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ANNOTATION 
On the basis of the direct method and a combination of differential sweep, the article developed a calculated algorithm 

for solving gas filtration, thereby taking into account the convergence of the approximate solution to the exact one. 
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ANALYSIS 
The problems of non-stationary filtering are of theoretical and practical interest [1]. Consider gas filtration 

taking into account pressure and velocity relaxation 

The problem is to find in the region    0 1, 0x t T    
   

of a continuous function 

 ,u x t satisfying in the equation 

     
0

1
( ) , , , , ( , ) 1

( )

t
u u

k x M x t u f x t u R t s ds
m x x x t

   
   

   


 

Initial condition 

     ,0 , 0,1 , (2)u x x x 
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The boundary conditions are chosen depending on the convergence of the integrals 

1

0
( )

dx

k x   and  

1

0

0

( )

( )

x

m d

dx
k x

 
   

If  

1

0
( )

dx

k x
   , then 

0 1

( ) ( ) 0 (3)
x x

u u
k x k x

x x 

 
 

 
 

If  

1

0

,
( )

dx

k x
 

1

0

0

( )

( )

x

m d

dx
k x

 

 

 , then the conditions for 0x   are replaced by the 

condition 

 
0

,0
x

u x

                (4) 

Here    ( ), ( ), , , , , , , ( , )k x m x f x t u M x t u R t s  -the given functions in the field of changing 

their arguments,
 

(0) 0, ( )k k x  and ( )m x moreover, are positive for   00, , ,x M x t u m   in the field 

 0 1,0 ,x t T u     
. 

We assume that all known functions in the    equation are sufficiently  

jt t smooth , 1,..., ,j

T
t j j N N



 
    

 
 

We denote by the  ju x  approximate value of the desired function on the line jt t . We 

approximate the problems by the following scheme 

   
1

1 1 ,

0

1
( ) , , , , ,

( )

1, ,

j
j

j j j j j j i it
i

dud
k x M x t u u f x t u R u

m x dx dx

j n

 


 



 
   

 




     (5) 

0( ) ( )u x x  

If  

1

0
( )

dx

k x
  ,  then the boundary conditions 
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0 1

( ) ( ) 0 1,
j j

x x

du u
k x k x j n

dx x
 


  


                       (6) 

And if 

1

0

,
( )

dx

k x
 

1

0

0

( )

( )

x

m d

dx
k x

 

 

  

then the conditions for 0x   replaced by conditions 

0
( ) , 1, (7)j

x
u x j n


    

Where 

1
, 1,

j j

t j

u u
u j N




    

 

Problem (1) - (7) is solved sequentially from layer to layer starting 1j  , and each time there is a unique 

solution corresponding to the boundary value problem (1) - (2) [1]. 

Estimating the solutions to problem (1) - (7), we obtain 

 

 
 

 
 

1
1

1 , 1

0
2 11

1

, ,
, ,

1 , 1,
, ,

j
j j

j j i i j j

i
j j

j j

M x t u
u R u f x t u

u x c T u c j n
M x t u




 






 








 

    




 

Hence 

 2 11
1 , 1,...,

j j
u с T u c j N 


     

where  

1
max ; max , 1,...,kj k i

u u j N
 

  
 

then easy to get    
2 2

2 11

2

1
c T c T

N

c
u e e

Tc
    

 and also  
2 2

2 11

2

1
c T c T

j

c
u e e

Tc
     for all  1,...,j N

 

Where the constants and - depend only on the given functions. The estimate is based on the maximum 

principle [1], [3]. 
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Similarly, we prove the uniform boundedness of the following quantities.

 
 1

1 1
, ( ) , ( ) , , ( ) , ( )

( ) ( )

j j j j

j jt t t

du du d dd d
u k x k x u k x k x

dx m x dx dx dx m x dx dx

 
     

for all
 

1,...,10, j jt
j u    

Uniform limited functions ,
j jdu d

dx dx



 

depending on 
0

0

lim
( )

x

x

dx

k x 
 

Let 
0

0

lim
( )

x

x

dx

k x 
  

it exist and be finite. 

We write analytically the linear extension formula 

   1

1, , 1,...,
j j

j j

t t t t
E x t u x u j N

 





 
  

 

We construct functions    
1

, , , , ( ) , ( )
( )

t x

u
u x t u x t k x u k x

m x x x


    

 
 using linear extension 

for 
1; , 1,j jt t t j N

     

The resulting family depends on the way the segment is split  0,T . 

The estimates obtained   imply uniform roundedness and equidistant continuity in, a family of 

functions    , , , , ( )t xu x t u x t k x u  
 

These families are compact in uniform convergence. Therefore, it is possible to choose a sequence 

 j  such that 0j  , and the sequence      , , ( )j j j

t xu u k x u
  

 converges uniformly in   and it 

follows that the sequence  ju


 
converges equally in the region  1, 0x t         where 

0 1  . Due to randomness  , we conclude that,
 
 jxu


 converges at 0j  at each point 

 1, 0x t T       . 

