
 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
94

BOTNET ATTACK IN COMPUTER NETWORK

SECURITY

S.Nagendra Prabhu
Department of CSE,

Malla Reddy College of Engineering and Technology

Hyderabad, India

D.Shanthi

Department of CSE

PSNA College of Engineering

Dindigul, India

Article DOI: https://doi.org/10.36713/epra4905

ABSTRACT
Among the various forms of malware, Botnet is the serious threat which occurs commonly in today’s cyber attacks and cyber crimes.

Botnet are designed to perform predefined functions in an automated fashion, where these malicious activities ranges from online

searching of data, accessing lists, moving files sharing channel information to DDoS attacks against critical targets, phishing, click fraud

etc. Existence of command and control(C&C) infrastructure makes the functioning of Botnet unique; in turn throws challenges in the

mitigation of Botnet attacks. Hence Botnet detection has been an interesting research topic related to cyber-threat and cyber-crime

prevention in network security. Various types of techniques and approaches have been proposed for detection, mitigation and preventation

to Botnet attack. Here I discusses in detail about Botnet and related research including Botnet evolution, life-cycle, command and control

models, communication protocols, Botnet detection, and Botnet mitigation mechanism etc. Also an overview of research on Botnets which

describe the possible attacks performed by various types of Botnet communication technologies in future.

KEYWORDS— Bot; Botnet; C&C mechanism; communication protocols; honeynet; passive traffic; attacks; defense; preventaation;

mitigation

I. INTRODUCTION
The term ―Bot‟ is nothing but a derived term from

―ro-Bot‖ [2] which is a generic term used to describe a
script or sets of scripts designed to perform predefined
function in automated fashion. Botnet is the collections of
bots or collection of compromised computers that are
remotely controlled by its BotHerder [1]. Even though
Botnets shows the trace of existence for several years
ago, Botnet have only recently sparked the interest of the
research community.

 Generally Botnet is used to define networks of
infected end-hosts, called bots that are under the control
of a human operator commonly known as a Botmaster.
Botnets recruit vulnerable machines using methods
utilized by other classes of malware (e.g., remotely
exploiting software vulnerabilities, social engineering, etc.)
[3], these machines create a C&C infrastructure between
them to perform malicious activity.

 Now in general the main difference between Botnet
and other kind of malwares is the existence of C&C
infrastructure. Hence in the mechanism of detection of
Botnet, if we identify the location of C&C then Botnet
can be detected, removed and prevented from various
types of cyber-crimes. But this depends on the weakness
and strengths in communication protocol which is
adopted by Botnet to perform malicious attacks. Now on
the other side, bots are used by search engines to spider
online website content and by online games to provide
virtual opponents.

 More specifically on Internet relay chat (IRC)

network bot‟s function in channels include managing

access lists, move files, share users, share channel
information, anything else if right scripts are added. IRC
bots are automated and controlled by events which could
be commands given in a channel by other IRC bot or
client with necessary privileges.

 In this paper, an overview of current Botnets
technology research has been provided. The remainder of
the paper is organized as follows: Section 2 discusses
background of Botnets. Section 3described about literature
review, in this section, Botnet characteristics, and Botnet
life-cycle are explained to provide better understanding of
Botnet technology, Classification of bots & also describe
about the communication protocols used by Botnet to
communicate. In Section 4, classifies Botnet detection
approach which is explained in two classes: First identify
the cryptographic key of the botnet communications for
figuring out the botnet operations. We then compromise
the botnet entities for tracing back to the botmaster
across the stepping-stones. In section 6, concludes the
total work done in this paper and we explain about the
further Botnet attacks possible or Botnet developments in
future.

