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ABSTRACT

Problems of unloading wave propagation in elastic-plastic filtration mode in unstable formations are considered.
Unloading wave fronts in unstable formations in plane-radial formulations are determined. The numerical solution of
the problem of elastic-plastic filtration in unstable formations is given and the features associated with the formation
instability together with the irreversibility of deformation of the rock skeleton are determined. The influence of reservoir
instability and the intensity of irreversible deformation on the propagation of the unloading wave has been studied.
KEYWORDS: Sustainable, deep-seated, deformations, pressure distribution, discharge wave front, lterative
process.

INTRODUCTION

The issues of elastic-plastic filtration of liquids are becoming increasingly important in connection with
the development of oil and gas fields at great depths. In deep-seated oil and gas fields, especially with
abnormally high reservoir pressures (abnormally high reservoir pressures), as they are exploited, reservoir
pressure significantly decreases, which leads to the occurrence of large effective stresses on the reservoir. This,
in turn, causes significant deformations of the formation rock skeleton. One of the features of the formation
deformation at great depths is the violation of its elasticity, i.e. transition from the elastic limit of rocks, which is
accompanied by the appearance of plastic (irreversible) changes in reservoir characteristics. For the first time,
attention was drawn to the irreversibility of changes in the permeability of oil reservoirs in [1, 2], although in oil
practice such a decrease in reservoir properties of reservoirs as they are exploited (ie, decrease in reservoir
pressure) have been known for a long time. The model schematization of the elastoplastic filtration regime was
first proposed in [3, 4], which then formed the basis for the formation of ideas about the elastoplastic filtration in
general and the assessment of its characteristics [S]. Note that in [3, 4], both in the mode of lowering and in the
mode of recovery of reservoir pressure, the main relations of the dynamics of porosity of the reservoir
depending on the current pressure are taken to be linear. Taking into account the nonlinearity of the formation
deformation [6, 7], the equations of the elastic-plastic filtration mode are given in [8, 9], where the elastic-
plastic change in the formation porosity and permeability is simultaneously taken into account. At great depths,
oil reservoirs confined to poorly cemented terrigenous reservoirs, especially with abnormal pressures, lose their
stability and integrity as effective stresses increase. This leads to the destruction of the skeleton of the formation
rocks and the removal of rock particles formed due to destruction to the surface together with the produced oil.
The latter can be the cause of major technological complications both in the process of oil production and its
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field treatment. Models of elastic-plastic fluid filtration in unstable reservoirs are proposed in [10, 11]. Analysis
of the results of the implementation of the models shows that in unstable reservoirs the factors of irreversibility
of deformation and reservoir instability have reciprocal effects on the reservoir properties of the reservoir.

The issues of unloading wave propagation in a porous medium are topical from both theoretical and
practical points of view. The propagation of an unloading wave in a porous medium was first studied in [4]. In
[9, 12], the problems of elastic-plastic filtration and propagation of the unloading wave are given taking into
account the nonlinearity of deformation of the formation rocks using a number of simplifying assumptions. For
a generalized model of elastic-plastic filtration in stable [8, 9] and unstable [11] formations, the problems of
unloading wave propagation have not been studied.

In this work, on the basis of the well-known equation [8, 9], we first determine the unloading wave
fronts for a nonlinearly deformable stable formation using the example of a plane-radial setting. Further, the
same estimate is carried out for the one-dimensional plane-parallel case. Using both schematization of the
reservoir (plane-parallel, plane-radial), the unloading wave fronts are numerically determined for an unstable
reservoir. The influence of deformation plasticity and formation instability on the nature of the unloading wave
propagation is estimated.

MAIN PART

Here the problems of elastic-plastic fluid filtration in an unstable radial-plane formation are considered.
Some problems for a linear one-dimensional unstable reservoir were solved in [11, 14, 15]. The change in the
coefficients of permeability and porosity depending on pressure will be written in the form [10, 11]

bk =keexp(=ayo(Po — P))+6(ps — P)kso[L—exp(—ay, (p — p))] (1)
b m=mgexp(= Bo(ps — p)+6(p, — PIMo[l—exp(- Bo(p. - )] @
Tk = koexp(—(ayo — 8 N Po — P1))exp(= 2y (Po — P))+
+6(p, — Py Kso[L—exp(—ays (ps — py))]
T m =moexp(=(Bro — B X Po — P))eXP(= Bry(Po — P))+
+0(p, — Py )My [1—exp(= Brs(p, — py))]

where [ is the pressure at which the integrity of the formation is violated, Q(T) is the unit function of

©)

4)

Heaviside, ksov My is the maximum possible increase in K and M due to the removal of particles;

aks,Bms - coefficients of change K and M due to the removal of particles;

