
 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

 Volume: 6 | Issue: 1 | January 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188

ANALYSIS AND IMPROVISATION IN EXTRACTING AUDIO
SIGNAL AMPLITUDE USING LABVIEW

Adarsh V Srinivasan
Department of Electronics and Communication Engineering

PSG College of Technology

Coimbatore, India

Mr. N. Saritakumar
Assistant Professor (Senior Grade)

Department of Electronics and Communication Engineering

PSG College of Technology

Coimbatore, India

Article DOI: https://doi.org/10.36713/epra3965

ABSTRACT

 In this paper, either a pre-recorded audio or a newly recorded audio is processed and analysed using the LabVIEW Software by National

Instruments. All the data such as bitrate, number of channels, frequency, sampling rate of the Audio are analyzed and improvising the

signal by a few operations like Amplification, De-Amplification, Inversion and Interlacing of Audio Signals are done. In LabVIEW, there

are a few Sub Virtual Instrument’s available for Reading and Writing Audio in .wav formats and using them and array Sub Virtual

Instrument, all the processing are done.

KEYWORDS: Virtual Instrumentation (VI), LabVIEW (LV), Audio, Processing, audio array.

I. INTRODUCTION
Audio Signal

An Audio Signal is a representation of sound,
typically as an electrical voltage. Audio signals have
frequencies in the frequency range of roughly 20 to
20,000 Hz (the limits of human hearing). Audio signals may
be synthesized directly, or may originate at
a transducer such as a microphone, musical instrument
pickup, phonograph cartridge,
or tapehead. Loudspeakers or headphones convert an
electrical audio signal into sound. Digital representations of
audio signals exist in a variety of formats.

Signal Flow

Signal flow is the path an audio signal will take
from source (microphone) to the speaker or recording
device. It is most frequently in a recording studio setting,
where the signal flow is often very long and convoluted as
the electric signal may pass through many sections of a
large Analog console, external audio equipment, and even
different rooms.

Parameters

Audio signals may be characterized by parameters
such as their bandwidth, power level in decibels (dB), and
voltage level. The relation between power and voltage is
determined

by the impedance of the signal path, which may be single-
ended or balanced.

Audio signals have somewhat standardized levels
depending on application. Outputs of professional mixing
consoles are most commonly at line level. Microphones
generally output at a lower level, commonly referred to a
"mic level". Consumer audio equipment will also output at a
lower level.

Digital Audio is a technology that can be used
for sound recording and reproduction using audio signals
that have been encoded in digital form. Following
significant advances in digital audio technology during the
1970s, it gradually replaced Analog audio technology in
many areas of audio engineering and telecommunications in
the 1990s and 2000s.

In a digital audio system,
a microphone converts sound to an analog electrical signal,
then an analog-to-digital converter (ADC) typically
using pulse-code modulation—converts the analog signal
into a digital signal. This digital signal can then be recorded,
edited and modified using digital audio tools. When the
sound engineer wishes to listen to the recording on
headphones or loudspeakers (or when a consumer wishes to
listen to a digital sound file of a song), a digital-to-analog
converter (DAC) performs the reverse process, converting a
digital signal back into an analog signal, through an audio
power amplifier and send to a loudspeaker.

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013 273

http://www.eprajournals.com/
https://doi.org/10.36713/epra3965

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

 Volume: 6 | Issue: 1 | January 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013

Digital audio systems may include compression
storage processing and transmission components.
Conversion to a digital format allows convenient
manipulation, storage, transmission and retrieval of an audio
signal. Unlike analog audio, in which making copies of a
recording results in generation loss, a degradation of the
signal quality, when using digital audio, an infinite number
of copies can be made without any degradation of signal
quality.

Digital Audio Formats

A few of the Digital Audio Formats used currently are
listed below:

1. MP3
2. AAC
3. WMA
4. FLAC
5. 3GP
6. DVF
7. M4A
8. RAW
9. WAV

Digital Audio Processing

Audio signal processing or audio processing is the
intentional alteration of audio signals often through an audio
effect or effects unit. As audio signals may be electronically
represented in either digital or Analog format, signal
processing may occur in either domain. Analog processors
operate directly on the electrical signal, while digital
processors operate mathematically on the digital
representation of that signal.

LABVIEW

Laboratory Virtual Instrument Engineering
Workbench (LabVIEW) is a system-design platform and
development environment for a visual programming
language from National Instruments.