II. BACKGROUND OF BOTNET
Botnets have been in existence for about 10 years
[13].Security experts have been cautioning the public
about the threat posed by botnets for some time. Still,
the scale and magnitude of the problem caused by
botnets are underrated and most users do not comprehend
the real threat they pose[13].

https://doi.org/10.36713/epra4905

 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
95

A. How Does a Botnetworkwork ?
Most botnets are designed as distributed-design

systems, with the main botnet operator (botmaster) issuing
instructions directly to a small number of systems. These
machines propagate the instructions to other compromised
machines, usually via Internet Relay Chat (IRC) [14].
The constituents of a typical botnet include a server
program, client program for operation, and the program
that embeds itself on the victim’s machine (bot). All
three of these usually communicate with each other over
a network and may use encryption for stealth and for
protection against detection or intrusion into the botnet
control network. Botnets are effective in performing tasks
that would be impossible given only a single computer,
single IP address, or a single Internet connection.
Originally, botnets were used for distributed denial of
service attacks. (See Figure 1) Most modern web servers
have developed strategies to
combat such DDoS attacks, making this use of a botnet
less effective [14]. When infecting a computer, the bots
connect to IRC servers on a predefined channel as
visitors and waited for messages from the botmaster. The
botmaster could come online at any time, view the list
of bots, send commands to all infected computers at
once, or send a private message to one infected machine.

Figure 1 Example of Botnet Attack

B. Why are Botnets dangerous today?
Botnets today are one of the most dangerous species

of network-based attack because they use large,
coordinated groups of hosts to execute both brute-force
and subtle attacks. A collection of bots, when controlled
by a single command and control (C&C) infrastructure,
forms a botnet [15]. Since the bots work together in
large groups taking orders from a centralized botmaster,
they can cripple a large-scale networks in a short time.
A lot of work has been done trying to mitigate the
efforts of botnets to avoid data and financial loss.
However hard the industry works towards patching the
known vulnerabilities in hosts and networks, there are
always more unpatched or unknown vulnerabilities that
malicious developers and cyber criminals may exploit.

III. LITERATURE REVIEW
This section reviews selected literature to discuss the

current research that has been published about botnets. We

first identify the motivations behind building and operating
botnets and how these motivations have evolved over
time. Then, we discuss the current research on how to
track and disable botnets.

A. Botnet Life cycle
A typical Botnet can be created and maintained in five
phases. This is depicted in Fig. 2.

1. In first phase, firstly Botmaster infect victim host
with Bot through the social engineering, mail
attachments, automatic scan, exploit and
compromise etc mechanisms.

2. In second phase, Bot connected to command and
control channel

3. In third phase, Botmaster send command through
IRC/HTTP/P2P C&C Channel to bots

4. In fourth phase, repeat, soon the Botmaster has a
large number of army bots to control from a
single point.

5. And in last phase, bots are updated with a new
version or new business functionally through
their operator which issue payload command.

Hence the above discussion elaborates all five steps about
how a bot is infected to other hosts. In addition it also
gives insight into how the Bot increase their quantity
means its capacity on a network to perform malicious
activity and harm the users.

Figure 2 A Typical Botnet Life-cycle

B. Classification of Botnet
1. Based on Network Protocols

For a Botmaster to send commands to a bot, it is
essential that a network connection must be established
between the zombie machine and the computer
transmitting commands to control it. Here all network
connections are based on protocols that define rules for
the interaction between computers on the network.
Botnets can be classified according to network protocols
follow as:

a. IRC-oriented: This is one of the very first types
of Botnet in which bots are controlled via IRC
channels. Each infected computer connected to
the IRC server (master) indicated in the body of
the Bot program, and waited for commands [48]

 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
96

from its master on a certain channel (eg-IRC
Botnet).

b. IM-oriented: This type of Botnet is not
particularly common. It differs from IRC-oriented
Botnets only in that it uses communication
channels provided by IM (instant messaging)
services such as AOL, MSN, and ICQ etc and
due to the difficulty of creating individual IM
accounts for each bot. The Biggest problem in
this, Bots should be connected to the network
and must remain online all the time [4] and
each bot needs its own IM account to perform
malicious activity. As result, owners of IM-
oriented Botnets only have a limited number of
registered IM accounts at their disposal, which
limits the number of bots that can be online at
any one time. Of course, they can arrange for
different bots to share the same account, come
online at predefined times, send data to the
owner's number and wait for a reply for a
limited period of time, but this is inefficient
because it takes such networks too long to
respond to their masters' commands to perform
an activity.

c. Web-oriented: This is a relatively new and
rapidly evolving type of Botnet designed to
controlling zombie networks over the World
Wide Web. A bot connects to a predefined web
server (master), receives commands from it and
transfers data to it in response. And wait to get
a signal from its master to perform some activity
for eg-HTTP Botnet.

d. Other: In this, there are other types of Botnets
that communicate via only their own protocol
that is only based on the TCP/IP stack, i.e., they
only use transport-layer protocols such as TCP,
ICMP and UDP.

