. Modifying changes in the cooling of magnesium, lime, ammonium nitrate; I \rightarrow II; Passes through II \rightarrow IV. In this case, phase III does not occur; transition II-IV avoids phase III, which allows the crystal lattice to be deformed and their grain stability (Table 1).

THE MAIN RESULTS AND FINDINGS

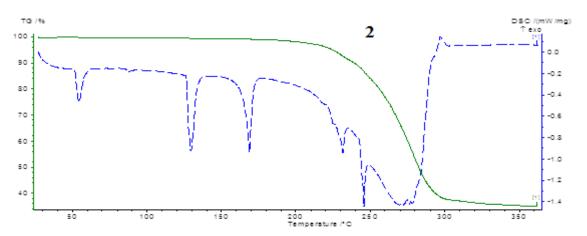

Table 1


|--|

	Curve Line Height								
AN : DF Absolute	IV→III	III→II	II→I	I→ fluid	fluid	I→II	II→III	III→IV	II→IV
mass	fro	m 25 to 1	75 °C hea	ting		from 1	.75 to 25	°C cooling	
NH ₄ NO ₃	46	85	126	169	169	125	48	30	-
100 : 5	54,6	88,3	130,0	169,5	159,2	121,1	-	-	45,2
100 : 15	54,9	89,2	130,6	169,8	161,6	119,1	-	-	45,1
100 : 25	44,7	90,2	130,9	171,4	162,0	118,7	-	-	45,4
100 : 45	54,0	89,9	130,9	171,8	162,6	118,2	-	-	45,3

In NETSCH STA 409 PC / PG, the initial decomposition temperature and the activation energy of

magnesium, lime and ammonium nitrate samples were determined at a temperature from 25 to 300 $^\circ$ C.


Modified transition temperatures of thermostable ammonium nitrate with dolomite additives (Photo 1)


As shown in Table 2 and Figure 2, the initial decomposition temperature and activation energy of pure NH₄NO₃ are 211.30 °C and 9915 J / g, whereas in magnesium and lime-ammonium nitrate samples these values are 247.3-2590 °C and -840 between -906.6 J / g. It

can be seen that the thermal decomposition of magnesium, lime and ammonium nitrate requires higher temperatures and more energy than pure $\rm NH_4NO_3$. All this suggests that dolomite flour (DF) reduces the detonation ability of AN.

Initial temperature and thermal decomposition value of heat-resistant ammonium nitrate with dolomite additive

AN : DF weight ratio	Temperature ranges studied	Initial decomposition temperature, °C	Activation energy, w / g.
pure NH ₄ NO ₃		211,0	-915,1
100 : 5		247,3	-840,6
100 : 15	200-300	251,9	-856,4
100 : 25		258,6	-889,5
100 : 45		259,0	-906,6

Thermogram of heat-resistant ammonium nitrate with dolomite additives (Figure 2)

Pure NH₄NO₃ grains decompose by 5% after 10 thermal cycles and completely decompose after 80 thermal cycles. Heat-resistant ammonium nitrate with dolomite additives, containing 5% OU, is destroyed by 5% after 30 thermal cycles. AN : DF = 100: 25

magnesium lime-ammonium nitrate with an optimal ratio maintains grain integrity up to 25 thermal cycles, and after 100 thermal cycles - up to 71% integrity. The higher the DF in the NH_4NO_3 liquid, the higher the thermal resistance of the grains (Table 3).

Heat resistance of heat-resistant grain of ammonium nitrate with dolomite additives to heating and cooling cycles of 20-60 ° C. Table 3

AN : DF	The degree of destruction of thermostabilized AN grains upon transition to form IV \rightarrow III,%							
weight ratio	10 cycle	25 cycle	50 cycle	90 cycle	100 cycle			
pure NH ₄ NO ₃	5	21	36	100	-			
0,28% MgO added AN	-	13	27	82	100			
100:3,0	-	9	21	59	72			
100 : 5,0	-	7	18	47	65			
100:10	-	-	12	30	44			
100 : 15	-	-	10	25	38			
100:20	-	-	9	23	35			
100 : 25	-	-	7	20	29			
100:30	-	-	-	13	25			
100 : 35	-	-	-	9	21			

Table 4 presents the results of the buffer effect of DF on the pH of the NH_4NO_3 medium at a temperature of 180 °C. Thermal decomposition takes into account the following evidence that one of the reasons for the decomposition of NH_4NO_3 is its increased acidity. DF has a buffering effect on the acidity of NH_4NO_3 . For example,

the pH of dilution of NH₄NO₃ at 180 °C and 120 minutes with an initial decrease from 5.17 to 2.12. At this time, it was found that AN : DF = 100 : 25 decreases from 7.21 to 6.03. That is, an intensive souring process does not occur, because liquid-free HNO₃ is neutralized by the CaMg (CO₃)₂ mineral from dolomite.

