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ABSTRACT 

Nonlinear equations have got numerous 

statistical applications in various fields such as biology, 

physics, and electronics. Here we have discussed different 

iterative methods helpful in finding approximations of 

roots of such equations. Comparisons of some of these 

methods along with their implementation in R language 

has been demonstrated. Packages and functions available 

in R for this purpose have been discussed. 
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INTRODUCTION  
Non linear equations- importance of study 

Nonlinear equations are helpful in describing fundamental phenomena in physical and biological 
systems and are of immense applications in communication systems as well. Many problems in engineering 
areas can be expressed as finding roots of some non linear equations. Unfortunately, there are no exhaustive 
methods for finding all the roots of such equations in general. In this context, study of numerical methods and 
implementation of these methods in various programming languages have become more relevant. 
R programming language  

R is the open-source version of the language S known for its applications in statistical analysis and 
graphics. R is a high-level language which performs complicated calculations and makes quality graphics. 

R has numerous functions which can be applied on matrices, and is suitable for numerical integration, 
and implement different statistical tools, performdatavisualisation, model problems mathematically. 
Iterative vs analytical methods for root finding 

In root finding problems, direct methods or analytical methods attempt to solve the equation by 
delivering exact root. The process will be done by a finite number of operations. However, in general, non linear 
equations can not be solved using analytical methods. Iterative methods are implemented in such situations. 
These methods use an initial value to generate better approximations to a solution. Iterative methods are useful 
even for linear equations involving large number of variables where it will be time consuming to implement 
analytical methods. 
Bisection Method: the famous bracketing method 

The Bisection method is the simplest method to find a root of an equation, linear or nonlinear.The 
method is done by halving the interval in which the root lies. So before using this method, we have to identify 
the initial interval which will contain a root of the given equation.The method systematically reduces the 
interval by halving the interval and one half is selected after performing  a simple test.The procedure is repeated 
till  therequired interval length is obtained. 

If the function f(x) is continuous on [a,b] and f(a) and f(b) have opposite signs, Bisection method 
presents  a smaller interval that is half of the current interval such that the function has opposite signs at the end 
points of the interval. The procedure is repeated to reduce the length of the interval. The algorithm is based on 
the assumptions that f(x) is continuous on [a,b] and f(a) f(b) < 0   
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The Newton-Raphson method 
Newton–Raphson method is named after Isaac Newton and Joseph Raphson. It is a method for 

obtaining better approximations to the roots of f(x)=0, where f(x) is a real valued function. 
The Newton–Raphson method for one unknown can be explained as follows: 

Given a function ƒon R and its derivativeƒ', we begin with a first approximation x0 for a root of the equation f(x) 
= 0.a better approximation  x1 is given by the formula 

      
     

      

 

        Geometrically, ( , 0) is the intersection with the x-axis of the tangent to f at ( , f ( )). 

The process is repeated as          
     

      
 until a sufficiently accurate value is reached. 

The method can also be extended to systems of equations. 
 
Fixed Point Method 

This method tries to find the roots of an equation by finding fixed point of a function obtained from the 
given equation. In this method we first express an equation f(x)=0 in the form x=g(x)  and tries to find the fixed 
points of g(x). The function g(x) is known as the iteration function. 
 
Comparison of Root finding Methods 

Method Advantages Disadvantages 
Bisection Method ●Simple and easy to implement 

●function is evaluated only once 
in each iteration 
●method reduces the size of the 
interval containing the zero in 
each step. 
●The function need not be 
differentiable 

●convergence might be slow 
 
●Good intermediate 
approximations may be 
discarded 
 

Fixed Point Method ●existence of convergence 
criterion. 

●The convergence depends on 
the choice of iteration function 
●The method may not converge 
at all. 
●The convergence may be slow. 

Newton Raphson Method ●It is a convenient method if the 
derivative can be obtained 
analytically 
●Rate of convergence is 
quadratic 

●It does not always converge 
●There is no convergence 
criterion 
 

 

Implementing Algorithms Using R 
Newton raphson method 
Algorithm is applied using a function nwtnRpsn.  
 
nwtnRpsn<- function(fn, a, err, maxIt) { 
  x <- a 
  fx<- fn(x) 
  i<-  0 
   
  while ((abs(fx[1]) >err) && (i<maxIt)) { 
    x <- x - fx[1]/fx[2] 
    fx<- fn(x) 
    i<- i + 1 
    cat("Current iteration", iteration, "the value of x is:", x, "\n") 
  } 
   
  if (abs(fx[1]) >err) { 

https://en.m.wikipedia.org/wiki/Isaac_Newton
https://en.m.wikipedia.org/wiki/Joseph_Raphson
https://en.m.wikipedia.org/wiki/Root_of_a_function
https://en.m.wikipedia.org/wiki/Real_number
https://en.m.wikipedia.org/wiki/Function_(mathematics)
https://en.m.wikipedia.org/wiki/Derivative
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    cat("Failed\n") 
    return(NULL) 
  } else { 
    cat("Success!!\n") 
    return(x) 
  } 
} 
 
