FASCINATING DIOPHANTINE 3-TUPLES FROM THE PAIR OF INTEGERS $\{u, v\}$

S. Vidhyalakshmi ${ }^{1}$

${ }^{1,}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University ,

Trichy-620 002,
Tamil Nadu, India.

T. Mahalakshmi ${ }^{2}$
${ }^{2}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University , Trichy-620 002,
Tamil Nadu, India.

M.A. Gopalan ${ }^{3}$
${ }^{3}$ Professor,

Department of Mathematics,
Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,

Trichy-620 002,
Tamil Nadu, India.

Abstract

This paper concerns with the construction of sequences of diophantine 3-tuples $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from the pair of integers $\{\mathrm{u}, \mathrm{v}\}$ such that the product of any two elements of the set added by $\mathrm{D}\left(\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}\right)$ is a perfect square.

KEYWORDS: Diophantine 3-tuples, sequences of triples

INTRODUCTION

The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a very long history and such sets have been studied by Diophantus. A set of m distinct positive integers $\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{m}\right\}$ is said to have the property $D(n), n \in Z-\{0\}$ if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{m}$ or $1 \leq \mathrm{j}<\mathrm{i} \leq \mathrm{m}$ and such a set is called a Diophantine m-tuple with property $D(n)$.

Many Mathematicians considered the construction of different formulations of diophantine triples with the property $\mathrm{D}(\mathrm{n})$ for any arbitrary integer $\mathrm{n}[1]$ and also, for any linear polynomials in n . In this context, one may refer [2-13] for an extensive review of various problems on diophantine triples.

This paper concerns with the construction of sequences of diophantine 3-tuples (a, b, c) from the pair of integers $\{u, v\}$ such that the product of any two elements of the set added by $D\left(\alpha^{2} k^{2}+2 \alpha k(s-w)+s^{2}-2 s w-u v+w^{2}\right) \quad$ is a perfect square. This paper is the generalization of [13].

METHOD OF ANALYSIS

Let u, v be any two given non-zero integers .For convenience and clear understanding ,take

$$
\mathrm{a}=\mathrm{u}, \mathrm{c}_{0}=\mathrm{v}
$$

It is observed that

$$
\mathrm{ac}_{0}+\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{~s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}=(\alpha \mathrm{k}+\mathrm{s}-\mathrm{w})^{2}
$$

Therefore, the pair $\left(\mathrm{a}, \mathrm{c}_{0}\right)$ represents diophantine 2 -tuple with the property
$\mathrm{D}\left(\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}\right)$
Let c_{1} be any non-zero polynomial such that

$$
\begin{align*}
& \mathrm{ac}_{1}+\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{~s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}=\mathrm{p}^{2} \tag{1}\\
& \mathrm{c}_{0} \mathrm{c}_{1}+\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{~s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}=\mathrm{q}^{2} \tag{2}
\end{align*}
$$

Eliminating c_{1} between (1) and (2), we have

$$
\begin{equation*}
\mathrm{c}_{0} \mathrm{p}^{2}-\mathrm{aq}^{2}=\left(\mathrm{c}_{0}-\mathrm{a}\right)\left(\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{~s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}\right) \tag{3}
\end{equation*}
$$

Introducing the linear transformations

$$
\begin{equation*}
\mathrm{p}=\mathrm{X}+\mathrm{aT}, \mathrm{q}=\mathrm{X}+\mathrm{c}_{0} \mathrm{~T} \tag{4}
\end{equation*}
$$

in (3) and simplifying we get

$$
\mathrm{X}^{2}=\mathrm{ac}_{0} \mathrm{~T}^{2}+\left(\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{~s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}\right)
$$

which is satisfied by $T=1, X=\alpha k+s-w$
In view of (4) and (1), it is seen that

$$
\mathrm{c}_{1}=2(\alpha \mathrm{k}+\mathrm{s})+\mathrm{u}+\mathrm{v}-2 \mathrm{w}
$$

