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ABSTRACT 

The matrix elements of the effective Hamiltonian of current carriers are calculated as in the Kane approximation, where the 

conduction band, the valence band consisting of light and heavy hole subbands, and the spin-split band, as well as in the 

Luttinger-Kohn model, are considered. 
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INTRODUCTION 

It is known that many physical parameters of the crystalline potential depend on the band structure of the 

semiconductor [1-5]. Moreover, usually in band theory it is believed that the crystalline periodic potential is always an 

even function of coordinates. However, in some cases, for example, in a semiconductor, where there is a heterojunction, 

the periodic potential of the crystal, along with the symmetric part, can have an asymmetric part.  
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THE MAIN RELATIONSHIPS 

This case requires a separate analysis of the matrix elements of the effective Hamiltonian of current carriers 

as in the Kane approximation, where the conduction band, the valence band consisting of light and heavy hole subbands, 

and the spin-split band, as well as in the Luttinger-Kohn model [6, 7]. Next, we consider the case when the extreme 

points of the zones are in the center of the Brillouin zone, i.e. at the point k⃗ = 0, where k⃗  is the wave vector of current 

carriers. In this case, the effective Hamiltonian can be represented as 

H = H0 +
ћ

4m
0𝒞2
2 ,∇⃗⃗ V × p⃗ - ⋅ σ⃗⃗       (1) 

and the corresponding (1) Schrödinger equation has the form 

*H0 +
ћ

4m
0C2
2 ,∇⃗⃗ V × p⃗ - ⋅ σ⃗⃗ +ψnk⃗⃗ (r ) = En(k⃗ )ψnk⃗⃗ (r ) ,  (2) 

where H0 =
p2

2m0
+ V(r) consists of kinetic and potential energy operators, the second term in (1) is the spin-orbit 

interaction operator, σ⃗⃗  is the vector of Pauli spin matrices with components: 

σx = {
0 1
1 0

} σy = {
0 − i
0  i

} σz = {
1 0
0 −1

}     (3) 

whence for the spinors ↑≡ {
1
0
}  ↓≡ {

0
1
} we have the following relations 

σx ↑=↓  σy ↑= i ↓  σz ↑=↑ σx ↓=↑  σy ↓= −i ↑  σz ↓= −↓ (4) 

 If the solution (3) is sought in the form of the Bloch function ψnk⃗⃗ (r ) = eik⃗⃗ r⃗ unk⃗⃗ (r ),, then we obtain the 

equation for the Bloch amplitude unk⃗⃗ (r) as 

*H0 +
ћ

m0
k⃗ p⃗ +

ћ

4m
0𝒞2
2 ,∇⃗⃗ V × p⃗ - ∙ σ⃗⃗ +

ћ2

4m
0𝒞2
2 ,∇⃗⃗ V × k⃗ - ∙ σ⃗⃗ +unk⃗⃗ (r ) = E′unk⃗⃗ (r) (5) 

where E′ = En(k⃗ ) −
ћ2k2

2m0
. The last term in (5) describes the spin-orbit interaction, which depends on the wave vector of 

current carriers. Thus, the effective Hamiltonian acting on the periodic function unk⃗⃗ (r) is expressed as: 

H = H0 +
ћ

m0
k⃗ p⃗ +

ћ2

4m0
2с2

,∇⃗⃗ V × k⃗ - ⋅ σ⃗⃗ +
ћ

4m0
2с2

,∇⃗⃗ V × p⃗ - ⋅ σ⃗⃗     (6) 

Here H1 =
ћ

m0
k⃗ p⃗  and H2 =

ћ2

4m0
2с2

[∇⃗⃗ V × k⃗ ] ⋅ σ⃗⃗  appear due to the transition from the Bloch function to the function 

unk⃗⃗ (r), the term H3 =
ћ

4m0
2с2

,∇⃗⃗ V × p⃗ - ⋅ σ⃗⃗  describes p⃗   dependent in-orbit interaction. The Bloch amplitude unk⃗⃗ (r)  

for electrons in the conduction band can be represented as: |iS ↑〉, |iS ↓〉, and for holes in the valence band -|X ↑〉, 

|X ↓〉,  |Y ↑〉,  |Y ↓〉,  |Z ↑〉,  |Z ↓〉   with the corresponding intrinsic energies Es  and Ep , which are defined as 