When applied to the function x3-x2-1 with derivative 3x2-2x, we obtain convergence 

 
 
Implementing Bisection method 
 
bisec<- function(ftn, a, b, tolerence = 1e-9) { 
  
 # check inputs 
  if (a >= b) { 
    cat("problem : a >= b \n") 
    return(NULL) 
  }  
  fa<- ftn(a) 
  fb<- ftn(b) 
  if (fa == 0) { 
    return(a) 
  } else if (fb == 0) { 
    return(b) 
  } else if (fa * fb > 0) { 
    cat("problem: ftn(a) * ftn(b) > 0 \n") 
    return(NULL) 
  } 
 
  # successively refine a and b 
  n <- 0 
  while ((b - a) >tolerence) { 
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    m <- (a + b)/2 
    fm<- ftn(m) 
    if (fm == 0) { 
      return(xm) 
    } else if (fa * fm< 0) { 
      b <- m 
      fb<- fm 
    } else { 
      a <- m 
      fa<- fm 
    } 
    n <- n + 1 
    cat("Current iteration", n, "the root is between", a, "and", b, "\n") 
  } 
 
   
  return((a + b)/2) 
} 
 
 
When this function is applied to the example f(x)=cos x – x.ex, we get the following output: 

 
 
 
Locating Roots Using Packages In R 

 

Using spuRs Package 

Fixedpoint_Show Function: 
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ftnFpArg<- function(x) return(cos(x)/exp(x)) 
fixedpoint_show(ftnFpArg, 2) 

 

 
Newtonraphson_show function: 
 
ftnArg<- function(x) { 
fx<- x^3-x^2+1 
dfx<- 3*x*x-2*x 
return(c(fx, dfx)) 
} 
newtonraphson_show(ftnArg, 2) 

 
 
Using Rootsolve Package 

This package contains root finding algorithms for solving nonlinear equations using Newton Raphson 
Method. It contains an extesnsion uniroot.all of the function uniroot from the base package. The function uniroot 
obtains only one root of an equation whereas polyroot helps to find complex roots of a polynomial. 

To locate root of the equation f(x)=sin 2x- cos x, in the interval [0,10] and plot the curve, we write: 
fun<- function (x) sin(2*x)-cos(x) 
curve(fun(x), 0, 10) 
abline(h = 0, lty = 3) 
uni<- uniroot(fun, c(0, 10))$root 
points(uni, 0, pch = 16, cex = 2) 
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Although the figure shows the presence of more zeroes in the interval [0,10], uniroot gives only one 
zero. 
 
The function uniroot.all is an extension of uniroot which extracts many zeroes in the interval. 
fun<- function (x) sin(2*x)-cos(x) 
curve(fun(x), 0, 10) 
abline(h = 0, lty = 3) 
all<- uniroot.all(fun, c(0, 10)) 
points(All, y = rep(0, length(All)), pch = 16, cex = 2) 
 

 
uniroot.all applies the function uniroot to subdivisions of given interval to locate roots. 
 

This function may not be successful in extracting all roots in the given interval and so cannot be 
regarded as a full proof method. 
 
Polyroot function 

This function can be used to find zeros of a real or complex polynomial. 
The argument for this function is a vector whose coordinates are the coefficients of the terms in the polynomial. 
The terms of the polynomial must be considered in the descending order of power. 
> x <- c(4,21,3,8) 
> y <- c(1,2,3,4) 
> z <- c(1,0,0,1) 
>polyroot(x) 
[1] -0.1930595+0.000000i -0.0909702+1.606736i -0.0909702-1.606736i 
>polyroot(y) 
[1] -0.0720852+0.6383267i -0.6058296+0.0000000i -0.0720852-0.6383267i 
>polyroot(z) 
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[1]  0.5+0.8660254i -1.0+0.0000000i  0.5-0.8660254i 
 

CONCLUSION 
  All numerical algorithms possess certain limitations in addition to their utility in various problems. 
Until now there exist no algorithm which give guarantee to find all the solutions of nonlinear equations. Most of 
them are able to give at most one root of most equations. It requires prior information to implement these 
algorithms. 

The numerical algorithms find effective demonstrations in dealing with complicated problems for 
which analytical methods cannot be applied or hand calculations cannot be done. The use of any computational 
algorithm, analytically or numerical, without the proper understanding of the limitations and shortcomings will 
not take us to the correct results. 
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