Note that $\left(\mathrm{a}, \mathrm{c}_{0}, \mathrm{c}_{1}\right)$ represents diophantine 3-tuple with property
$\mathrm{D}\left(\alpha^{2} \mathrm{k}^{2}+2 \alpha \mathrm{k}(\mathrm{s}-\mathrm{w})+\mathrm{s}^{2}-2 \mathrm{sw}-\mathrm{uv}+\mathrm{w}^{2}\right)$
Taking ($\mathrm{a}, \mathrm{c}_{1}$) and employing the above procedure, it is seen that the triple $\left(\mathrm{a}, \mathrm{c}_{1}, \mathrm{c}_{2}\right)$ where

$$
c_{2}=4(\alpha k+s)+4 u+v-4 w
$$

exhibits diophantine 3-tuple with property $D\left(\alpha^{2} k^{2}+2 \alpha k(s-w)+s^{2}-2 s w-u v+w^{2}\right)$
Taking $\left(a, c_{2}\right)$ and employing the above procedure, it is seen that the triple $\left(a, c_{2}, c_{3}\right)$ where

$$
c_{3}=6(\alpha k+s)+9 u+v-6 w
$$

exhibits diophantine 3-tuple with property $D\left(\alpha^{2} k^{2}+2 \alpha k(s-w)+s^{2}-2 s w-u v+w^{2}\right)$
Taking ($\mathrm{a}, \mathrm{c}_{3}$) and employing the above procedure, it is seen that the triple $\left(\mathrm{a}, \mathrm{c}_{3}, \mathrm{c}_{4}\right)$ where

$$
c_{4}=8(\alpha k+s)+16 u+v-8 w
$$

exhibits diophantine 3-tuple with property $D\left(\alpha^{2} k^{2}+2 \alpha k(s-w)+s^{2}-2 s w-u v+w^{2}\right)$
The repetition of the above process leads to the generation of sequence of diophantine 3-tuples whose general form is given by $\left(\mathrm{a}, \mathrm{c}_{\partial-1}, \mathrm{c}_{\partial}\right)$ where

$$
\mathrm{c}_{\partial-1}=2(\partial-1)(\alpha \mathrm{k}+\mathrm{s})+(\partial-1)^{2} \mathrm{u}+\mathrm{v}-2(\partial-1) \mathrm{w}, \partial=1,2,3, \ldots
$$

A few numerical examples are presented in Table below:
Table: Numerical Examples

α	k	s	w	u	v	($\mathrm{a}, \mathrm{c}_{0}, \mathrm{c}_{1}$)	($\mathrm{a}, \mathrm{c}_{1}, \mathrm{c}_{2}$)	($\mathrm{a}, \mathrm{c}_{2}, \mathrm{c}_{3}$)	Property
1	1	1	1	2	3	$(2,3,7)$	$(2,7,15)$	(2, 15, 27)	D(-5)
1	1	1	1	3	2	$(3,2,7)$	$(3,7,18)$	$(3,18,35)$	D(-5)
1	2	1	1	-2	5	$(-2,5,7)$	$(-2,7,5)$	$(-2,5,-1)$	D(14)
1	1	1	1	2	2	$(2,2,6)$	$(2,6,14)$	$(2,14,26)$	D(-3)
0	0	0	$-2 \mathrm{n}-1$	2 n	$2 \mathrm{n}+1$	$\binom{2 \mathrm{n}, 2 \mathrm{n}+1}{,8 \mathrm{n}+3}$	$\binom{2 n, 8 n+3}{,18 n+5}$	$\binom{2 n, 18 n+5}{,32 n+7}$	$\mathrm{D}(2 \mathrm{n}+1)$
0	0	0	$-2 \mathrm{n}$	2 n	$2 \mathrm{n}+1$	$\binom{2 n, 2 n+1}{,8 n+1}$	$\binom{2 n, 8 n+1}{,18 n+1}$	$\binom{2 n, 18 n+1}{,32 n+1}$	D(-2n)
0	0	0	$-2 \mathrm{n}+1$	2 n	2n-1	$\binom{2 n, 2 n-1}{,8 n-3}$	$\binom{2 n, 8 n-3}{,18 n-5}$	$\binom{2 n, 18 n-5}{,32 n-7}$	$D(-2 n+1)$
1	k	s	-1	k	k+3	$\binom{k, k+3}{,4 k+2 s+5}$	$\binom{k, 4 k+2 s+5}{,9 \mathrm{k}+4 \mathrm{~s}+7}$	$\binom{\mathrm{k}, 9 \mathrm{k}+4 \mathrm{~s}+7}{,16 \mathrm{k}+6 \mathrm{~s}+9}$	$\mathrm{D}\left[\begin{array}{l}(2 s-1) \mathrm{k} \\ +(\mathrm{s}+1)^{2}\end{array}\right]$
1	k	s	$(1-\beta) \mathrm{s}$	k	k+s	$\binom{k, k+s}{,4 k+(2 \beta+1) s}$	$\binom{k, 4 k+(2 \beta+1) s}{,9 k+(4 \beta+1) s}$	$\binom{k, 9 \mathrm{k}+(4 \beta+1) \mathrm{s}}{,16 \mathrm{k}+(6 \beta+1) \mathrm{s}}$	$\mathrm{D}\left[\begin{array}{l}(2 \beta-1) \mathrm{ks} \\ +\beta^{2} \mathrm{~s}^{2}\end{array}\right]$
1	k	2	-2	6	3	$(6,3,2 \mathrm{k}+17)$	$(6,4 \mathrm{k}+17,4 \mathrm{k}+43)$	$(6,4 \mathrm{k}+43,6 \mathrm{k}+81)$	$\mathrm{D}\left(\mathrm{k}^{2}+8 \mathrm{k}-2\right)$