H0|S〉 = Ec|S〉, H0|X〉 = Ep|X〉, H0|Y〉 = Ep|Y〉, H0|Z〉 = Ep|Z〉, where [8] 

http://www.eprajournals.com/
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|S〉 =
1

√4π
  , |Z〉 = √

3

4π

z

r
 , |X ± iY〉 = √

3

4π

x±iy

r
,    (7) 

where it was considered that the wave function of the electrons in the conduction band is the wave function of the 

s-state, and for the valence band, the p-state of the hydrogen atom. Since the states in the conduction band are twofold 

degenerate along the spin, and in the valence band fourfold degenerate, therefore, the basic functions can be represented 

as: 

|1〉 = |iS ↓〉, |2〉 = |
X−iY

√2
↑〉, |3〉 = |Z ↓〉, |4〉 = | −

X+iY

√2
↑〉 ,  (8) 

|1〉 = |iS ↑〉, |2〉 = | −
X+iY

√2
↓〉, = |Z ↑〉, = |

X−iY

√2
↓〉 .     (9) 

RESULTS AND CONCLUSIONS 

First, we determine the diagonal matrix elements of the Hamiltonian (6) from the basis functions (8) and (9). 

This requires calculating the matrix elements of each term (6) separately, where in further calculations we take into 

account that ∭
x2m+1∙yl∙zμ

rn

∞

−∞
dr = ∭

xm∙y2l+1∙zμ

rn

∞

−∞
dr = ∭

xm∙yl∙z2μ+1

rn

∞

−∞
dr = 0 , where dr = dxdydz , m, l,  μ  are 

integers. Then the matrix elements of the operators 

 H1 =
ћ

m0
k⃗ p⃗ , H2 =

ћ2

4m0
2с2

[∇⃗⃗ V × k⃗ ] ⋅ σ⃗⃗ , H3 =
ћ

4m0
2с2

,∇⃗⃗ V × p⃗ - ⋅ σ⃗⃗   (10) 

are defined with the following relations 

(H0)11 = 〈1|H0|1〉 = 〈−iS ↓ |H0|iS ↓〉 = 〈S|Es|S〉 = Es,   (11) 

(H1)11 = 〈1|H1|1〉 = 〈−iS ↓ |H1|iS ↓〉 = 〈S|
ћ

m0
k⃗ p⃗ |S〉 = 0,     (12) 

(H2)11 = 〈1|H2|1〉 = 〈−iS ↓ |H2|iS ↓〉 = 

= 〈−iS ↓ |
ћ2

4m0
2с2

[∇⃗⃗ V × k⃗ ] ⋅ σ⃗⃗ |iS ↓〉 = −
ћ2

16πm0
2с2

𝒥1  (13) 

where 

𝒥1 = ∭ {
∂V

∂x
ky −

∂V

∂y
kx}

∞

−∞
dxdydz   (14) 

and take into account that p⃗ |S〉 = 0 (since the function S is a constant value), as well as the conditions of orthonormal 

spinors 

 σx ↑=↓, σy ↑= i ↓, σz ↑=↑, σx ↓=↑, σy ↓= −i ↑, σz ↓= −↓ .   (15) 

If we consider that the crystalline periodic potential consists of two: even and odd terms with respect to the 

coordinate inversion: V(r ) = Vass(r ) + Vsim(r ), where Vsim(r )V(r ) = (−r⃗⃗⃗⃗  ⃗), Vass(r ) = −Vass(−r ), Vass(r ), then it is 

easy to verify that the integral 𝒥1 has nonzero terms. Therefore, we analyze the following cases. 