2. Based on communication topologies
In this section we will describe about ―how bot

communicate‖ between each other. So according to the
C&C channel, we categorized Botnet topologies into three
different models, the Centralized model and the
Decentralized model and Unstructured C&C Model [3].

a. Centralized model: Hossein et al [5] explain the
model where, one central point (C&C server) has
been used for exchanging commands and data
between the Botmaster and Bots. Actually C&C
server runs certain network services such as IRC
or HTTP. So advantage of this model is small
message latency which cause Botmaster easily
arranges Botnet and launch attacks. Here, all
connections and action performs through the C&C
server; therefore, the C&C is a critical (weak)
point in this model. If somebody manages to

discover and eliminates the C&C server, the
entire Botnet will be useless and ineffective.

b. Decentralized model: In this model the
communication system does not completely depend
on some selected servers, for discovering and
destroying a number of Bots. As a result,
attackers exploit the idea of Peer-to-Peer (P2P)
communication as a Command-and Control pattern
which is more resilient to failure in the network.
Figure 4 shows that, depicts the decentralized
(P2P) model where there is no Centralized point
for communication. In this, each bot keeps some
connections to the other Bots of the Botnet where
Bots act as both Clients and servers. A new bot
must know some addresses of the Botnet to
connect there. Here if Bots are offline, the Botnet
can still continue to operate under the control of
Botmaster. Since P2P Botnets usually allow
commands to be injected at any node in the
network, the authentication of commands become
essential to prevent other nodes from injecting
incorrect commands [5] for eg: DNS, P2P
protocol based botnet.

C. Communication Protocol in Botnet
A communications protocol is a system of digital

message formats and rules for exchanging those messages
in or between computing systems and in
telecommunications [6]. Today Botnet usually use well
defined communication protocols to perform attack. So
studying about communication protocols can help us
determine the origins of a Botnet attack and decode
conversations between the bots and the Botmasters [3].

Communication protocol can be classified in three
different categories:

1. IRC protocol: A most common protocol used
by Botmasters to communicate with their Bots.
IRC protocol mainly designed for one to many
conversations but can also handle one to one,
which is very useful for Botmasters control their
Botnet. However, security devices can be easily
configured to block IRC traffic [3].

Weaknesses of IRC bots:

 Usually unencrypted

 Easy to get into, take over or shut down

 Due to the dependability more on C&C
Server, Single point of failure is there [7].

2. HTTP protocol: Generally HTTP protocol is a
popular Botnet due to its communication method
by sending message as HTTP response and HTTP
GET response to perform attack which is difficult
to be detected. So Using the HTTP protocol,
Botnet usually bypass security devices.

 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
97

Weaknesses of HTTP based bots:

 Due to the dependability more on C&C
Server, single point of failure is there [7].

 Bypass attack possible

3. P2P protocol: Recently, more advanced Botnet

used decentralized model for their communications
[3, 8]. For eg; Phatbot[7] , Storm, Nugache [7],
Peacomm [7], Conficker and Slapper[9] used P2P
communication protocols to perform malicious
activity.

Weaknesses of P2P based bots:

 Strict Dependent ability on previous or others
nodes

 These will not generate a sound Botnet

 Not mature

 If these have poor connectivity then easily
traced

 Compared to HTTP Botnet, these have no
hardly encryption /authentication code

 For large number of nodes, creates a complex
structure and generates a large amount of
traffic

 WASTE P2P protocol [8] is not scalable
across a large network.

