

# FASCINATING DIOPHANTINE 3-TUPLES FROM THE PAIR OF INTEGERS {u, v}

# S. Vidhyalakshmi<sup>1</sup>

<sup>1,</sup> Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

#### T. Mahalakshmi<sup>2</sup>

<sup>2</sup>Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University , Trichy-620 002, Tamil Nadu, India.

## M.A. Gopalan <sup>3</sup> <sup>3</sup>Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

### ABSTRACT

This paper concerns with the construction of sequences of diophantine 3-tuples (a, b, c) from the pair of integers  $\{u, v\}$ such that the product of any two elements the set added bv  $D(\alpha^2 k^2 + 2\alpha k(s - w) + s^2 - 2sw - uv + w^2)$  is a perfect square. **KEYWORDS:** Diophantine 3-tuples, sequences of triples

### **INTRODUCTION**

The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a very long history and such sets have been studied by Diophantus. A set of m distinct positive integers  $\{a_1, a_2, a_3, ..., a_m\}$  is said to have the property  $D(n), n \in Z - \{0\}$  if  $a_i a_j + n$  is a perfect square for all  $1 \le i < j \le m$  or  $1 \le j < i \le m$  and such a set is called a Diophantine m-tuple with property D(n).

Many Mathematicians considered the construction of different formulations of diophantine triples with the property D(n) for any arbitrary integer n [1] and also, for any linear polynomials in n. In this context, one may refer [2-13] for an extensive review of various problems on diophantine triples.



This paper concerns with the construction of sequences of diophantine 3-tuples (a, b, c) from the pair of integers  $\{u, v\}$  such that the product of any two elements of the set added by  $D(\alpha^2 k^2 + 2\alpha k(s-w) + s^2 - 2sw - uv + w^2)$  is a perfect square. This paper is the generalization of [13].

#### **METHOD OF ANALYSIS**

Let u,v be any two given non-zero integers .For convenience and clear understanding ,take

 $\mathbf{a} = \mathbf{u}, \mathbf{c}_0 = \mathbf{v}$ 

It is observed that

$$ac_0 + \alpha^2 k^2 + 2\alpha k(s - w) + s^2 - 2sw - uv + w^2 = (\alpha k + s - w)^2$$

Therefore, the pair  $(a, c_0)$  represents diophantine 2-tuple with the property

$$D(\alpha^{2}k^{2} + 2\alpha k(s - w) + s^{2} - 2sw - uv + w^{2})$$

Let  $c_1$  be any non-zero polynomial such that

$$ac_{1} + \alpha^{2}k^{2} + 2\alpha k(s - w) + s^{2} - 2sw - uv + w^{2} = p^{2}$$
(1)

$$c_0c_1 + \alpha^2 k^2 + 2\alpha k(s - w) + s^2 - 2sw - uv + w^2 = q^2$$
<sup>(2)</sup>

Eliminating  $c_1$  between (1) and (2), we have

$$c_0 p^2 - aq^2 = (c_0 - a) (\alpha^2 k^2 + 2\alpha k(s - w) + s^2 - 2sw - uv + w^2)$$
(3)

Introducing the linear transformations

$$p = X + aT , q = X + c_0 T$$
(4)
ving we get

in (3) and simplifying we g  $\mathbf{X}^2 = \mathbf{a}\mathbf{c}$ 

$$X^{2} = ac_{0}T^{2} + (\alpha^{2}k^{2} + 2\alpha k(s - w) + s^{2} - 2sw - uv + w^{2})$$

which is satisfied by T = 1,  $X = \alpha k + s - w$ In view of (4) and (1), it is seen that

$$c_1 = 2(\alpha k + s) + u + v - 2w$$

Note that  $(a, c_0, c_1)$  represents diophantine 3-tuple with property

 $D(\alpha^{2}k^{2} + 2\alpha k(s - w) + s^{2} - 2sw - uv + w^{2})$ 

Taking  $(a, c_1)$  and employing the above procedure, it is seen that the triple  $(a, c_1, c_2)$  where  $c_2 = 4(\alpha k + s) + 4u + v - 4w$ 