CONCLUSION

The researchers may attempt for the formulation of other sequences of diophantine 3-tuples such that the product of any two elements of the set added by a polynomial with integer coefficient is a perfect square.

REFERENCES

1. Bashmakova, I.G. ed. (1974), Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, Nauka, Moscow.
2. Beardon, A.F. and Deshpande (2002), M.N, Diophantine triples, Math. Gazette 86, 258-260.
3. Pandichelvi, V (2011), Construction of the Diophantine triple involving polygonal numbers, Impact J.Sci. Tech. 5(1), 7-11.
4. Gopalan, M.A, Srividhya.G (2012), Two special Diophantine Triples, Diophantus J.Math, 1(1), 23-27.
5. Gopalan,M.A , Sangeetha.V and Manju Somanath (2014), Construction of the Diophantine triple involving polygonal numbers, Sch. J. Eng. Tech. 2(1), 19-22.
6. Gopalan, M.A, Vidhyalakshmi, S and Mallika. S (2014), Special family of Diophantine Triples, Sch. J. Eng. Tech. 2(2A), 197-199.
7. Gopalan, M.A, Geetha.K, Manju Somanath (2014), On Special Diophantine Triples, Archimedes Journal of Mathematics, 4(1), 37-43.
8. Gopalan, M.A and Geetha, V (2015), Sequences of Diophantine triples, JP Journal of Mathematical Sciences, Volume 14, Issues 1 \& 2, 27-39.
9. Gopalan, M.A and Geetha.V (December-January 2015), Formation of Diophantine Triples for Polygonal Numbers $\left(\mathrm{t}_{16, \mathrm{n}}\right.$ to $\left.\mathrm{t}_{25, \mathrm{n}}\right)$ and Centered Polygonal Numbers $\left(\mathrm{ct}_{16, \mathrm{n}}\right.$ to $\left.\mathrm{ct}_{25, \mathrm{n}}\right)$, IJITR, volume 3, Issue 1, 1837-1841.
10. Janaki.G and Vidhya.S (December 2017), "Construction of the diophantine triple involving Stella octangula number, Journal of Mathematics and Informatics, vol.10, Special issue, 89-93.
11. Janaki.G and Vidhya.S (January 2018), Construction of the Diophantine Triple involving Pronic Number, IJRASET, Volume 6, Issue I, 2201-2204.
12. Janaki.G and Saranya.C (March 2018), Construction of the Diophantine Triple involving Pentatope Number, IJRASET, Volume 6, Issue III, 2317-2319.
13. S.Vidhyalakshmi, T.Mahalakshmi and M.A.Gopalan (July 2020), Formulation of Sequences of Diophantine 3Tuples Through the Pair (3,6) , EPRA-IJMR, Volume 6, Issue 7, 241-257.