IV. BOTNET DETECTION TECHNIQUES
In this paper, We present our Pebbletrace scheme for

the traceback to the botmaster. It first identifies
cryptographic keys of the botnet communications for
configuring botnet operations and then traces back to the
botmaster. First identify the cryptographic key of the
botnet communications for figuring out the botnet
operations. We then compromise the botnet entities for
tracing back to the botmaster across the stepping-stones.

A. Key Identification
Amajor difficulty for analyzing botnet attack traffic is

that communication between bots and C&C servers are
usually encrypted, and the encryption keys are to be
identified first. Traditional memory forensic key
identification problem was studied (e.g. [15]), however,
we have to meet the following new challenges:

 No source code.
Traditional key identification schemes usually investigate
source code, e.g. [16]. However, it is hard to obtain bot
source code — often not even the bot binaries. Static
analysis on source code and binaries cannot be conducted
as in memory forensic.

 Abnormal code pattern
Attackers do not follow the standards to implement their
encryption schemes even though they are mathematically
equivalent. Identification schemes based on standard key

words, such as prefixes and formats usually do not
apply.

 Hard to verify candidate keys
– Traditional memory forensic often verifies

candidate keys either by checking key scheduling
properties and entropy of keys, or by applying them to
encrypted text to obtain plain text that is meaningful for
manual checking. The former scheme is prone to false
positives. The latter one does not work well either, for
the plaintext of the sniffed botnet traffic may not be
meaningful by the design of the botmaster. Therefore,
one cannot verify a candidate key by manual checking
for decrypted botnet traffic.

– Keys should be identified for traceback before
attackers disappear from the C&C servers and stepping-
stones. Therefore, manual checking is often ruled out due
to the short duration of botnet attacks, and we have to
consider automated verification of candidate keys.

 Low false positives
It alerts the attacker if we apply an incorrect key to
manipulate the botnet traffic for a traceback; he will
quickly tear down the C&C server and stepping-stones.
Therefore, low false positives are required, and it is not
well studied or emphasized in the published literature.

B. Stepping-stones
Attackers usually hide behind stepping-stones from

Web proxy, VPN and SSH tunneling. The latest botnets
also leverage social networks and anonymous networks.
In this article, we mainly consider proxy, VPN and SSH
tunneling. We are focused on the two main challenges:
key identification and stepping-stones, and present our
Pebbletrace method for tracing back to botmasters in the
network.

Figure 3: A Botnet Attack
C. Pebbletrace solution for Botnet attack

In the advent of a botnet attack we collect
information of
attack traffic for an analysis. We first identify the
encryption keys for decrypting the traffic. We then
intercept the botnet traffic by entering our code –
Pebbleware that enables us to
traceback to the botmaster.

 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
98

A. Information Collection
To traceback the botmaster, victims’ local

network administrator collects information from victim
machines. Intrusion detection before information collection
is out of scope of this paper. We assume that a local
network administrator can obtain network traffic between
bots and C&C servers, which communicate periodically.
A network administrator can also collect memory image
of victim machines and basic information of the attack
event. The information includes hostname of the C&C
server, the drop-zone URL and the types of botnets (e.g.
Zeus). The local network administrator submits collected
information — traffic records, memory image, and other
basic information to traceback server and requests for a
traceback service.

B. Key Identification and Extraction

When the traceback server receives traceback
requests with the needed information, it first identifies the
encryption key of attack traffic for: (i) Decrypting the
attack traffic and figure out the needed information for
traceback; and () Embed Pebbleware in the botnet traffic
and traceback
botmasters through stepping-stones. Our key identification
scheme works without source codes and with vague
traffic patterns only, is time efficient, and has low false
positives. Given a memory image of victim machines,
network traffic (ciphertext) and the type of botnets, we
propose a threephase detection scheme that consists of (i)
a pattern filter; () an entropy analyzer; and (i) a verifier
for identifying the symmetric keys used by bots. Figure 4
is an overview of the key identification scheme.