exhibits diophantine 3-tuple with property  $D(\alpha^2 k^2 + 2\alpha k(s - w) + s^2 - 2sw - uv + w^2)$ Taking  $(a, c_2)$  and employing the above procedure, it is seen that the triple  $(a, c_2, c_3)$  where

$$c_3 = 6(\alpha k + s) + 9u + v - 6w$$

exhibits diophantine 3-tuple with property  $D(\alpha^2 k^2 + 2\alpha k(s - w) + s^2 - 2sw - uv + w^2)$ Taking  $(a, c_3)$  and employing the above procedure, it is seen that the triple  $(a, c_3, c_4)$  where

$$c_4 = 8(\alpha k + s) + 16u + v - 8w$$

exhibits diophantine 3-tuple with property  $D(\alpha^2 k^2 + 2\alpha k(s-w) + s^2 - 2sw - uv + w^2)$ The repetition of the above process leads to the generation of sequence of diophantine 3-tuples whose general form is given by  $(a, c_{\partial-1}, c_{\partial})$  where

$$c_{\partial-1} = 2(\partial - 1)(\alpha k + s) + (\partial - 1)^2 u + v - 2(\partial - 1)w$$
,  $\partial = 1, 2, 3, ...$ 



A few numerical examples are presented in Table below:

| α | k | S | w                       | u  | v    | $(\mathbf{a},\mathbf{c}_0,\mathbf{c}_1)$                  | $(\mathbf{a},\mathbf{c}_1,\mathbf{c}_2)$                                                  | $(\mathbf{a},\mathbf{c}_2,\mathbf{c}_3)$                                                   | Property                                                         |
|---|---|---|-------------------------|----|------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1 | 1 | 1 | 1                       | 2  | 3    | (2, 3, 7)                                                 | (2, 7, 15)                                                                                | (2, 15, 27)                                                                                | D(-5)                                                            |
| 1 | 1 | 1 | 1                       | 3  | 2    | (3, 2, 7)                                                 | (3, 7, 18)                                                                                | (3, 18, 35)                                                                                | D(-5)                                                            |
| 1 | 2 | 1 | 1                       | -2 | 5    | (-2, 5, 7)                                                | (-2, 7, 5)                                                                                | (-2, 5, -1)                                                                                | D(14)                                                            |
| 1 | 1 | 1 | 1                       | 2  | 2    | (2, 2, 6)                                                 | (2, 6, 14)                                                                                | (2, 14, 26)                                                                                | D(-3)                                                            |
| 0 | 0 | 0 | -2n-1                   | 2n | 2n+1 | $\begin{pmatrix} 2n, 2n+1, \\ 8n+3 \end{pmatrix}$         | $\begin{pmatrix} 2n, 8n+3, \\ 18n+5 \end{pmatrix}$                                        | $\begin{pmatrix} 2n, 18n+5, \\ 32n+7 \end{pmatrix}$                                        | D(2n+1)                                                          |
| 0 | 0 | 0 | -2n                     | 2n | 2n+1 | $\begin{pmatrix} 2n, 2n+1, \\ 8n+1 \end{pmatrix}$         | $\begin{pmatrix} 2n, 8n+1, \\ 18n+1 \end{pmatrix}$                                        | $\begin{pmatrix} 2n, 18n+1, \\ 32n+1 \end{pmatrix}$                                        | D(-2n)                                                           |
| 0 | 0 | 0 | -2n+1                   | 2n | 2n-1 | $\begin{pmatrix} 2n, 2n-1, \\ 8n-3 \end{pmatrix}$         | $\begin{pmatrix} 2n, 8n-3, \\ 18n-5 \end{pmatrix}$                                        | $\begin{pmatrix} 2n, 18n-5, \\ 32n-7 \end{pmatrix}$                                        | D(-2n+1)                                                         |
| 1 | k | s | -1                      | k  | k+3  | $\begin{pmatrix} k, k+3, \\ 4k+2s+5 \end{pmatrix}$        | $\begin{pmatrix} k, 4k+2s+5, \\ 9k+4s+7 \end{pmatrix}$                                    | $\begin{pmatrix} k, 9k+4s+7, \\ 16k+6s+9 \end{pmatrix}$                                    | $D\begin{bmatrix} (2s-1)k\\ +(s+1)^2 \end{bmatrix}$              |
| 1 | k | s | $(\overline{1-\beta})s$ | k  | k+s  | $\begin{pmatrix} k, k+s, \\ 4k+(2\beta+1)s \end{pmatrix}$ | $\begin{pmatrix} k, \overline{4k + (2\beta + 1) s}, \\ 9k + (4\beta + 1) s \end{pmatrix}$ | $\begin{pmatrix} k, \overline{9k + (4\beta + 1) s}, \\ 16k + (6\beta + 1) s \end{pmatrix}$ | $D \begin{bmatrix} (2\beta - 1)ks \\ +\beta^2 s^2 \end{bmatrix}$ |
| 1 | k | 2 | -2                      | 6  | 3    | (6, 3, 2k+17)                                             | (6,4k+17,4k+43)                                                                           | (6,4k+43,6k+81)                                                                            | $D(k^2+8k-2)$                                                    |

