
ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013 192

FRAGMENTATION OF RELATIONAL SCHEMA BASED
ON CLASSIFYING TUPLES OF RELATION AND

CONTROLLING OVER REDUNDANCY OF DATA IN A
RELATIONAL DATABASE LEADS TO VEXING IN

DATABASE INTERFACES

Praveen Kumar Murigeppa Jigajinni
Sainik School Amaravathinagar

Post: Amaravathinagar,

Udumalpet Taluka,

Tiruppur Dt,

Tamilnadu State

ABSTRACT
Database system architecture is evolving for the past five to six decades; this gave magnanimous dimension to the field of

Database system, not only in terms of architecture, but also in terms of usage of the system across the world, further this

has led to revenue growth.

The research on controlling data redundancy in a relation introduced normalization process. There are 6 normal

forms which enhance representation of the data, The Normal Forms such as 1NF, 2 NF, 3NF, BCNF, 4NF, 5 NF and

6NF are domain specific meaning the decomposition of relation focuses on the attribute of relations.

This manuscript is specifically examines the vexing in database programming when database is normalized. The

decomposition of tables causes an effect on code and increases the complexity in the programming.

KEYWORDS: Database Management Systems (DBMS), Structured Query Language (SQL), Relational Database

Management system (RDBMS). Normal Forms (NF)

INTRODUCTION
The concept of a Relational Database Management

system (RDBMS) came to the fore in the 1970s. This
concept was first advanced by Edgar F. Codd in his paper
on database construction theory, “A Relational Model of
Data for Large Shared Data Banks”. The concept of a
database table was formed where records of a fixed length
would be stored and relations between the tables maintained
[2].The mathematics at the heart of the concept is now
known as tuple calculus [3]. The variation on relational
algebra served as the basis for a declarative database query
language, which in turn formed the basis for the Structured
Query Language (SQL). SQL remains as the standard
database query language some 30 years later.

Database technology, specifically Relational
Database Technology (RDBMS), has seen incremental
advancements over recent decades but the competition has
narrowed to a few remaining larger entities. The pursuit for
improvement has largely left technology practitioners,
especially the database administrators, focused on the
benefits of performance tuning of the database technology.
The infrastructure teams have relied on benefits of the
potential compression factors from various RDBMS

offerings to help quell the ever expanding footprint of
structured and unstructured data that fills the capacity of the
typical data center. As a result, infrastructure teams
continually seek hardware refreshes with promises of faster
disk performance and improved memory caching to gain
new database performance tools. Ultimately, a database
administrator is left with only a few tools to improve
database performance such as adding and tuning database
indexes, which only add to the amount of space required for
the database. In the end, the data of concern becomes
secondary too and can even become smaller than the
indexes themselves, leaving the technology practitioners
faced with a diminishing rate of return from their efforts.
Technology can only go so far and the physics of spinning
disks is reached eventually with the associated costs of
competing methods to store, retrieve and query data Today,
IT professionals are challenged with the task of on going
improvements to achieve goals of businesses.
Unfortunately, IT budgets do not dynamically grow as fast
as business needs. That sequence of events creates majors
obstacles for DB infrastructure, deployment,[1]

ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013 193

HISTORICAL VIEW
Normalization theory of relational databases dates

back to the E.F. Codd’s first seminal papers about the
relational data model (Codd, 1970). Since then it has been
extended a lot (see, for instance, Date (2007, Chap. 8)) and
the work is ongoing. There are proposals how to apply
similar principles in case of other data models like object-
oriented data model (Merunka et al., 2009), (hierarchical)
XML data model (Lv et al., 2004), or (hierarchical)
document data model (Kanade et al., 2014). Database
normalization process helps database developers to reduce
(not to eliminate) data redundancy and thus avoid certain
update anomalies that appear because there are
combinatorial effects (CEs) between propositions that are
recorded in a database. For instance, in case of SQL
databases each row in a base table (table in short) represents
a true proposition about some portion of the world. CEs
mean in this context that inserting, updating, or deleting one
proposition requires insertion, update, or deletion of
additional propositions in the same table or other tables.
The more there are recorded propositions, the more a data
manager (human and/or software system) has to make this
kind of operations in order to keep the data consistent.
Thus, the amount of work needed depends on the data size
and increases over time as the data size increases. Failing to
make all the needed updates leads to inconsistencies. The
update anomalies within a table appear because of certain
dependencies between columns of the same table. Vincent
(1998) shows how these dependencies lead to data
redundancy. Informally speaking, these anomalies appear if
different sets of columns of the same table contain data
about different types of real-world entities and their
relationships. By rewording a part of third normal form
definition of Merunka et al. (2009), we can say that these
sets of columns have independent interpretation in the
modeled system. According to the terminology in
(Panchenko, 2012) these sets of columns have different
themes. Thus, the table does not completely follow the
separation of concerns principle because database designers
have not separated sets of columns with independent
interpretations into different software elements (tables in
this case). The update anomalies across different tables
within a database may occur because of careless structuring
of the database so that one may have to record the same
propositions in multiple tables. The update anomalies across
different databases (that may or may not constitute a
distributed database) may occur if one has designed the
system architecture in a manner that forces duplication of
data to different databases.

Conceptually similar update (change) anomalies
could appear in the functionality of any system or its
specification and these make it more difficult and costly to
make changes in the system or its specification. Pizka and
Deissenböck (2007) comment that redundancy is a main
cost driver in software maintenance. The need to deal with
the update anomalies in the systems that are not designed to
prevent them is inevitable because the systems have to
evolve due to changing requirements just like the value of a
database variable changes over time. For instance, some of

the changes are caused by the changes in the business, legal,
or technical environment where the system has to operate,
some by changing goals of the organization, and some by
the improved understanding of the system domain and
requirements by its stakeholders. The theory of normalized
systems (NS) (Mannaert et al., 2012b) reflects
understanding of the dangers of the update anomalies and
offers four formalized design theorems that complete
application helps developers to achieve systems that are free
of CEs and are thus modular, highly evolvable, and
extensible.

The NS theory speaks about modules and
submodular tasks. The work with the NS theory started after
the invention of the database normalization theory. Its
proponents see it as a general theory that applies to all kinds
of systems like software, hardware, information system, or
organization or specifications of these systems. Like the
database normalization theory, its goal is to improve the
design of systems and facilitate their evolution. In our view,
it would be useful to bring these two theories together to be
able to understand their similarities and differences.
Possibly, we can use the ideas that have been worked out
for one theory in case of the other theory as well. Nowadays
there is a lot of talk about object-relational impedance
mismatch between highly normalized relational or SQL
databases and object-oriented applications that use these.
Thus, researchers and developers look these as quite distinct
domains that require different skills and knowledge as well
as have different associated problems, theories, methods,
languages, and tools. Hence, in addition to technical
impedance mismatch there is a mental one as well. We
support the view that database design is programming and
has the same challenges as the programming in the
“traditional” sense like ensuring quality and high
evolvability, separating concerns, managing redundancy
and making redundancy controlled, testing the results,
versioning, and creating tools that simplify all this.

Database and application developers sometimes have
antagonistic views to the normalization topic. Merunka et
al. (2009) mention a common myth in object-oriented
development community that any normalization is not
needed. Komlodi (2000) compares object-oriented and
relational view of data based on the example of storing a
virtual car in a garage. He compares a design that offers a
large set of highly normalized tables with an object-oriented
design where there is class Car that describes complex
internal structure and behavior of car objects. Readers may
easily get an impression that normalization is something
that one uses in case of databases but not in case of object-
oriented software.

