
                                                                                                                                                                 ISSN (Online): 2455-3662 
      EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
        Volume: 6 | Issue: 10 | October 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188 

 

                                                             2020 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 383 

 

MATHEMATICAL MODELING AND ASSESSMENT OF 
THE TENSION STATE IN THE THREAD CONNECTION 

OF WORKWEAR PARTS 
 

 

Shin Illarion Georgievich 
Professor,  

Tashkent Institute of Textile and Light 

Industry,  

Uzbekistan. 

Bebutova Nargiza Narzullaevna  
Senior Lecturer of the Department of Light 

Industry Technologies of the Bukhara 

Engineering and Technological Institute,  

Uzbekistan.  

 

 

 

Pulatova Sabohat Usmanovna  
Professor of the Department of Light  

Industry Technologies of the Bukhara  

Engineering and Technological Institute,  

Uzbekistan. 

         

 
ABSTRACT 

When connecting a dense garment fabric with a thread seam, considering it conditionally continuous, through holes are 

formed on the materials being fastened from the reciprocating movement of the sewing needle, i.e. the formation of 

stitches is associated with a violation of the continuity of the material. This article is devoted to the issue of assessing the 

stress state developed in a thread connection under the action of operational loads and the establishment of some 

regularities connecting the external load, material strength, hole diameter (thread), stitch pitch, etc. 

KEY WORDS: operating load, elastoplastic deformation, reciprocating motion, material continuity, stitches, line, 

sewing needle, tension, microcracks, isotropy. radial tensile force, intensity, outer contour. 

          

DISCUSSION 
Under the action of repeatedly - variable operational loads that occur in the most loaded areas of workwear 
parts, elastic-plastic deformations of the material and corresponding tensions appear. These tensions are the 
main cause of destructive processes in the thread joints of clothing parts, in particular, materials connected by 
threads using various seam designs. 
          When connecting a dense garment fabric with a thread seam, considering it conditionally solid, through 
holes are formed on the materials being fastened from the reciprocating movement of the sewing needle, i.e. the 
formation of stitches is associated with a violation of the continuity of the material. Although these holes are 
filled with filament, the tensile strength of such a material will decrease due to the fact that the holes formed 
behave as tension concentrators with the greatest degree of uneven distribution of the acting loads. It is quite 
obvious that in the zone of the highest tension, destruction will begin in the form of an incipient microcrack that 
grows into a main crack. 
      It is of great practical interest to assess the tension state developed in a thread joint under the action of 
operational loads and to establish some regularities connecting the external load, the strength of the material 
(fabric), the diameter of the holes (thread), the stitch pitch, etc. 
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Fig. 1. A strip with a central circular hole evenly stretched by the force P per unit of width (a) and 

the diagrams of tangential (ring) stress changes along the border of the hole (b). 
 

Within the width of the strip, there are two small circular holes with a radius. Consider one of these holes 
and place the origin of the coordinate axes in the center of the hole O. The axis is directed along the strip, the 
axis is perpendicular to it, the thickness of the strip is taken to be equal to unity (unit thickness). 

The distribution of tensions at points located near a small hole changes sharply, however, in accordance 
with the Saint-Venant principle, the hole will not affect the tensions at points sufficiently distant from it (larger 
than the radius of the hole. Draw a circle with such a large radius from the center O, so that the tensions at the 
points of this circle can be considered unchanged due to the presence of a hole. Thus, annular plates with an 
inner radius a and an outer radius are distinguished. The tensions on a circle of radius will essentially be the 
same as in a plate without a hole. 

Therefore, for an arbitrary point t ,lying on the outer circle, the forces on the site tangent to the circle 

can be written using the same formulas as for simple tension [1]: 
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where is the   angle, determined by the location of the section under consideration relative to the axis Ox . 

Expressions (1) are valid for r=в. 
These forces inside the annular plate create such a stress state that can be considered as arising from two types 
of forces: 
1) radial tensile force with intensity P / 2 and constant along the entire outer contour; 

2) efforts that vary depending on the angle  : 
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The tensions arising in the annular plate from constant forces P / 2 can be determined by the formulas obtained 
for a thick-walled pipe [2]. 
The stresses caused by varying forces can be determined from a stress function of the form 

                                               2cos)(rf
                       (2) 

Substituting this expression into the continuity equation 
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we obtain an ordinary differential equation of the fourth order to determine: 
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The general solution will be presented as 
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Taking into account (2), we obtain the tension function 
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Having the tension function (6), normal 
, y and shear tensions  XУ   are found as the second derivatives 

of it. 
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Converting these derivatives to polar coordinates, we obtained the following expressions for tensions 
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(7) 

Let us integrate expressions (7) and determine the arbitrary constants included in them from the conditions on 
the outer and inner contours of the annular plate. The conditions for the outer boundary correspond to 
dependencies (1), and the inner boundary is characterized by the fact that the hole edge is free from external 
forces. 
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taking these conditions into account, we have a system of equations with constants A, B, C, and D 
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Having solved the system of equations (9) and sloping a / b = o (the plate is considered to be infinitely large and 
very small in comparison with, we discard the terms containing a / b. Then we obtain the following values of the 
integration constants: 
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Substituting these values of the constants in Eqs. (8) and adding the tensions arising from uniform stretching of 
the intensity p / 2 acting on the outer contour of the annular plate, as a result, we obtain the following 
expressions for the tensions. 