### Table : Numerical Examples

### **CONCLUSION**

The researchers may attempt for the formulation of other sequences of diophantine 3-tuples such that the product of any two elements of the set added by a polynomial with integer coefficient is a perfect square.

### REFERENCES

- 1. Bashmakova, I.G. ed. (1974), Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, Nauka, Moscow.
- 2. Beardon, A.F. and Deshpande (2002), M.N, Diophantine triples, Math. Gazette 86, 258-260.
- 3. Pandichelvi, V (2011), Construction of the Diophantine triple involving polygonal numbers, Impact J.Sci. Tech. 5(1), 7-11.
- 4. Gopalan, M.A, Srividhya.G (2012), Two special Diophantine Triples, Diophantus J.Math, 1(1), 23-27.
- 5. Gopalan, M.A , Sangeetha. V and Manju Somanath (2014), Construction of the Diophantine triple involving polygonal numbers, Sch. J. Eng. Tech. 2(1), 19-22.
- 6. Gopalan, M.A, Vidhyalakshmi, S and Mallika. S (2014), Special family of Diophantine Triples, Sch. J. Eng. Tech. 2(2A), 197-199.
- 7. Gopalan, M.A, Geetha.K, Manju Somanath (2014), On Special Diophantine Triples, Archimedes Journal of Mathematics, 4(1), 37-43.
- 8. Gopalan, M.A and Geetha, V (2015), Sequences of Diophantine triples, JP Journal of Mathematical Sciences, Volume 14, Issues 1 & 2, 27-39.



- Gopalan, M.A and Geetha.V (December-January 2015), Formation of Diophantine Triples for Polygonal Numbers (t<sub>16,n</sub> to t<sub>25,n</sub>) and Centered Polygonal Numbers (ct<sub>16,n</sub> to ct<sub>25,n</sub>), IJITR, volume 3, Issue 1, 1837-1841.
- 10. Janaki.G and Vidhya.S (December 2017), "Construction of the diophantine triple involving Stella octangula number, Journal of Mathematics and Informatics, vol.10, Special issue, 89-93.
- 11. Janaki.G and Vidhya.S (January 2018), Construction of the Diophantine Triple involving Pronic Number, IJRASET, Volume 6, Issue I, 2201-2204.
- 12. Janaki.G and Saranya.C (March 2018), Construction of the Diophantine Triple involving Pentatope Number, IJRASET, Volume 6, Issue III, 2317-2319.
- 13. S.Vidhyalakshmi, T.Mahalakshmi and M.A.Gopalan (July 2020), Formulation of Sequences of Diophantine 3-Tuples Through the Pair (3,6), EPRA-IJMR, Volume 6, Issue 7, 241-257.