In view of the linear extension formula, we have 

         
1

1

0

0 1

1
( ) , , , , , , ( )

( )

( ) ( ) 0

x tx

x xx x

k x u M x t u u f x t u R t s u x s ds
m x

k x u k x u

    

 

 

 

   

 



 

Where ( ) 0    in 0  . 

Passing to the limit in the chosen sequence, which ( , )u x t satisfies   Eq. (1) and with condition (2), 

(3). 

http://www.eprajournals.com/


                                                                                                                                                                           ISSN (Online): 2455-3662 

     EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
          Volume: 6 | Issue: 10 | October 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188 

 

                                                          2020 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 
151 

Suppose 
0

0

lim
( )

x

x

du

k u
  , then it can easily be established that 

 '' '' ' ' '' ' '' '

1 0( , ) ( , ) ( ) ( )u x t u x t c x x t t           where 1c , 1  -is some constant.  

Here 0

0

( )

( )
( )

x
m d

x d
k



 

 




 , an increasing absolutely continuous function in [0,1]. 

Reasoning as in the proof 

1

0
( )

dx

k x
  , we come to the assertion that in the domain  there exists a 

solution to equation (1) satisfying the initial conditions (2) and boundary by conditions (3) - (4). 

The numerical implementation of the solution of problems (5) - (6) will use the modified sweep method 

[1], 

Direct sweep: to construct a numerical solution ( ), ( )j jx x  in the field  0 ,x     of a 

sufficiently small number, by the formulas 

 

 

1

0

1
1

1 , 1

00

( , ,1
( ) 1 ( ) ,

( )

( , , )1
( ) 1 ( , , )

( )

x
j j

j j

j

x j
j j

j j i j i j j

ij

M t u
x m V d

V x

M t u
x m u R u f t u d

V x


   




    








 



 
  

 

   
     

  




 

where 

 1

0

0

, ,
( )

( ) 1
( )

h
j j

x

j

M t u
m d

V x dh
k h


 





 



 

We seek the solution of integral equations in the form of a series. 

0

( ) ( ), 1,j j

j

V x x j N




   

0

( )j

j

x




 - the series converges uniformly. 

By the method of successive approximations, the terms of the series are determined by the following 

relations 

  1

, 1

0
0

0

( , , )
( )

1, ( ) 1 1,2,...,
( )

h

j j

j kx

j

M t u
m d

x dh j N
k h


   


 





   


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( )j x absolute continuous and monotonically increasing function. To calculate the integrals involved 

in the recurrence relations, the method of singling out features proposed by Kontorovich is used 

After finding ( )j x and ( )j x , 1,j N  on the interval  ,1  using the Runge-Kutta method, we solve the 

system of equations 

 
 

 
 

   2

2
1

1

1/

1

1

, ,
( )

( )
, 1,

, ,
( ) , , ( )

( )

j j jx

j j

j
j j j j

j j j j j

j

M x t u
x m t u

k x
j N

M x t u x x
x R u f x t u m x

k x






 
 














 



 

    
  



 

with initial condition 

 

 

( )

( ) , 1,...,

j jx

j jx

x

x j N





  

  







 
 

Reverse run: 

We consider the equation in the form 

 
1

1

1 1 , 1

1

( , , )
( , , ) , ,

( )

j
j j

j j j j i j i j j

tj

M x t u
M x t u u u R u f x t u

du

dx k x







  



 
   
 



 

Under the initial condition 

 

 

1
(1) , 1,...,

1

j

j

j

u j N



  

 

This equation has singularities for 0x   

If   1

0
0

( , , )
lim

( )

x
j j

x

t u
m d

k x

 
 



   (*) exists, of course, it can be eliminated by calculating the limits 

0

( )
lim

( )

j

x

x

k x




 and

0

( )
lim

( )

j

x

x

k x




 of 1,...,j N . Eliminating these features, we find a solution according to the 

Runge-Kutta method for 1,...,j N
 

If it does not exist, then we first construct the solution of the equation in the region 1x   , according to 

the Runge-Kutta method 

Then using the built. 
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 

1
1

1 , 1

1

( , , )
( , ,

( ) ( ), 1,...,
( ) ( ) ( )

j
j j

j i j i j j

tj

j j

j jx

M x t u
u R u f x t u

u
U x d V x j N

V k V




 


  




 



   
   

    
 
 
 




 

We find ( )ju x  in the area  0, , 1,...,j N  

We propose one of the possible methods for the numerical solution of problem [1] and [6]. 

Note: An approximate solution constructed by the method of lines converges to an exact solution with a speed 

0( ) where is a time step  
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