84y = 8,0eXP(— Uk(po - p1))’ P :,BmoexF)(_ 77m(po - p1))’ Po = Pos®im: T -

coefficients of irreversible changes in porosity and permeability, [J1 - pressure distribution at the end of the

pressure reduction phase.
Using (1) - (4), as well as the continuity equation and Darcy's law, we obtain the following filtration equations
in the one-dimensional plane-radial case

ot m,
10 )| 1 kaOlo(p)) a6/B] —Cutbuo)p | O P
= — S l_ ks V7
259 * K, [ 214 ]gﬂ r—é’ ; (5)
o 10
12 ol (rexpl-vo(rXpo — )]+ & (r)expl- B (P~ ) = 227 %

X [eXp[_ ¢1(r)]‘3Xp[_ Wl(r)( Po — p)]+§1(r)9Xp(_ (,Bf _ayxpo - p))]r% (6)

where

€ 2020 EPRA IIMR | www.eprajournals.com | Journal DOl URL: https://doi.org/10.36713/epra2013


http://www.eprajournals.com/
https://doi.org/10.36713/epra2013

ISSN (Online): 2455-3662
‘(s EPRAInternational Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 9 | September 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

@ =exp(=B(Po = P)). B =By + Bs» lty.r)=exp(— B(py — py)) =w(r).

% 5(p)=p, — Do~ W)INp. 8 =expl- Frelpo P,
Motdy

52:eXp[_aks(po_ )] W(r)=p4; - a, "‘ak‘//(r)nk/ﬂ
wo(1)= By + Buow (17, al(r)— o h-,(w(r))*" Jo(p, - py).

0

E1) =T 0, | Alp, ),
0

X2 =

(/71(r)=ako[l—l//(r)”k/ﬂ]{—%ln\l//(r)\},

921 )= Boll—y (1 )™/” ]{—%lnlw( r )I}

To assess the change in pressure and other filtration characteristics in the modes of lowering and
recovering reservoir pressure, it is necessary to solve equations (5) and (6) with the corresponding initial and

boundary conditions. In view of their nonlinearity, numerical methods are the most appropriate.

To estimate the solutions of equations (5), (6), we formulate the following problem. Let in a semi-

infinite planar-radial one-dimensional formation at I =TI, starting from t>0, pressure mode

P= P < Pg, Pc =CONSL is set. Initially, the reservoir had a constant pressure distribution P = Py .

In accordance with the formulation of the problem, the initial and boundary conditions in the pressure

reduction mode have the form

pO,r)=py, P(t.r;)=pc, Plt,o)=

or in notation relative to (P :

p(0,r)=1, olt.r)=0., oft,o)=1
where @, =exp(— B(Py — P, )).

In the pressure recovery mode, the initial and boundary conditions are as follows:

pt,.r)=p,, op(t.r,)/or=0, p(t,0)=p,

To solve the formulated problem, we wuse the finite difference method [16]. In area

:{O£r<oo, OS'[S'[O}, enter grid
Wy, , :{(r, ,tj), i=0, 1..., jIO,_J, I Iih, tj = j’C, ’CItO/J},Where h, T are grid steps of

I and t . The grid solution corresponding to point (I’I ey j ) is denoted by ¢ij .

Equation (5) is first written in the form

»Ldj((p) Zo= Lo [rv(gp)—} (10)

ot r or
where
m, !
B K % a —\a,+PBm
V(p)=¢” 1_}_%‘((’»)(1_5%0 ks/ﬂ)(p (a0 Bmo )/ 8

0
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Equation (10) on grid @), is approximated with an accuracy of O(‘E + hz) by an explicit finite-
difference scheme

U((”ij+1 )_U((Dij )

i
+ ri+]/2ai+1( ¢ij ))@J + If-i+]/2ai+l( ¢ij )§0|J+1:| (11)

N (0 j
where a;\@; :E \' D4 +V o |-
From (11) we obtain the grid equations of the following form:

(0lj+1 :V( _j+1)Jr =

Viot )=~ o1 ololo )

R = % [ri—l/z i ((/’ij )¢ij—1 - (ri—l/z 3i ((/’ij )+ fiy2 ai+1(§0ij ))¢’ij iy ai+1(¢ij )@ij ]+
|

LY ) e P e |

My

1 o .
= h2 [ri—J/zai((DiJ ) [ _(ri—l/zai((ﬁiJ )+

i=11-1 (12)

where

I is taken large enough so that [rc y 1 ] contains the area of variation of other indicators of the problem.
Thus, in the pressure reduction mode, a nonlinear system of difference equations (12) was obtained,
which was solved by a simple iteration method. The iterative process continues until conditions

(¢ij +1)s+1 _ (¢ij+1)s

iteration number.