It follows from (14) that: a) if V(r )  has an odd term with respect to z, then 𝒥1 = 0; b) if V(r )  has an odd 

term with respect to x, then 𝒥11 ≠ 0; c) if V(r ) has an odd term with respect to y, then 𝒥12 ≠ 0; e) if V(r ) has an odd 

term with respect to x and y, then 𝒥1 ≠ 0. 

http://www.eprajournals.com/
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(H3)11 = 〈−iS ↓ |H3|iS ↓〉 = 〈−iS ↓ |
ћ

4m0
2с2

,∇⃗⃗ V × p⃗ - ⋅ σ⃗⃗ |iS ↓〉 = 

= −
ћ

4m0
2с2

〈S |[∇⃗⃗ V × p⃗ ]
z
| S〉 = 0    (16) 

The diagonal matrix elements of the effective Hamiltonian are defined by the following expressions: 

(H0)22 = *
X+iY

√2
|H0|

X−iY

√2
+ = Ep ,   (17) 

(H1)22 = 〈
X + iY

√2
↑ |H1|

X − iY

√2
↑〉 = 𝒥22

(1)
+ 𝒥22

(2)
+ 𝒥22

(3)
+ 𝒥22

(4)
. 

where 

𝒥22
(1)

= −
ћ2

4m0
2с2

1

i

3

4π
∭

1

r4
{x2yky + (xy2 + xz2)kX}

∞

−∞
dxdydz, 

𝒥22
(2)

= +
ћ2

4m0
2с2

1

i

3

4π
∭

1

r4
{(yx2 + yz2)ky + xy2kX}

∞

−∞
dxdydz, 

𝒥22
(3)

= −
ћ2

4m0
2с2

3

4π
∭

1

r4
{(x3 + xz2)ky + x2ykX}

∞

−∞
dxdydz, 

𝒥22
(4)

= −
ћ2

4m0
2с2

1

i

3

4π
∭

1

r4
{xy2ky + (y3 + yz2)kX}

∞

−∞
dxdydz, 

whence it is clear that: a) 𝒥22
(1)

 consists of three terms, the first of which is nonzero for V(r ) = Vsim(x) + Vasim(y) +

Vsim(z), and the second is different from zero for V(r ) = Vasim(x) + Vsim(y) + Vsim(z); b) 𝒥22
(2)

 consists of two terms, 

the first of which is nonzero for V(r ) = Vasim(x) + Vsim(y) + Vsim(z) , and the second is nonzero for V(r ) =

Vsim(x) + Vasim(y) + Vsim(z); c) 𝒥22
(3)

 consists of two terms, the first of which is nonzero for V(r ) = Vsim(x) +

Vasim(y) + Vsim(z), and the second is nonzero for V(r ) = Vsim(x) + Vsim(y) + Vsim(z); d) 𝒥22
(4)

 consists of two terms, 

the first of which is nonzero for V(r ) = Vasim(x) + Vsim(y) + Vsim(z) , and the second is nonzero for V(r ) =

Vsim(x) + Vasim(y) + Vsim(z). 

(H2)22 = 〈
X+iY

√2
↑ |H2|

X−iY

√2
↑〉 ==ℛ22

(1)
+ ℛ22

(2)
+ ℛ22

(3)
+ ℛ22

(4)
,  (18) 

where 

ℛ22
(1)

=
ћ2

4m0
2с2

3

4π
∭

1

r2
{x2 ∂V

∂x
ky − x2 ∂V

∂y
kx}

∞

−∞
dxdydz, 

ℛ22
(2)

=
(−i)ћ2

4m0
2с2

3

4π
∭

1

r2
{xy

∂V

∂x
ky − xy

∂V

∂y
kx}

∞

−∞

dxdydz, 

ℛ22
(3)

=
iћ2

4m0
2с2

3

4π
∭

1

r2
{xy

∂V

∂x
ky − xy

∂V

∂y
kx}

∞

−∞

dxdydz, 

ℛ22
(4)

=
ћ2

4m0
2с2

3

4π
∭

1

r2
{y2

∂V

∂x
ky − y2

∂V

∂y
kx}

∞

−∞

dxdydz. 