Figure 4: An Overview of Key Identification Scheme

Phase 1: Pattern Filter identifies suspected regions, which
contain the key. We know the key size (number of
bytes) yet not its location. However, we have information
of the bit pattern before and after the key — its
delimiters. We obtain such information from the previous
works on botnets of their particular symmetric encryption
schemes. Unfortunately, the delimiter pattern information
is supposed to be vague so that it can adapt to multiple
versions of the botnets. For example, a delimiter pattern
for Zeus botnet where RC4 is used for encryption could
be 2 consecutive zero bytes followed by 256 to 400
other bytes and another 2 consecutive zero bytes. The

256 to 400 bytes include RC4 256-byte S array
(equivalent to symmetric key) and other overheads for
Zeus. Given a memory image of a victim machine, we
apply the Pattern Filter that contains key delimiter pattern
information and obtain suspected regions, which may
contain the key. However, the number of the suspected
regions is usually large and we reduce it by an entropy
analysis in Phase 2.

Phase 2: Entropy Analyzer further analyzes the suspected
regions from Phase 1 and identifies several candidate
keys for verification. The design idea is: a strong
symmetric encryption scheme achieves security goal by
constructing a pseudorandom string for encrypting a
plaintext by an XOR with it. Hence a region that
contains a pseudorandom string has high entropy value.
Entropy search is first proposed in [12]. The entropy
value of a string is:

 E = - ∑ pi log (pi)

 i=0,…, 255

where pi is the empirical probability of value & in the
string. Since each byte has 8 bits of values from 0 to
255, a pseudorandom string has an entropy value closed
to log (256) = 8. We compute entropy of each suspected
region from Phase 1 and rule out the ones with entropy
lower than a threshold value, thus greatly reduce the
number of suspected regions, resulting in candidate key
regions for further analysis. The threshold value can be
varied by different types of botnets.

Phase 3: Verifier validates the candidate key regions and
identifies the key in two steps. We first examine each
candidate key region with a sliding window of the key
size and check whether all properties of key scheduling
are satisfied. For example, for RC4, it checks whether
there are 256 bytes with 256 different values; it is the
property of RC4 key scheduling. Similar approaches have
been used in [18]. If we consider all of them, the false
positives are too high. The second step of the verifier
explores the idea that normal plaintext and customized
encryption are usually weak for crypto-analysis. That is,
the randomness of ciphertext mostly comes from
symmetric key encryption schemes, rather than a plaintext
of customized encryption. Therefore, if a correct key is
found and applied to decrypting ciphertext traffic string,
the string will have a significant drop in the entropy
values after decryption. On the contrary, if an incorrect
key is used for decryption, the entropy value remains
high. Consequently, only the right key significantly
reduces the entropy value by decrypting the ciphertext.

Algorithm I summarizes the algorithm of the key
identification that contains three phases. The time to
check a memory with size N is O(C0N + C1M1 + C2M2)

 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
99

where C0 is the time to check by Prototype Filter, C1
and C2 are time for computing entropies and time for
verifying keys, and M1 and M2 are the number of
suspected regions after the Pattern Filter and Entropy

Explorer, respectively. Note that C1, C2 ≫C0, and N

≫M1 ≫M2. Our algorithm avoids expensive checking on
the whole memory image by narrowing down candidate
keys at each phase.
Algorithm I: Suggested Key Identification Scheme
Require: memory_image, network_traffic,
key_delimiter_prototype,
 Lowest_entropy = 8;
 Detected_key = NULL;

 while EOF != (byte=read_a_byte(memory_image))

do
suspect_region = update(suspect_region, byte);

if true!= check_pattern(suspect_region,

key_delimiter_prototype) then
 continue;
else if entropy(suspect_region) < entropy_threshold then
 continue;
else

 while key = sliding_window(suspect_region) do

if false== satisfy_key_scheduling(key) then
 continue;

else
 plaintext = decrypt(key, network_traffic);
 key.entropy =
entropy(plaintext);
 if key.entropy < lowest_entropy then
 lowest_entropy =
key.entropy;
 detected_key = key;
 end if

end if

 end while

end if

 end while

 return detected key;

D. Pebbleware for Pebbletrace
A traceback is possible when a botmaster wants to

communicate with victims to obtain information.
However, botmaster usually does not communicate
directly with the victims or C&C servers. Instead, he
may communicate through one of his accomplices
through stepping-stones. Consequently, we can initiate our
traceback process from the victim and/or receiver
machine. We want to keep track of the communication
path from the victim/receiver machine to the botmaster
by spreading ―pebbles‖ — Pebbleware. A Pebbleware is
a piece specially designed executable code that reveals its
host machine information. We piggyback Pebbleware on
the communication packets from the victim/receiver to the

botmaster. When it reaches the botmaster, it reports to us
the host machine information.