On the other hand, there are ideas of using the
relational model, relational database normalization theory,
and dependency theory, which is the basis of the
normalization theory, to facilitate understanding of evolving
systems. De Vos (2014) uses the relational model as a
metalanguage and the relational database normalization
theory as a theoretical tool to explain and predict language
evolution in terms of gradual lexicon development as well
as explain the levels of language ability of animals. We

ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013 194

have found the work of Raymond and Tompa (1992), Lodhi
and Mehdi (2003), and Pizka (2005) that apply the
dependency theory to the software engineering. Raymond
and Tompa (1992) analyze text editor and spreadsheet
software. They describe functionality in terms of tables,
investigate dependencies between the columns, and discuss
implications of the dependencies to the design of data
structures and software as well as end-user experience.
They show how decomposing the tables along the
dependencies, based on the rules of database normalization,
reduces redundancy in software design and thus makes it
easier to update the software. They suggest that it would be
possible to teach object-oriented design in terms of
multivalued dependencies. The authors note that users could
tolerate certain amount of data redundancy but the goal to
ensure data consistency leads to software that is more
complex. Having different approaches for dealing with
redundancy within the same software may reduce its
usability. Lodhi and Mehdi (2003) describe and illustrate
the process of applying normalization rules to the classes of
object-oriented design. Pizka (2005) considers
maintainability of software and discusses difficulties of
maintaining code due to change anomalies, which are
conceptually similar to the update anomalies in not fully
normalized relational databases. He transfers the idea of
normalization from data to code and defines two code
normal forms in terms of semantic units and semantic
dependencies. In principle, there is such dependency
between program units (for instance, functions), if these
units are equivalent or semantically equivalent. The latter
could mean that the operations fulfill the same task but
perform their task based on differently represented input
data. He uses the defined normal forms for reasoning about,
finding, and removing change anomalies in code to improve
its maintainability. However, none of these ideas has
achieved widespread attention. In October 2015, the paper
(Raymond and Tompa, 1992) had six, the paper (Lodhi and
Mehdi, 2003) had one, and the paper (Pizka, 2005) had two
papers that referred to it according to the Google Scholar™.
None of these references has the topic of the referenced
papers as its main topic.

Software systems contain a layer that implements
business logic, which is guided by the business rules. It is
possible to represent these rules in decision tables. The
works of Vanthienen and Snoeck (1993) as well as Halle
and Goldberg (2010) are examples of research about
normalizing decision tables to improve their
understandability and maintainability. They derive the
normalization process from the database normalization
process and define different normal forms of business rules.
Halle and Goldberg (2010) comment that the normalization
leads to a decision model structure that causes the removal
of duplicate atomic statements and delivers semantically
correct, consistent, and complete rules.[4]

THE PROCESS OF NORMALIZATION
Databases are only one, albeit often very important,

component of information systems. Intuitively, it is
understandable that some design problems that appear in

databases can appear in some form in any type of systems.
These systems could be technical, sociotechnical, social, or
natural. For instance, there could be multiple software
modules in a software system that implement the same task,
multiple forms in the user interface of the same actor
providing access to the same task, multiple process steps,
organizational units or organizations that fulfill the same
task, or identical or semantically similar models that
describe the same tasks. These examples potentially mean
unnecessary wasting of resources and more complicated
and time-consuming modification of tasks and their models.
Being duplicates of each other, the parts have undeclared
dependencies, meaning that changing one requires
cascading modifications of its duplicates to keep
consistency. The more there are such duplicates, the more
changes we need to keep consistency.

If there are multiple unrelated or weakly related
tasks put together to a module, then it is more difficult to
understand, explain, and manage the module. Such modules
have more dependencies with each other, meaning that
changes in one require examination and possible
modifications in a big amount of dependent modules. The
less the general information hiding design principle is
followed, the more cascading changes are needed. For
instance, intuitively, one can understand how difficult it
would be to understand places of waste and duplication in a
big organization and after that reorganize it. In
organizations, the more fine-grained are its tasks, the easier
it is to distribute these between different parties and in this
way achieve separation of duties and reduce the possibility
of fraud.[4]

NORMAL FORMS

Database Normalization is a method of organizing
the data in the database. Normalization is a systematic
approach of fragmenting tables to eliminate data
redundancy (repetition) It is a multi-step process that
creates data into tabular form, removing duplicated data
from the relation tables.