The last relations show that: a) ℛ22
(1)

 consists of two terms, the first of which is nonzero for V(r ) =

Vasim(x) + Vsim(y) + Vsim(z), and the second is nonzero for V(r ) = Vsim(x) + Vsim(y) + Vasim(z), and the third for 

http://www.eprajournals.com/
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V(r ) = Vsim(x) + Vasim(y) + Vsim(z); b) ℛ22
(2)

 consists of three terms, the first of which is nonzero for V(r ) =

Vsim(x) + Vasim(y) + Vsim(z), and the second is nonzero for V(r ) = Vsim(x) + Vsim(y) + Vasim(z), and the third with 

V(r ) = Vasim(x) + Vasim(y) + Vsim(z); c) ℛ22
(3)

 consists of two terms, the first of which is nonzero for V(r ) =

Vsim(x) + Vasim(y) + Vsim(z) , and the second and third terms are nonzero when V(r ) = Vasim(x) + Vasim(y) +

Vsim(z); d) ℛ22
(4)

 consists of two terms, the first of which is nonzero for V(r ) = Vasim(x) + Vsim(y) + Vsim(z), and the 

second is nonzero for V(r ) = Vsim(x) + Vasim(y) + Vsim(z). 

(H3)22=
ћ

4m0
2с2

*ℑ33
(1)

+ ℑ33
(2)

+ ℑ33
(3)

+ ℑ33
(4)

+ 

ℑ33
(1)

= i
3ℏ

4π
∭

1

r4
{
∂V(r⃗ )

∂y
zx2 −

∂V(r⃗ )

∂z
x2y}

∞

−∞
dxdydz,  

ℑ33
(2)

= i
3ℏ

4π
∭

1

r4
{
∂V(r )

∂y
y2z + (yx2 + yz2)

∂V(r )

∂z
}

∞

−∞

dxdydz, 

 ℑ33
(3)

= +
3ℏ

4π
∭

1

r4
{xyz

∂V(r )

∂y
+ (x3 + xz2)

∂V(r )

∂z
}

∞

−∞

dxdydz, 

ℑ33
(4)

= −
3ℏ

4π
∭

1

r4
{xyz

∂V(r⃗ )

∂y
− xy2 ∂V(r⃗ )

∂z
}

∞

−∞
dxdydz, 

Analyzing the last relations, we have that: a) ℑ33
(1)

 is nonzero at V(r ) = Vsim(x) + Vasim(y) + Vasim(z); b) 

ℑ33
(2)

 consists of three terms, the first of which is nonzero at V(r ) = Vsim(x) + Vasim(y) + Vasim(z), and the second is 

nonzero at V(r ) = Vsim(x) + Vsim(y) + Vasim(z), and the third with V(r ) = Vфsim(x) + Vsim(y) + Vsim(z); c) 𝒥33
(3)

 

consists of three terms, the first of which is nonzero for V(r ) = Vasim(x) + Vsim(y) + Vasim(z), and the second and 

third terms are nonzero when V(r ) = Vsim(x) + Vsim(y) + Vasim(z); d) ℑ33
(4)

 consists of two terms, the first of which is 

nonzero for V(r ) = Vasim(x) + Vsim(y) + Vasim(z) , and the second is nonzero for V(r ) = Vasim(x) + Vsim(y) +

Vsim(z). 

Below are expressions for the matrix element of each member of the Hamiltonian. In particular, (H0)33 =

〈Z ↓ |H0|Z ↓〉 = 〈Z|Ep|Z〉 = Ep and does not depend on the parity of the crystal potential relative to the coordinates; 

(H1)33 = 〈Z ↓ |H1|Z ↓〉 = 〈Z ↓ |
ћ

m0

k⃗ p⃗ | Z ↓〉 =<↓↓> 〈Z |
ћ

m0

k⃗ p⃗ | Z〉 = 

= i
ћ2

4m0
2с2

3

4π
∭

1

r2
{kx(−xz2) + ky(−yz2) + kzz

y2 + x2

r3
}

∞

−∞

dxdydz, 

whence we have that the first term of the last integral is nonzero for V(r ) = Vasim(x) + Vsim(y) + Vsim(z), and the 

second for V(r ) = Vsim(x) + Vasim(y) + Vsim(z), the third is when V(r ) = Vsim(x) + Vsim(y) + Vasim(z). 

(H2)33 = 〈Z ↓ |H1|Z ↓〉 = 〈Z ↓ |
ћ

m0

k⃗ p⃗ | Z ↓〉 =<↓↓> 〈Z |
ћ

m0

k⃗ p⃗ | Z〉 = 

= i
ћ2

4m0
2с2

3

4π
∭

1

r2
{kx(−xz2) + ky(−yz2) + kzz

y2 + x2

r3
}

∞

−∞

dxdydz. 