The graphical language is named "G"; not to be
confused with G-code. Originally released for the
Apple Macintosh in 1986, LabVIEW is commonly used
for data acquisition, instrument control, and
industrial automation on a variety of operating systems(OS),
including Microsoft Windows, various versions
of Unix, Linux, and MacOS.

The latest versions of LabVIEW are LabVIEW
2017 and LabVIEW NXG 1.0, released in May 2017.

Graphical Programming

LabVIEW integrates the creation of user interfaces
(termed front panels) into the development cycle. LabVIEW
programs-subroutines are termed virtual instruments (VIs).
Each VI has three components: a block diagram, a front
panel, and a connector panel. The last is used to represent
the VI in the block diagrams of other, calling VIs. The front
panel is built using controls and indicators. Controls are
inputs: they allow a user to supply information to the VI.
Indicators are outputs: they indicate, or display, the results
based on the inputs given to the VI. The back panel, which
is a block diagram, contains the graphical source code. All

of the objects placed on the front panel will appear on the
back panel as terminals. The back panel also contains
structures and functions which perform operations on
controls and supply data to indicators. The structures and
functions are found on the Functions palette and can be
placed on the back panel. Collectively controls, indicators,
structures, and functions will be referred to as nodes. Nodes
are connected to one another using wires, e.g., two controls
and an indicator can be wired to the addition function so that
the indicator displays the sum of the two controls. Thus a
virtual instrument can be run as either a program, with the
front panel serving as a user interface, or, when dropped as a
node onto the block diagram, the front panel defines the
inputs and outputs for the node through the connector pane.
This implies each VI can be easily tested before being
embedded as a subroutine into a larger program.

The graphical approach also allows
nonprogrammers to build programs by dragging and
dropping virtual representations of lab equipment with
which they are already familiar. The LabVIEW
programming environment, with the included examples and
documentation, makes it simple to create small applications.
This is a benefit on one side, but there is also a certain
danger of underestimating the expertise needed for high-
quality G programming. For complex algorithms or large-
scale code, it is important that a programmer possess an
extensive knowledge of the special LabVIEW syntax and
the topology of its memory management. The most
advanced LabVIEW development systems offer the ability
to build stand-alone applications. Furthermore, it is possible
to create distributed applications, which communicate by
a client–server model, and are thus easier to implement due
to the inherently parallel nature of G.

Interfacing to Devices

LabVIEW includes extensive support for
interfacing to devices, instruments, camera, and other
devices. Users interface to hardware by either writing direct
bus commands (USB, GPIB, Serial) or using high-level,
device-specific, drivers that provide native LabVIEW
function nodes for controlling the device.

LabVIEW includes built-in support for NI
hardware platforms such
as CompactDAQ and CompactRIO, with a large number of
device-specific blocks for such hardware, the Measurement
and Automation eXplorer (MAX) and Virtual Instrument
Software Architecture (VISA) toolsets.

National Instruments makes thousands of device
drivers available for download on the NI Instrument Driver
Network (IDNet).

Code compiling

LabVIEW includes a compiler that produces native
code for the CPU platform. This aids performance. The
graphical code is translated into executable machine code by
interpreting the syntax and by compiling. The LabVIEW
syntax is strictly enforced during the editing process and
compiled into the executable machine code when requested
to run or upon saving. In the latter case, the executable and
the source code are merged into a single file. The executable

 274

http://www.eprajournals.com/

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

 Volume: 6 | Issue: 1 | January 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013

runs with the help of the LabVIEW run-time engine, which
contains some precompiled code to perform common tasks
that are defined by the G language. The run-time engine
reduces compiling time and provides a consistent interface
to various operating systems, graphic systems, hardware
components, etc. The run-time environment makes the code
portable across platforms. Generally, LabVIEW code can be
slower than equivalent compiled C code, although the
differences often lie more with program optimization than
inherent execution speed.

Large libraries

Many libraries with a large number of functions for
data acquisition, signal generation, mathematics, statistics,
signal conditioning, analysis, etc., along with numerous for
functions such as integration, filters, and other specialized
abilities usually associated with data capture from hardware
sensors is enormous. In addition, LabVIEW includes a text-
based programming component named MathScript with
added functions for signal processing, analysis, and
mathematics. MathScript can be integrated with graphical
programming using script nodes and uses a syntax that is
compatible generally with MATLAB.