Figure 5 shows an overview of our Pebbletrace
scheme for cloud-based botnets. The trackback starts from
the receiver, i.e. C&C server, or from the victim. A local
network administrator submits a request to traceback
server providing sniffed traffic, memory image and basic
information of victim. Traceback server then extracts
encryption key of botnet communication by our key
identification algorithm. After that traceback server creates
a Pebbleware and encrypts it with the detected botnet
key.

Figure 5: An Overview of Pebbletrace for Cloud-

based Botnets
Pebbleware is then spread (piggybacked) from the

receiver or the victim to the botmaster’s machine along
the same path as the responses from the victims while
pabbleware is executed at its host machine. As a result,
the botmaster’s machine is forced to send its IP address
to the traceback server when Pebbleware reaches and
executes there. Sometimes botmaster launches attacks
outside their home domain, e.g. Starbucks. In this case
private IP address does not reveal his identification, and
Pebbleware should also collect other information, such as
the hostname, routing table, files, directories, and screen
snapshots.

Pebbleware is designed by exploring the zero day
vulnerabilities of: (1) Vulnerabilities of C&C servers. As
other software developers, botnet developers can also
make mistakes, leaving vulnerabilities on C&C servers. In
[18], a vulnerability of Zeus C&C server due to careless
input examination is reported. In [19], vulnerabilities of
Unreal IRCd botnet are studied. The vulnerabilities enable
us to take down botnets and also to compromise C&C
servers for a Pebbletrace through stepping-stones. (2)
Vulnerabilities of clients. Client side zero-day
vulnerabilities can be explored to traceback through
stepping-stones across clouds, if botmaster uses the client
in his local machine. Typical client side vulnerabilities
include web browser vulnerabilities and SSH client
vulnerabilities. Pebbleware, which exploits such
vulnerabilities, is usually embedded in the application
layer payload to be relayed by stepping-stones. Finally,
when it reaches the botmaster’s machine it is executed
and sends the host machine IP address to the traceback
server.

 ISSN (Online): 2455-3662

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013
100

V. CONCLUSION
As well discussed above since 1988, Botnet have

evolved from the beginning assistant tool to the
predominant threat in modern internet and as discussed in
this paper, in 1988 Botnet was not a malicious activity
but later in 1998 , attacker use the bot to perform
malicious activity via cyber crime. That is Botnets pose a
significant and growing threat against cyber-security as
they provide a key platform for many cybercrimes such
as DDoS attacks against critical targets, malware
dissemination, phishing, and click fraud etc. Although the
number of bots to each Botnet seems to be decreasing,
the monetary damaging power of the Botnets is
continuously increasing given the development of internet
bandwidth due to change in technology.

This study is focused on the attacks that a botmaster
attempts to steal sensitive data from the victim machines
and we can spread our tracing pebbles along with the
stolen data all the way back to the botmaster. However,
if a botmaster only wants to communicate with the
victims, more intelligence has to be integrated in the
Pebbleware. As most of the botnet traffic is encrypted by
symmetric keys for efficiency, we only study symmetric
key identification.

Asymmetric key identification is a challenging
research topic in general. However, our results on
symmetric key identification and the specific botnet
application environment may shed light on future
investigation.

Anonymous network and social network services,
such as Twitter and Facebook, might be moved into
clouds. Their security, particular defense against botnets,
is an intriguing research topic.

Acknowledgment
We would like to thank Dr. VSK Reddy, Principal,
Malla Reddy College of Engineering and Technology and
Dr. D. Sujatha, HOD, CSE dept., MRCET for their kind
help and motivation of doing research.