It can be seen from the last relations that the first term of the matrix element (H2)33 is nonzero for 

http://www.eprajournals.com/


                                                                                                                                                                             
ISSN (Online): 2455-3662 

    EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
       Volume: 6 | Issue: 2 | February 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 5.614||ISI Value: 1.188 

 

 

               2020 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 125 

V(r ) = Vasim(x) + Vsim(y) + Vsim(z), and the second for V(r ) = Vsim(x) + Vasim(y) + Vsim(z), the third is when 

V(r ) = Vsim(x) + Vsim(y) + Vasim(z). 

(H3)33=〈Z ↓ |H3|Z ↓〉 = 〈Z ↓ |
ћ2

4m0
2с2

[∇⃗⃗ V × p⃗ ] ⋅ σ⃗⃗ |Z ↓>= 

= −
iћ2

4m0
2с2

3

4π
∭

1

r4
{z2 ∂V(r⃗ )

∂x
y − xz2 ∂V(r⃗ )

∂y
}

∞

−∞
dxdyd  and this matrix element is nonzero at V(r ) = Vasim(x) +

Vasim(y) + Vsim(z). 

The nondiagonal matrix elements 〈1|H0|2〉 , 〈1|H1|2〉  is equal to zero, and the expression for the 

nondiagonal matrix elements 〈1|H2|2〉 and 〈1|H3|2〉 are given below 

 〈1|H2|2〉 = 〈1|H2|2〉 = 〈−iS ↓ |H2|
X−iY

√2
↑〉 =

ћ2

4m0
2с2

*𝒥21 − i𝒥22+,  

〈1|H3|2〉 = 〈1|H3|2〉 = 〈−iS ↓ |H3|
X−iY

√2
↑〉 =

ћ

4m0
2с2

(𝒥31 − i𝒥32),  

where  

𝒥21 = 𝒥21
(1)

− i𝒥21
(2)

, 𝒥21
(1)

= kz√
1

4π
√

3

4π
∭

∂V(r⃗ )

∂y

x−iy

r

∞

−∞
dxdydz, 

𝒥21
(2)

= ky√
3

4π
√

1

4π
∭

∂V(r )

∂z

x − iy

r

∞

−∞

dxdydz; 

𝒥22 = 𝒥22
(1)

− i𝒥22
(2)

, 𝒥22
(1)

= kx√
1

4π
√

3

4π
∭

∂V(r⃗ )

∂z

x−iy

r

∞

−∞
dxdydz, 

𝒥22
(2)

= kz√
3

4π
√

1

4π
∭

∂V(r )

∂x

x − iy

r

x − iy

r

∞

−∞

dxdydz; 

𝒥31 = 〈S |[∇⃗⃗ V × p⃗ ]
x
|
X−iY

√2
〉 = 𝒥32

(1)
− 𝒥31

(2)
, 

𝒥31
(1)

=
ℏ

i
√

1

4π
√

3

4π
∭ {

∂V(r⃗ )

∂y
} (−1)

z

r

x−iy

r2

∞

−∞
dxdydz, 

𝒥31
(2)

=
ℏ

i
√

1

4π
√

3

4π
∭ {

∂V(r )

∂z
}

1

r3
*−i(x2 + z2) − yx+

∞

−∞

dxdydz; 

𝒥32 = 〈S |[∇⃗⃗ V × p⃗ ]
y
|
X−iY

√2
〉 = 𝒥32

(1)
− 𝒥32

(2)
, 

𝒥32
(1)

=
ℏ

i
√

1

4π
√

3

2π
∭ {

∂V(r )

∂z
}

1

r3
*y2 + z2 − iyx+

∞

−∞

dxdydz, 

𝒥32
(2)

=
ℏ

i
√

1

4π
√

3

4π
∭ {

∂V(r )

∂x
} (−1)

z

r

x − iy

r2

∞

−∞

dxdydz, 

whence it is clear that the nonzero values of these matrix elements are determined by the physical nature, i.e. depending 

on the coordinate of the crystalline potential: V(r ) = Vass(r ) + Vsim(r ). 
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Now we analyze the functions of 𝒥lm: a) 𝒥21 consists of two terms, the first of which is nonzero for 