Normalization process is divided into the following
normal forms:

1. First Normal Form
2. Second Normal Form
3. Third Normal Form
4. BCNF
5. Fourth Normal Form
6. Fifth Normal Form
7. Sixth Normal Form

DATABASE PROGRAMMING TECHNIQUES
 AND ISSUES

Programming is the process of designing and
developing a executable code to meet computing results.
 When software development is under process the
coder has to have clear cut idea of database design process.
We now turn our attention to the techniques that have been
developed for accessing databases from programs and, in
particular, to the issue of how to access SQL data-bases

ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013 195

from application programs. Our presentation of SQL in
Chapters 4 and 5 focused on the language constructs for
various database operations—from schema definition and
constraint specification to querying, updating, and
specifying views. Most database systems have
an interactive interface where these SQL commands can be
typed directly into a monitor for execution by the database
system. For example, in a computer system where the
Oracle RDBMS is installed, the command SQLPLUS starts
the interactive interface. The user can type SQL commands
or queries directly over several lines, ended by a semicolon
and the Enter key (that is, “; <cr>"). Alternatively, a file of
commands can be created and executed through the
interactive interface by typing @<filename>. The system
will execute the commands written in the file and display
the results, if any.

The interactive interface is quite convenient for
schema and constraint creation or for occasional ad hoc
queries. However, in practice, the majority of database
inter-actions are executed through programs that have been
carefully designed and tested. These programs are generally
known as application programs or database applications,
and are used as canned transactions by the end users, as
discussed in Section 1.4.3. Another common use of
database programming is to access a database through an
application program that implements a Web interface, for
example, when making airline reservations or online
purchases. In fact, the vast majority of Web electronic
commerce applications include some database access
commands. Chapter 14 gives an overview of Web database
programming using PHP, a scripting language that has
recently become widely used.

In this section, first we give an overview of the main
approaches to database programming. Then we discuss
some of the problems that occur when trying to access a
database from a general-purpose programming language,
and the typical sequence of commands for interacting with a
database from a software program.

1. Approaches to Database Programming
Several techniques exist for including database interactions
in application pro-grams. The main approaches for database
programming are the following:
 Embedding database commands in a general-purpose
programming language. In this approach, database
statements are embedded into the host programming
language, but they are identified by a special prefix. For
example, the prefix for embedded SQL is the string EXEC
SQL, which precedes all SQL commands in a host language
program. A precompiler or preproccessor scans the source
program code to identify database statements and extract
them for processing by the DBMS. They are replaced in the
program by function calls to the DBMS-generated code.
This technique is generally referred to as embedded SQL.
 Using a library of database functions. A library of
functions is made avail-able to the host programming
language for database calls. For example, there could be
functions to connect to a database, execute a query, execute
an update, and so on. The actual database query and update
commands and any other necessary information are

included as parameters in the function calls. This approach
provides what is known as an application
programming interface (API) for accessing a database from
application programs.

Designing a brand-new language. A database
programming language is designed from scratch to be
compatible with the database model and query language.
Additional programming structures such as loops and
conditional statements are added to the database language to
convert it into a full-fledged programming language. An
example of this approach is Oracle’s PL/SQL.

In practice, the first two approaches are more
common, since many applications are already written in
general-purpose programming languages but require some
data-base access. The third approach is more appropriate for
applications that have intensive database interaction. One of
the main problems with the first two approaches
is impedance mismatch, which does not occur in the third
approach.

2. Impedance Mismatch
Impedance mismatch is the term used to refer to the

problems that occur because of differences between the
database model and the programming language model. For
example, the practical relational model has three main
constructs: columns (attributes) and their data types, rows
(also referred to as tuples or records), and tables (sets or
multisets of records). The first problem that may occur is
that the data types of the programming language differ from
the attribute data types that are available in the data model.
Hence, it is necessary to have a binding for each host
programming language that specifies for each attribute type
the compatible programming language types. A different
binding is needed for each programming language because
different languages have different data types. For example,
the data types available in C/C++ and Java are different,
and both differ from the SQL data types, which are the
standard data types for relational databases.