REFERENCES
1. Hossein Rouhani Zeidanloo, Azizah Bt Manaf, Payam

Vahdani, Farzaneh Tabatabaei, Mazdak Zamani, ”Botnet

Detection Based on Traffic Monitoring” IEEE

transaction,2010.

2. SANS Institute InfoSec Reading Room provided a

description on "Bot & Botnet: An overview" research on

topics in information security, 2003.

3. Generation of a robust Botnet capable of maintaining

control of its remaining bots even after a substantial

portion of the Botnet population has been removed by

defenders.

4. S. Nagendra Prabhu, Kemal Sultan Abdo & Gashaw Bekele

Kabtimer, „Introducing Proxy Cloud Storage Using Internet

Information Services in University and Utilization Of Its

Resources in the Academic Institution‟ in Journal of Network

communications and Emerging Technologies, Volume 8, issue 2,

February 2018.

5. Hossein Rouhani Zeidanloo, Farhoud Hosseinpour ,

Farhood Farid Etemad, ”New Approach for Detection of

IRC and P2P Botnets” , International Journal of Computer

and Electrical Engineering, Vol.2, No.6, December, 2010,

1793-8163.

6. Prabhu S, Chandrasekar V & Shanthi S, Improving the

performance of IDS using Arbitrary Decision Tree in Network

Security, International Journal of Advanced Science and

Technology Vol. 29, No. 3, (2020), pp. 3453 - 3462

7. Hossein Rouhani Zeidanloo, Azizah Abdul Manaf,”Botnet

Command and Control Mechanisms”, IEEE transactions,

2009.

8. Nagendra Prabhu, S & Shanthi, D „A Survey on Anomaly

Detection of Botnet in Network‟ published in Volume 2, Issue 1

of International Journal of Advance Research in Computer

Science and Management Studies in the year of 2014.

9. Robert F. Erbacher, Adele Cutler, Pranab Banerjee, Jim

Marshall,”A Multi-Layered Approach to Botnet Detection”,

IEEE conference, 2010.

10. Nagendra Prabhu, S & Shanthi Saravanan, D, 2017, „An

Efficient Botnet Detection System in Large Scenario Networks

Using Adaptive Neuro Fuzzy Inference System Classifier‟,

Journal of Computational and Theoretical Nanoscience Vol. 14,

1–5, 2017

11. P. Wang, S. Sparks, and C. C. Zou, “An advanced hybrid

peer-to-peer botnet,” in Proc. In Workshop on Hot Topics

in understanding Botnets, 2010.

12. Prabhu, SN & Shanthi, D , „Cloud Computing Defense Threats

and Responses against DDOS Attack‟, published in Volume 5,

Issue 4 in International Journal of Science, Engineering and

Technology Research (IJSETR) in Vol. 5, 1–4, April 2016.

13. http://www.kaspersky.com/reading_room?chapter=207716701

14. S. Nagendra Prabhu, The title name “ Examining Zeus Botnet by

Adopting Key Extraction and Malicious Traffic Detection

Framework using DNS” in International Journal of Applied

Engineering Research ISSN 0973-4562 Volume 10, Number 3

(2015) pp. 6987-7007 © Research India Publications

15. K. Harrison and S. Xu, “Protecting cryptographic keys

from memory disclosure attacks,” in International

Conference on Dependable Systems and Networks, 2007,

pp. 137–143.

16. S. Nagendra Prabhu, S. Shanthi & V. Chandrasekar,‟ Botnet

Revealing By Consuming Data Mining Techniques In Cloud

System‟, International Journal For Recent Development In

Science & Technology (IJRDST), Volume 03, Issue 12, Dec 2019

ISSN 2581 – 4575..

A. Shamir and N. Van Someren, “Playing „hide and seek‟ with

stored keys,” in Financial Cryptography, 1999, pp. 118–

124.

17. J. Li et al., “Large-scale IP traceback in high-speed

Internet: Practical techniques and theoretical foundation,”

in IEEE Symposium on Security and Privacy, 2004, pp.

115–129.

18. Y. Zhang and V. Paxson, “Detecting stepping stones,” in

USENIX Security Symposium, vol. 171, 2000, p. 184.

http://www.kaspersky.com/reading_room?chapter=207716701