 





















.2sin)
23

1(
2

;2cos)
3

1(
2

)1(
2

;2cos)
43

1(
2

)1(
2

2

2

4

4

4

4

2

2

2

2

4

4

2

2











r

a

r

aр

r

aр

r

aр

r

a

r

aр

r

aр
r

r

                                          (11) 

 

With increasing radius r , i.e. with distance from the hole, the second and third terms in brackets in expressions 
(11) rapidly decrease. If we discard them, then for the distant points we obtain the same tension state as in 
simple tension, i.e. defined by formulas (1).  

When approaching the edges of the hole, the tensions and decrease along the edges, when ar  , we 

get: 

0 rr                                                                                                            (12) 

 
The voltages take on values 

    .cos2  рр                                                                                                       (13) 

The results of the analysis of tension changes along the edge of the hole depending on the angle are shown in 
Fig. 1, c. This tension reaches its highest value at the nodes or, i.e., at the points m and n, lying at the ends of the 
diameter perpendicular to the direction of tension, and is equal to 

             
.3max р                                                                                          (14)  

Thus, the maximum tensile stress at the edges of the hole is 3 times greater than the normal tensile tension in the 

unweakened section of the plate. At the ends of the longitudinal diameter, i.e. at 0 and   the 

tension  is compressive and is 

                               .р                                                                                             (15) 
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the tension  passes through zero and the tension field is 

distributed into zones with compressive and tensile tensions. 

For the cross section of the plate passing through the center of the hole, i.e. for or
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The diagram of these tensions is shown in Figure 1, b. From formula (16) and the graph it can be seen that large 

tensions arise only at the edges of the hole and as the radius r increases, they rapidly decrease, approaching the 

value р . Thus, the effect of a small hole is of a purely local (local) nature. The local nature of 

tensions  substantiates the correctness of solution (11) obtained for an infinitely large plate to a plate of 

finite width. If the width of the plate is not less than four diameters of the hole, the error of solution (11) in the 

calculation
max

  does not exceed 6% [1]. 

A local increase in tensions in places of abrupt changes in the contours of a part is used to characterize the 
degree of tension concentration, assessed by the tension concentration factor for their elastic distribution or the 

theoretical tension concentration factor k  [3]. The tension concentration factor can be calculated as the ratio to 

the tension 
max

 in the unweakened section: 
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k
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where the concentration coefficient k depends on the ratio of the hole diameter to the plate width (Fig. 2). 

 

 
 

Fig. 2. Change in the concentration factor k depending on the ratio a ∕ b, calculated as the ratio of 

the highest tension
max

  to tension in the unweakened section (1) and to the average tension in 

the weakened section (2) 
 
In practical strength calculations, it is customary to compare the highest tension with the average uniform 
tension in a weakened section, determined by the formula: 
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then the concentration factor should be calculated from the dependence 
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With this method of determining the concentration coefficient, it decreases as the hole diameter increases (Fig. 
2). 
 Thus, it is obvious that the most dangerous holes of small diameters, causing the greatest 
concentration of tensions. All of the above is true under the assumption of an isotropic ideally elastic material. 
Taking into account the fact that during the operation of overalls in certain loaded areas, various types of 
tension-strain state may arise, it is also necessary to consider some special cases. 
 
Having the solution (11) for tension or compression in one direction, using superposition, one can obtain a 
solution for tension or compression in two perpendicular directions. If we assume that the tensile tensions in the 

two perpendicular directions are equal р , then tensile tensions act on the boundary of the hole р2  

[1].
 

 
Fig. 3. Strip with a central circular hole under the 

action of tensile compressive stresses along the coordinate axes 

Assuming that tensile tension acts in the direction х , and compressive tension р acts in the direction у  

tension р  (Fig. 3), we get the case of pure shear. In accordance with dependence (11), the tangential (ring) 

tension at the boundary of the hole will be at О  and П  
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At points m and n holes defined by angles
2


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2

3
  , tension р4 Thus, at pure 

shear at a sufficiently large plate size, the highest tangential tension is four times higher than the applied pure 
shear tension. 
Normal and shear tension determined by Eqs. (11) are suitable for both the plane tension state and plane 
deformation. But for the case of plane deformation, axial tensions must act on the flat ends of the solid 

)(   TZ v                                                                                      (21)
 
 

where v - is Poisson's ratio. 

 These tension act perpendicular to the plane xy so as to make the strains equal Z to zero. If the 

hole diameter and the distance between the ends are of the same order of magnitude, then the problem becomes 

three-dimensional. In this case, tension   remains the largest component of the tension state and its value is 

very close to that given by the two-dimensional theory. 
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 If in an infinite plate under the action of tensile tension P, there is an elliptical hole and one of the 
main axes of the ellipse is parallel to the direction of tension, then the tensions acting at points on the surface of 
the hole located on the other main axis are: 

)21(
b

а
р                                                                                          (22) 

where a2  is the axis of the ellipse, perpendicular to the direction of extension; 

b2  is the other axis of the ellipse. 

 Consideration of holes in the form of an ellipse in a plate can have a practical application when 
calculating the strength of thread joints, when under the influence of operational loads loosening of the seams 
occurs and the initial hole in the form of a circle is transformed into an ellipse. 

 
Fig. 4. A strip of finite width with a round hole on the axis of symmetry, evenly stretched by force P 
 
In conclusion, consider the case of a plate of finite width with a round hole on the axis of symmetry (Fig. 4), 

when dr 5,02   [1]. The tangential tension at the boundary of the hole is n equal to р3,4 and 

р75,0 at a point m on the boundary surface of the plate. 
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