<g, = 0, | , are satisfied where & is the accuracy of calculations, S is the

Equation (6) after the finite-difference approximation is reduced to grid equations with respect to pi‘ ,

similar to (12):

p_J'+1 _ K(pij+1)+Gii Ci=11-1 (13)

1
where

K(pi™)= pi ™ —expl=a(r lexplwo (1 )po = b |- & exp |- 31 (o — b )

G/ = f_ﬁz [ri—l/z Ci (pij )pij—l - (ri—l/z G (pij )+ sy Ci+1(pij ))pij i Ci+1(pij )pij+1]+

I+ exp|o,(r, )]eXp[_ wo(T, )(po - p/ )]+ &2(1; Jexp [_ﬂf (pO -p/ >]
Ci(p_ij):[q(pij—l)+q(pij) 2 _ .
alp! )= expl= e (r x| (ko — b |+ & Jexp |- (8, =2, Jpo — i)

i1 B+l 11 ) .
The iterative process continues until conditions (pi' B )5 — (pi” ) <&, 1=0,1.are met
The initial and boundary conditions (8) are approximated as follows:
0 _ j+1 _ j+1 _
¢ =L g =0, ¢ =1 (14)

at (9):
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_ 4pj+1_pj+1
pP =) pd™ ==

j+1 _
=

, P Po (15)

RESULTS AND DISCUSSION
The following initial data were used in the calculations: po =100 MPa, P s =90 MPa, Lo =2,0 Pas,
k0=10'12 m2, M,=0,15, au =5-104 MPa’l, ,Bf =103 MPal, @, ,=0,02 MPa!, Q,=0,015 MPal,
B,,=0,015MPa', B =001 MPa', t; =2000s.
The filtration rate in the pressure reduction mode is determined as follows
a=p
k, —5 1o
M, B I
% (16)
HoP or

Atpoint I' = I, finite-difference approximation (16) has the form

) L o\a B 1l j+1
Wd+1 :_ﬁ(@)ﬁl) Y 14¢1 », 3¢0 (17)
P 2h

Some calculation results are shown in Fig. 1, 2. Analysis of the results shows that in this case, in
comparison with the plane-parallel [11,14,15], the process of lowering the reservoir pressure occurs more
slowly, the filtration rate is relatively higher in the destroyed zone, and the propagation of the boundary of this

zone into the interior of the reservoir is slower. With increasing coefficients ksO’ Mgq, the intensity of

W=—

destruction of the formation skeleton increases, which is reflected in profiles k, M, P (Fig. 1 and Fig. 2). In

the destruction zone K and M are restored more significantly than at small ksO and Mgg.
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Figure: 1. Distribution K, M, p in the mode of

pressure reduction (solid lines) at t =500 s (1), 1000
(2), 2000 (3) and pressure recovery (dashed lines) at
t=2300 s (1), 3000 (2), 5000 (3) ):
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Figure: 2. Distribution K, M, p in the mode of

pressure reduction (solid lines) at t =500 s (1), 1000
(2), 2000 (3) and pressure recovery (dashed lines) at
t=2300 s (1), 3000 (2), 5000 (3) ):

ki, =0,75-10"*m?, m_, =0,08

Now, on the basis of the above solution to the problem of elastic-plastic filtration in unstable
formations, we will estimate the unloading wave front. Determining the pressure field in the pressure recovery

mode according to (13) on the pressure change graphs, we find points with Ap =0 , which is the front of the

unloading wave. Typical results for one set of initial parameters are shown in Fig. 3. As can be seen from the

presented results, an increase in the formation plastic properties (an increase in 7] and 7}.,) leads to an

intensification of the propagation of unloading waves in the formation.
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Figure: 3. Change in the front of the unloading wave I' = ,u(t), the boundaries of the area of influence

r= |(t) at a value of kSO = 0,75 . 10_12 (m?); Mgy = 0,08 and different values of parameters 77)

(MPa'!) and N, (MPat), respectively 1: 0.00021; 0.00014; 2: 0.03; 0.02; 3: 0.12; 0.08; 4: 0.21; 0.14

CONCLUSIONS

In unstable formations, the propagation of the unloading wave differs significantly from the
propagation in stable formations. It is shown that with an increase in 7}, , 7}, ksO and M, the unloading

wave front propagates deeper into the formation at the same times and other parameters of the problem. This
means that if the effects of plasticity and fracture of the formation rocks are significant, then the unloading wave
front propagates more intensively. In the region of the selected values of the initial parameters, it was found that
the irreversibility factor of the reservoir characteristics more significantly affects the propagation of the

unloading wave front than the factor of destruction of the reservoir rock.
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