Parallel programming

LabVIEW is an inherently concurrent language, so
it is very easy to program multiple tasks that are performed
in parallel via multithreading. For example, this is done
easily by drawing two or more parallel while loops and
connecting them to two separate nodes. This is a great
benefit for test system automation, where it is common
practice to run processes like test sequencing, data
recording, and hardware interfacing in parallel.

II. DESIGN AND METHODOLOGY
A. Design

The design is done in a way such that an available
audio in .wav format or a newly recorded audio in .wav
format is analysedto find the Audio Elements and store them
in an Array for further Analysis and Processing.

The Elements are manipulated as a whole for both
Analysis and Processing using different array operation Sub
VI’s. And again, the Audio elements are stored as a
waveform and is written into the Hard Disk (HDD).

The Design has Sub VI’s related to Array
Operations, Waveform Operations and Components,
Laplace Operations, Sound Sub VI’s and reading and
writing Sub VI’s.

In case of a new audio file to be recorded and
analysed and processed, either a laptop microphone or an
external microphone. If the laptop does not have an inbuilt
microphone or if is damaged, a cheap and cost effective
microphone is built and is used.

Fig 1. Control flow the program

B. Methodology

The Program is Initialized and is run on LabVIEW
by National Instruments. There are various steps in the
execution.
Following are the steps involved in this Program.

Input

A pre-recorded or a Live recorded Audio File in
.wav format in read into LabVIEW using ‘Read’ Sub VI
under Sound by giving a path to the Source Audio. For a
pre-recorded Audio, the Source of the .wav file can directly
be given in the path. To incorporate a live recorded Audio,
an external mic is built using a Condenser mic in an
amplifier circuit. The mic is connected to the Laptop and
using ‘Audacity’ software, the audio is recorded lively and
is saved in the computer in .wav format. The saved audio
file’s path can be used in the LabVIEW to Analyse and
Process the newly recorded Audio. It is then passed onto a
Sub VI called ‘Index Array’ to store all the Audio Elements
in an array for further Analysis and Processing. This array
forms the basis for all other operations.

Fig 2. Input path of the source audio

Different Processes are done in the VI.

Displaying and Playing the Original Audio
Using a ‘Waveform Graph’ Sub VI, the Original Audio
Signal is displayed as a graph.
The Waveform is fed into a Sub VI called ‘Play Sound’ to
play the Original Audio File.

Fig 3. Original audio waveform

Amplifying the Audio

The Audio element are obtained from the Index
Array and is fed into a ‘Get Waveform Components’ Sub VI
which converts all the elements into Integer format and
stores it as a separate Array.

The Array is then multiplied by a constant value
‘5’ in order to increase the value of each sample by 5 times
which in turn increases the Amplitude of the Audio by 5
times. Hence, the Audio is Amplified.

The Amplified array elements are fed into a Sub VI
called ‘Build Waveform’ and is given as an input to
‘Waveform Graph’ Sub VI and ‘Play Sound’ Sub VI.
When the Amplified Audio file is written in the specified
location is played outside of LabVIEW, the difference can
be viewed and noticed.

 275

http://www.eprajournals.com/

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

 Volume: 6 | Issue: 1 | January 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013

Fig 4. Amplified waveform

De-Amplifying the Audio

The Audio element are obtained from the Index
Array and is fed into a ‘Get Waveform Components’ Sub VI
which converts all the elements into Integer format and
stores it as a separate Array.

The Array is then divided by a constant value ‘5’ in
order to decrease the value of each sample by 5 times which
in turn decreases the Amplitude of the Audio by 5 times.
Hence, the Audio is De-Amplified.

The De-Amplified array elements are fed into a
Sub VI called ‘Build Waveform’ and is given as an input to
‘Waveform Graph’ Sub VI and ‘Play Sound’ Sub VI.
When the Amplified Audio file is written in the specified
location is played outside of LabVIEW, the difference can
be viewed and noticed.

Fig 5. De-amplified waveform

Inversion of Audio

The Audio element are obtained from the Index
Array and is fed into a ‘Get Waveform Components’ Sub VI
which converts all the elements into Integer format and
stores it as a separate Array.

The Array is then inverted using Sub Vi under
Array Operations called ‘Reverse 1D Array’ which Inverts
the complete 1D Array.
The Inverted array elements are fed into a Sub VI called
‘Build Waveform’ and is given as an input to ‘Waveform
Graph’ Sub VI and ‘Play Sound’ Sub VI.