V(r ) = Vasim(x) + Vsim(y) + Vsim(z), and the second is nonzero for V(r ) = Vasim(x) + Vasim(y) + Vasim(z); b) 𝒥22 

consists of two terms, the first of which is nonzero for V(r ) = Vasim(x) + Vasim(y) + Vasim(z), and the second is 

nonzero for V(r ) = Vsim(x) + Vasim(y) + Vsim(z) ; c) 𝒥21
(1)

 differs from zero for V(r ) = Vasim(x, ) + Vsim(y) +

Vsim(z); d) 𝒥21
(2)

 and 𝒥22
(1)

 consists of two terms, the first of which is nonzero for V(r ) = Vasim(x) + Vsim(y) +

Vasim(z), and the second is not equal to zero when V(r ) = Vsim(x) + Vasim(y) + Vasim(z); e) 𝒥22
(2)

 consists of two 

terms, the first of which is is not equal to zero when V(r ) = Vasim(x) + Vasim(y) + Vsim(z), and the second is nonzero 

for V(r ) = Vsim(x) + Vasim(y) + Vsim(z); f) 𝒥31
(1)

  consists of two terms, the first of which is nonzero for V(r ) =

Vasim(x) + Vsim(y) + Vasim(z), and the second is differs from zero at V(r ) = Vsim(x) + Vasim(y) + Vasim(z); g) 𝒥31
(2)

 

consists of two terms, the first of which is nonzero at V(r ) = Vsim(x) + Vsim(y) + Vasim(z), and the second is differs 

from zero at V(r ) = Vasim(x) + Vasim(y) + Vasim(z); i) 𝒥32
(1)

 consists of two terms, the first of which is not equal to 

zero when V(r ) = Vsim(x) + Vsim(y) + Vasim(z) , and the second is nonzero at V(r ) = Vasim(x) + Vasim(y) +

Vasim(z); k) 𝒥32
(2)

 consists of two terms, the first of which is differs from zero at V(r ) = Vsim(x) + Vasim(y) +

Vasim(z), and the second is not equal to zero when V(r ) = Vsim(x) + Vasim(y) + Vasim(z). 

Similarly, we obtain the expressions for the following matrix elements: (H0)13 = 〈1|H|3〉 = 〈−iS ↓

|H|Z ↓〉  = 0,  (H1)13 = 〈−iS ↓ |H1|Z ↓〉 = −i〈S|
ћ

m0
k⃗ p⃗ |Z〉 = kz℘z, where ℘z = −

ћ2

m0

√3

4π
∭

x2+y2

r3

∞

−∞
dxdydz. А также 

and 

(H2)13 = 〈−iS ↓ |H2|Z ↓〉 = 〈−iS ↓ |
ћ2

4m0
2с2

[∇⃗⃗ V × k⃗ ] ⋅ σ⃗⃗ |Z ↓>= 

= i
ћ2

4m0
2с2

1

√4π
√

3

4π
∭ (

∂V

∂x
ky −

∂V

∂y
kx)

z

r

∞

−∞

dxdydz, 

It can be seen from the latter that the first term is nonzero for V(r ) = Vasim(x) + Vsim(y) + Vasim(z), and the 

second term is nonzero for V(r ) = Vsim(x) + Vasim(y) + Vasim(z). Also 

(H3)13 = 〈−iS ↓ |H3|Z ↓〉 = −(−i)
ћ

4m0
2с2

〈S |[∇⃗⃗ V × p⃗ ]
z
| Z〉 = 

= −
ћ2

4m0
2с2

√3

4π
∭

1

r3
{yz

∂V

∂x
− xz

∂V

∂y
}

∞

−∞

dxdydz 

whence it is clear that this matrix element is nonzero at V(r ) = Vasim(x) + Vasim(y) + Vasim(z). 

Thus, it was shown that, when the asymmetric part of the crystalline potential in semiconductors is taken into 

account, additional terms are obtained in the matrix elements of the effective Hamiltonian. 

If we assume that the crystalline potential does not have an asymmetric part, then all the expressions obtained 

above and related to Vasim(x, y, z) turn to zero automatically. 
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