Buffer effect of dolomite flour NH4NO3 on the pH of the medium. Table 4

AN : DF	The effect of 10% fertilizer solutions on the pH time, min.								
weight ratio	0	5	10	20	40	60	80	100	120
pure NH ₄ NO ₃	5,17	2,70	2,61	2,54	2,43	2,34	2,25	2,19	2,12
100:3	6,83	6,36	5,92	5,60	5,41	5,30	5,24	5,18	5,07
100: 5	6,86	6,61	6,43	6,27	6,15	6,0	5,89	5,72	5,56
100: 15	7,05	6,87	6,72	6,58	6,40	6,28	6,16	6,07	5,90
100: 25	7,21	7,12	7,01	6,87	6,69	6,45	6,31	6,19	6,03
100:35	7,34	7,20	7,11	7,0	6,88	6,72	6,54	6,36	6,12
100 : 45	7,42	7,28	7,17	7,06	6,90	6,83	6,67	6,48	6,31

CONCLUSION

Regardless of the op-amp, an increase in temperature decreases the AC intensity and viscosity. The density and viscosity of dolomite-nitrate dilution at AN : DF = 100: (0.5-35) and temperature (165-180 °C) are 1.591-1.768 kg / cm³ and 6.12-10.43 s Pz, respectively, suitable for grinding. Based on the results, it can be concluded that DF is a good modifier to improve the physicochemical and consumer properties of AN, such as brucite, magnesite, ammonium sulfate, lime, chalk, phosphorite flour, bentonite and other inorganic additives. DF is a cheap and convenient raw material that determines its economic feasibility in the production of nuclear power plants.

REFERENCE

- 1. Lavrov V.V., Shvedov K.K. On the explosiveness of ammonium nitrate and fertilizers based on it // Scientific and technical news: "INFOCHIM" - Special issue, 2004, No. 2, p. 44-49. (Russian)
- 2. Levin B.V., Sokolov A.N. Problems and technical solutions in the production of complex fertilizers based on ammonium nitrate // Sulfur World, N, P and K. 2004, No. 2, p. 13-21. (Russian)

- Postnikov A.V. Production and use of lime-ammonium nitrate // Chemicalization of agriculture. - 1990. - No. 9, p. 68-73. (Russian)
- 4. Ilyin V.A. Development of technology of complex nitrogen-phosphate fertilizer based on an alloy of ammonium nitrate: Abstract. dis ... cand. tech. Sciences, Ivanovo State. chemical technol. University, Ivanovo, 2006.-- 17 p. (Russian)
- Ammonium nitrate: properties, production, application / A.K. Chernyshev, B. V. Levin, A. V. Tugoukov, A. A. Ogarkov, V. A. Ilyin. - M.: CJSC INFOCHIM, 2009, 544 p. (Russian)
- 6. Zhmay L., Khristianova E. Ammonium nitrate in Russia and in the world. Current situation and prospects // Sulfur World, N, P and K. - 2004, No. 2, p. 8-12.
- Nabiev A.A., Reimov A.M., Namazov Sh.S., Ayymbetov M.Zh. Obtaining calcium and magnesium-containing ammonium nitrate // V International Conference-School on Chemical Technology. Volgograd. - May 16-20, 2017 - Section 1. - S. 279-281. (Russian)
- 8. Reimov A.M., Nabiev A.A., Namazov Sh.S., Madenov B.D. The strength of granules of magnesium-calcium ammonium nitrate // Scientific Herald (Samarkand). -2016. - No. 5 (99). - S. 153-156. (Russian)
- 9. Taubkin I.S., Saklantiy A.R., Samoilenko N.G., Soloviev I.V. On the explosiveness of plants for the production of

ammonium nitrate and fertilizers based on it // Chemical industry. - 2010. - T. 87. - No. 3. - S. 148-160. (Russian)

- 10. Reimov A.M. Development of technology for the production of phosphorus and complex nitrogenphosphorus fertilizers based on phosphorites of the Central Kyzylkum; Abstract of the dissertation of a doctor of technical Sciences, IONHA AN RUz, Tashkent. - 2014.-- 81 s. (Russian)
- 11. Reznichenko O.A., Moskalenko L.V. Evaluation of the effect of the composition of phosphogypsum on the strength of ammonium nitrate // Materials of the VIII regional scientific-technical. conf. "University science to the North Caucasus region" Stavropol: North Caucasus. GTU. 2004 .-- S. 40-41. (Russian)
- 12. Kolesnikov V.P., Moskalenko L.V. Studying the effect of the addition of phospho-hemihydrate on the strength of granules of ammonium nitrate // Chemical industry today. - 2006. - No. 6. - S. 8-9. (Russian)
- 13. Kolesnikov V.P., Moskalenko L.V. Thermographic studies of modification transformations of fertilizer obtained on the basis of ammonium nitrate // Chemical industry today. - 2006. - No. 7. - S. 18-21. (Russian) Russian)

- 14. Patent No. 2281274 of the Russian Federation. Cl. C 05 G 1/08, C 05 C 1/02. A method of obtaining granular lime-ammonia fertilizer / V.G.Kazak, N.M. Brizitskaya, I.G. Grishaev, V.V. Dolgov, A.S. Malyavin, V.A. Biryukova. - B.I. 2006. - No. 22. (Russian)
- Patent No. 2362757 of the Russian Federation. Cl. C 05 G 1/08. A method of obtaining lime-ammonium nitrate / P.V. Kiselevich, V.M. Khokhlov, S.V. Boykov, A.N. Shevelev, O. B. Abramov, O. M. Zakharova, T. E. Mukhacheva, D.G. Medyantseva. - dated July 27, 2009. (Russian)
- Nabiev A.A., Namazov Sh.S., Seitnazarov A.R., Reimov A.M., Ayymbetov A.Zh. Calcium ammonium nitrate and its use in agricultural production. // Universum: Engineering: electron. scientific journal - Novosibirsk. - 2017. - No. 6 (39) - S. 25-39. (Russian)
- Nabiev A.A., Reimov A.M., Namazov Sh.S., Beglov B.M. Studying the process of obtaining magnesiumcontaining lime ammonium nitrate // Chemical Technology. Control and management. - Tashkent. -2018. - No. 1/2. - S. 13-17.