Fig 6. Inverted waveform

Interlacing of Audios
Original and Inverted

Using the Sub VI ‘Add’ under ‘Mathematical
Operations’, the integer array of both the Original Audio
and the Inverted Audio are added and is fed to ‘Build
Waveform’ Sub VI and then to ‘Play’ Sub VI.

This built waveform will contain both the Original
and Inverted Audio in the same file, i.e, the audio elements
are interlaced.

When this interlaced Audio is played, both the files
play as a single audio and the difference can be clearly
noted.

Fig 7. Original and inverted – interlaced waveform

Amplified and Inverted

Using the Sub VI ‘Add’ under ‘Mathematical
Operations’, the integer array of both the Amplified Audio
and the Inverted Audio are added and is fed to ‘Build
Waveform’ Sub VI and then to ‘Play’ Sub VI.

This built waveform will contain both the
Amplified and Inverted Audio in the same file, i.e, the
audio elements are interlaced.

When this Audio is played, the Audio playing in
the Original direction is heard more clearly than the file
which is being played in backward since the forward
playing Audio is Amplified.

Fig 8. Amplified and inverted – interlaced waveform

Writing the processed Audios in the Hard Disk

To write the processed Audios to the Hard Disk,
the processed waveform is fed into a Sub Vi called ‘Build
Array’ which converts the integer array to Audio Elements
Array.

The converted array is given as an input to a Sub
VI called ‘Sound File Write’ and a path is given to it for the
location.

Fig 9. Output paths of processed audios

Sampling Interval of Audio

To find the Sampling Interval of the given Audio,
from the ‘Get Waveform Components’ Sub VI of the
Original Audio, the Sub VI is dropped down to get more
Attributes and ‘dt’ option must be selected.

Adding an ‘Indicator’ Sub VI would display the
Sampling Interval.

 276

http://www.eprajournals.com/

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

 Volume: 6 | Issue: 1 | January 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013

Fig 10. Sampling Interval

Frequency of Audio

To find the frequency of the given audio file, the
sampling interval value is just inverted using a ‘1/x’ Sub VI
under ‘Mathematical Operations’.
A Indicator is created for the Sub VI to display the
Sampling Frequency of the Audio.

Fig 11. Sampling Frequency

Number of Samples

The number of samples of an audio file is found by
using a pre-defined Sub VI called ‘Number of Waveform
Samples’ and an indicator is added to it to display the value.

The more the number of samples, the more
accurate the Audio will be.

Fig 12. Total number of samples

Maximum and Minimum Amplitude

From the Original, Amplified and De-Amplified
integer arrays, they are fed into a Sub VI called ‘Max and
Min’ to obtain the values of Maximum Amplitude and
Minimum Amplitude and an Indicator is created to display
the values and is compared.

Fig 13. Amplitude of amplified waveform

Analog to Digital Conversion

The Audio is in Analog form and in order to
Convert it to Digital, ‘Analog to Digital Converter’ Sub VI
is used.
The converted digital format is in Binary format and is
displayed as an array.

Fig 14. Digital data of original audio file

General Overview

A general overview of the audio can also be
viewed by using the Sub VI called ‘Sound File Info’ and
adding another Sub VI called ‘Overview’ to display the
General details.

Fig 15. Overview of the audio file

III. BLOCK DIAGRAM OF VI

Fig 16. Block diagram of the top level VI

 277

http://www.eprajournals.com/

 ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

 Volume: 6 | Issue: 1 | January 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013

IV. ADVANTAGES
When compared with other audio editing

applications, only one process can be achieved at a time.
When LabVIEW is used, multiple processes can be done at
a single click.

Since, LabVIEW is a graphical programming
language, everyone can easily learn to use it and code in it.
The amplification and de-amplification factors can be
changed by user too, once the person learns programming in
LabVIEW.

Other audio editing applications have the value of
audio loudness only from -1 dB to +1 dB. Using LabVIEW
will display the original amplitude as such without any
clipping which most applications do, which will eventually
depreciate the audio quality.

a. Original files in Audacity and LabVIEW

b. Amplified files in Audacity and LabVIEW

Fig 17. Comparison of Audacity with
LabVIEW

The digital form of the audio will not be displayed
by any other audio editing softwares other than LabVIEW.

