
EPRA International Journal of

Volume: 2 Issue: 12 December 2016

Published By :
EPRA Journals

CC License

Multidisciplinary
 Research

ISSN (Online) : 2455 - 3662
SJIF Impact Factor :3.967

Monthly Peer Reviewed & Indexed
International Online Journal

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
33

SJIF Impact Factor: 3.967 Volume: 2 | Issue: 12 |December 2016

SOLVING NONLINEAR EQUATIONS: RECIPES IN R

Sreeja K1
1Assistant professor,

C M S College,
 Kottayam,

 Kerala, India.

Sindhu Thomas2

2Assistant professor,
C M S College,

Kottayam, Kerala, India

ABSTRACT

Nonlinear equations have got numerous

statistical applications in various fields such as biology,

physics, and electronics. Here we have discussed different

iterative methods helpful in finding approximations of

roots of such equations. Comparisons of some of these

methods along with their implementation in R language

has been demonstrated. Packages and functions available

in R for this purpose have been discussed.

KEY WORDS: Nonlinear Equations, R
Programming Language, Bisection Method, Newton-
Raphson Method, Fixed Point Iteration Method

INTRODUCTION
Non linear equations- importance of study

Nonlinear equations are helpful in describing fundamental phenomena in physical and biological
systems and are of immense applications in communication systems as well. Many problems in engineering
areas can be expressed as finding roots of some non linear equations. Unfortunately, there are no exhaustive
methods for finding all the roots of such equations in general. In this context, study of numerical methods and
implementation of these methods in various programming languages have become more relevant.
R programming language

R is the open-source version of the language S known for its applications in statistical analysis and
graphics. R is a high-level language which performs complicated calculations and makes quality graphics.

R has numerous functions which can be applied on matrices, and is suitable for numerical integration,
and implement different statistical tools, performdatavisualisation, model problems mathematically.
Iterative vs analytical methods for root finding

In root finding problems, direct methods or analytical methods attempt to solve the equation by
delivering exact root. The process will be done by a finite number of operations. However, in general, non linear
equations can not be solved using analytical methods. Iterative methods are implemented in such situations.
These methods use an initial value to generate better approximations to a solution. Iterative methods are useful
even for linear equations involving large number of variables where it will be time consuming to implement
analytical methods.
Bisection Method: the famous bracketing method

The Bisection method is the simplest method to find a root of an equation, linear or nonlinear.The
method is done by halving the interval in which the root lies. So before using this method, we have to identify
the initial interval which will contain a root of the given equation.The method systematically reduces the
interval by halving the interval and one half is selected after performing a simple test.The procedure is repeated
till therequired interval length is obtained.

If the function f(x) is continuous on [a,b] and f(a) and f(b) have opposite signs, Bisection method
presents a smaller interval that is half of the current interval such that the function has opposite signs at the end
points of the interval. The procedure is repeated to reduce the length of the interval. The algorithm is based on
the assumptions that f(x) is continuous on [a,b] and f(a) f(b) < 0

 EPRA International Journal of Multidisciplinary Research (IJMR) ISSN (Online): 2455-3662

 EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.967

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
34

The Newton-Raphson method
Newton–Raphson method is named after Isaac Newton and Joseph Raphson. It is a method for

obtaining better approximations to the roots of f(x)=0, where f(x) is a real valued function.
The Newton–Raphson method for one unknown can be explained as follows:

Given a function ƒon R and its derivativeƒ', we begin with a first approximation x0 for a root of the equation f(x)
= 0.a better approximation x1 is given by the formula

 Geometrically, (, 0) is the intersection with the x-axis of the tangent to f at (, f ()).

The process is repeated as

 until a sufficiently accurate value is reached.

The method can also be extended to systems of equations.

Fixed Point Method

This method tries to find the roots of an equation by finding fixed point of a function obtained from the
given equation. In this method we first express an equation f(x)=0 in the form x=g(x) and tries to find the fixed
points of g(x). The function g(x) is known as the iteration function.

Comparison of Root finding Methods

Method Advantages Disadvantages
Bisection Method ●Simple and easy to implement

●function is evaluated only once
in each iteration
●method reduces the size of the
interval containing the zero in
each step.
●The function need not be
differentiable

●convergence might be slow

●Good intermediate
approximations may be
discarded

Fixed Point Method ●existence of convergence
criterion.

●The convergence depends on
the choice of iteration function
●The method may not converge
at all.
●The convergence may be slow.

Newton Raphson Method ●It is a convenient method if the
derivative can be obtained
analytically
●Rate of convergence is
quadratic

●It does not always converge
●There is no convergence
criterion

Implementing Algorithms Using R
Newton raphson method
Algorithm is applied using a function nwtnRpsn.

nwtnRpsn<- function(fn, a, err, maxIt) {
 x <- a
 fx<- fn(x)
 i<- 0

 while ((abs(fx[1]) >err) && (i<maxIt)) {
 x <- x - fx[1]/fx[2]
 fx<- fn(x)
 i<- i + 1
 cat("Current iteration", iteration, "the value of x is:", x, "\n")
 }

 if (abs(fx[1]) >err) {

https://en.m.wikipedia.org/wiki/Isaac_Newton
https://en.m.wikipedia.org/wiki/Joseph_Raphson
https://en.m.wikipedia.org/wiki/Root_of_a_function
https://en.m.wikipedia.org/wiki/Real_number
https://en.m.wikipedia.org/wiki/Function_(mathematics)
https://en.m.wikipedia.org/wiki/Derivative

 EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.967

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
35

 cat("Failed\n")
 return(NULL)
 } else {
 cat("Success!!\n")
 return(x)
 }
}

When applied to the function x3-x2-1 with derivative 3x2-2x, we obtain convergence

Implementing Bisection method

bisec<- function(ftn, a, b, tolerence = 1e-9) {

 # check inputs
 if (a >= b) {
 cat("problem : a >= b \n")
 return(NULL)
 }
 fa<- ftn(a)
 fb<- ftn(b)
 if (fa == 0) {
 return(a)
 } else if (fb == 0) {
 return(b)
 } else if (fa * fb > 0) {
 cat("problem: ftn(a) * ftn(b) > 0 \n")
 return(NULL)
 }

 # successively refine a and b
 n <- 0
 while ((b - a) >tolerence) {

 EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.967

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
36

 m <- (a + b)/2
 fm<- ftn(m)
 if (fm == 0) {
 return(xm)
 } else if (fa * fm< 0) {
 b <- m
 fb<- fm
 } else {
 a <- m
 fa<- fm
 }
 n <- n + 1
 cat("Current iteration", n, "the root is between", a, "and", b, "\n")
 }

 return((a + b)/2)
}

When this function is applied to the example f(x)=cos x – x.ex, we get the following output:

Locating Roots Using Packages In R

Using spuRs Package

Fixedpoint_Show Function:

 EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.967

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
37

ftnFpArg<- function(x) return(cos(x)/exp(x))
fixedpoint_show(ftnFpArg, 2)

Newtonraphson_show function:

ftnArg<- function(x) {
fx<- x^3-x^2+1
dfx<- 3*x*x-2*x
return(c(fx, dfx))
}
newtonraphson_show(ftnArg, 2)

Using Rootsolve Package

This package contains root finding algorithms for solving nonlinear equations using Newton Raphson
Method. It contains an extesnsion uniroot.all of the function uniroot from the base package. The function uniroot
obtains only one root of an equation whereas polyroot helps to find complex roots of a polynomial.

To locate root of the equation f(x)=sin 2x- cos x, in the interval [0,10] and plot the curve, we write:
fun<- function (x) sin(2*x)-cos(x)
curve(fun(x), 0, 10)
abline(h = 0, lty = 3)
uni<- uniroot(fun, c(0, 10))$root
points(uni, 0, pch = 16, cex = 2)

 EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.967

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
38

Although the figure shows the presence of more zeroes in the interval [0,10], uniroot gives only one
zero.

The function uniroot.all is an extension of uniroot which extracts many zeroes in the interval.
fun<- function (x) sin(2*x)-cos(x)
curve(fun(x), 0, 10)
abline(h = 0, lty = 3)
all<- uniroot.all(fun, c(0, 10))
points(All, y = rep(0, length(All)), pch = 16, cex = 2)

uniroot.all applies the function uniroot to subdivisions of given interval to locate roots.

This function may not be successful in extracting all roots in the given interval and so cannot be
regarded as a full proof method.

Polyroot function

This function can be used to find zeros of a real or complex polynomial.
The argument for this function is a vector whose coordinates are the coefficients of the terms in the polynomial.
The terms of the polynomial must be considered in the descending order of power.
> x <- c(4,21,3,8)
> y <- c(1,2,3,4)
> z <- c(1,0,0,1)
>polyroot(x)
[1] -0.1930595+0.000000i -0.0909702+1.606736i -0.0909702-1.606736i
>polyroot(y)
[1] -0.0720852+0.6383267i -0.6058296+0.0000000i -0.0720852-0.6383267i
>polyroot(z)

 EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.967

 www.eprajournals.com Volume: 2 | Issue: 12 |December 2016
39

[1] 0.5+0.8660254i -1.0+0.0000000i 0.5-0.8660254i

CONCLUSION
 All numerical algorithms possess certain limitations in addition to their utility in various problems.
Until now there exist no algorithm which give guarantee to find all the solutions of nonlinear equations. Most of
them are able to give at most one root of most equations. It requires prior information to implement these
algorithms.

The numerical algorithms find effective demonstrations in dealing with complicated problems for
which analytical methods cannot be applied or hand calculations cannot be done. The use of any computational
algorithm, analytically or numerical, without the proper understanding of the limitations and shortcomings will
not take us to the correct results.

REFERENCES
1. Esch, L., Kieffer, R., Lopez, T., Berbé, C., Damel, P., Debay, M., &Hannosset, J. F. Numerical Methods for Solving Nonlinear

Equations. Asset and Risk Management: Risk Oriented Finance, 375-381.
2. Jones, O., Maillardet, R., & Robinson, A. (2014). Introduction to scientific programming and simulation using R. CRC Press.
3. Jones, O., Maillardet, R., & Robinson, A. (2014).Package ‘spuRs’
4. Soetaert, K. (2014). Package rootSolve: roots, gradients and steady-states in R.
5. Yuan, Y. X. (2011). Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical

algebra, control and optimization, 1(1), 15-34.