Another problem occurs because the results of most
queries are sets or multisets of tuples (rows), and each tuple
is formed of a sequence of attribute values. In the pro-gram,
it is often necessary to access the individual data values
within individual tuples for printing or processing. Hence, a
binding is needed to map the query result data structure,
which is a table, to an appropriate data structure in the
programming language. A mechanism is needed to loop
over the tuples in a query result in order to access a single
tuple at a time and to extract individual values from the
tuple. The extracted attribute values are typically copied to
appropriate program variables for further processing by the
program. A cursor or iterator variable is typically used to
loop over the tuples in a query result. Individual values
within each tuple are then extracted into distinct program
variables of the appropriate type.

Impedance mismatch is less of a problem when a
special database programming language is designed that
uses the same data model and data types as the database
model. One example of such a language is Oracle’s
PL/SQL. The SQL standard also has a proposal for such a
database programming language, known as SQL/PSM. For

ISSN (Online): 2455-3662
 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal

Volume: 6 | Issue: 8 | August 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

 2020 EPRA IJMR | www.eprajournals.com | Journal DOI URL: https://doi.org/10.36713/epra2013 196

object databases, the object data model (see Chapter 11) is
quite similar to the data model of the Java programming
language, so the impedance mismatch is greatly reduced
when Java is used as the host language for accessing a Java-
compatible object database. Several database programming
languages have been implemented as research prototypes
(see the Selected Bibliography).

3. Typical Sequence of Interaction in Database
Programming
When a programmer or software engineer writes a program
that requires access to a database, it is quite common for the
program to be running on one computer system while the
database is installed on another. Recall from Section 2.5
that a common architecture for database access is the
client/server model, where a client program handles the
logic of a software application, but includes some calls to
one or more database servers to access or update the
data. When writing such a pro-gram, a common sequence of
interaction is the following:
 When the client program requires access to a particular
database, the pro-gram must
first establish or open a connection to the database server.
Typically, this involves specifying the Internet address
(URL) of the machine where the database server is located,
plus providing a login account name and password for
database access.
 Once the connection is established, the program can
interact with the data-base by submitting queries, updates,
and other database commands. In general, most types of
SQL statements can be included in an application program.
 When the program no longer needs access to a
particular database, it should terminate or close the
connection to the database.

A program can access multiple databases if needed.
In some database programming approaches, only one
connection can be active at a time, whereas in other
approaches multiple connections can be established
simultaneously.[5]

MODUS OPERANDI
 The technology is changing fast, the new
paradigms in the database system as well as in the
programming languages makes programmers to shift their
focus completely, this leads to time consuming to develop
new applications further the old applications will be
sidelined due to mismatch of supporting files.
 There are several GUI interfaces available with
database systems which can generate the applications
through wizard.

Selecting right Interface for the database system is
the critical step, the right methodology is to have an
interdependent easy to use interface with a built in wizards
for developing database driven applications.

CONCLUSION
The programming languages ar developed for two

reasons one is funded by the government of a particular
country to take up the new researches and second is due to
lack of unavailability of tools makes frustration.

 Most of the languages really on third party
softwares for database driven application. The users should
feel easy to develop applications. In this regard there is a
scope to develop an GUI Interface where a normal user can
develop an application with ease

REFERENCES
1. i-manager’s Journal on Information Technology, Vol. 2

l No. 1 l December 2012 – February 2013

2. Codd, E. F. (1970). A Relational Model of Data for

Large Shared Data Banks Retrieved on June 12,

2012,from

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

3. Sumathi, S., Esakkirajan, S., (2007). Fundamentals of

Relational Database Management Systems. (pp. 96-

97).Springer-Verlag Berlin Heidelberg.

4. The Database Normalization Theory and the Theory of

Normalized Systems: Finding a Common Ground -

Baltic J. Modern Computing, Vol. 4 (2016), No. 1, 5-33

5. http://www.brainkart.com/article/Database-

Programming--Techniques-and-Issues_11480/

http://www.brainkart.com/article/Database-Programming--Techniques-and-Issues_11480/
http://www.brainkart.com/article/Database-Programming--Techniques-and-Issues_11480/