V. RESULT & ANALYSIS BY APPLICATION
As LabVIEW was used for audio signal processing

and analysis, the amplified version of the .wav audio file
had a maximum amplitude of 4.99 dB which is a proof for
audio not being clipped at the peaks as seen in Fig 17(a) &
Fig 17(b).

Since all the processes are done using only one VI
(Fig 16), once the ‘RUN’ button is clicked, the audio is
processed and is stored in the output paths at an instant.

Evidently, from Fig 10,11,12,13&15 the analysis is
done and is displayed to the user.

Applications

This software program can be used in
Entertainment industry where the audio is recorded or saved
as RAW format (.wav) which is large in size and is time
consuming to edit in other applications.

It can be used display all the details of an audio
even when it is unknown and then can be processed
accordingly.

VI. CONCLUSION
Audio signal processing and analysis was

implemented using LabVIEW where an audio was given as
an input and all of it’s details were analysed and displayed
followed by processing it with a few operations. This paper
overcomes the existing disadvantage of the existing audio
editing applications which are more time consuming and
hard to learn.

Future Enhancement
In the coming future, this program can be enhanced

to it’s full potential which can reduce noise of the given
audio signal, manipulate it’s length, append audios,
introduce the playback speed according to user’s wish.

The obtained digital data too can be manipulated
using LabVIEW to add/remove noise in the audio file.

VII. REFERENCES
1. JFFERY TRAVIS, “LABVIEW FOR EVERYONE”, PRENTICE

HALL, 2002.

2. AUDACITY SOFTWARE FOR CREATING .WAV FILES AVAILABLE

AT WWW.AUDACITY.COM.

3. NI LABVIEW2014 FROM WWW.NI.COM.

4. RICK BITTER, TAQIMOHIUDDIN, MATT NAWROCKI,

“LABVIEW: ADVANCED PROGRAMMING TECHNIQUES, SECOND

EDITION”, CRC PRESS, 2006.

5. PETER A. BLUME, “THE LABVIEW STYLE BOOK”, PEARSON

EDUCATION, 2007.

6. JOHN ESSICK, “HANDS-ON INTRODUCTION TO LABVIEW

FOR SCIENTISTS AND ENGINEERS”, OXFORD UNIVERSITY PRESS, 2015.

7. GARY W. JOHNSON, “LABVIEW GRAPHICAL PROGRAMMING:

PRACTICAL APPLICATIONS IN INSTRUMENTATION AND CONTROL”,

MCGRAW-HILL, 1997.

8. NASSER KEHTARNAVAZ, NAMJIN KIM, “

DIGITAL SIGNAL PROCESSING SYSTEM-LEVEL DESIGN USING

LABVIEW”, NEWNES, 2005.

9. CORY CLARK, “LABVIEW DIGITAL SIGNAL PROCESSING:

AND DIGITAL COMMUNICATIONS”, MCGRAW HILL PROFESSIONAL,

2005.

10. “PLAYING .WAV FILES IN LABVIEW” [WEBSITE]

11. AVAILABLE:HTTP://DIGITAL.NI.COM/PUBLIC.NSF/ALLKB/400F

A87E2B9B46C68625651D00483B18

12. “PLAYING WAV FILES USING AUDACITY TOOLKIT”

[WEBSITE]

13. AVAILABLE:HTTP://ESATJOURNALS.NET/IJRET/2015V04/I02/I

JRET20150402062.PDF

14. “READING AND WRITING .WAV FILES IN LABVIEW”

[WEBSITE]

15. AVAILABLE:HTTPS://ARCHIVE.CNX.ORG/CONTENTS/007678E8

-A65F-4F03-8637-8505B0BB30C7@6/READING-AND-WRITING-AUDIO-

FILES-IN-LABVIEW

 278

http://www.eprajournals.com/
http://www.ni.com/
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Rick+Bitter%22&source=gbs_metadata_r&cad=7
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Taqi+Mohiuddin%22&source=gbs_metadata_r&cad=7
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Matt+Nawrocki%22&source=gbs_metadata_r&cad=7
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Peter+A.+Blume%22&source=gbs_metadata_r&cad=7
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22John+Essick%22&source=gbs_metadata_r&cad=8
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Gary+W.+Johnson%22&source=gbs_metadata_r&cad=5
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Nasser+Kehtarnavaz%22&source=gbs_metadata_r&cad=4
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Namjin+Kim%22&source=gbs_metadata_r&cad=4
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Cory+Clark%22&source=gbs_metadata_r&cad=8

