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ABSTRACT 
In This paper the concept of  transversality due to Thom is introduce. This is the smooth counterpart of the notion of general 

position and is used similarly to extract from messy entanglements their essential geometric content. In this paper  it is applied 

to prove that every function can be approximated by one with a very regular behavior at singularities, at Morse function. It is 

also used to define intersection Numbers.  

The notion of  transversality  is a smooth equivalent of the notion of general position. For instance, two sub manifolds 

Mm and Vr of  Nn ,      , are transversal if their intersection looks locally like the intersection in Rn of the subspace of 

the first m coordinates with the subspace of the last r coordinates. 

This geometric idea is properly expressed as  transversality  of maps and defined in terms of their differentials. This is done in 

Section 1.The ability of deform maps to a transversal position is one of the most powerful techniques of differential topology. 

A general theorem in this direction is given here in 2.1 

 

TRANSVERSAL MAPS AND MANIFOLDS 

(2.1.1) 

Definition: Let f: M  N, g : V  N be two smooth maps. We say that f is transversal to        , if when ever f(p) = 

g ( q ) , then  

Df( TpM) +Dg(TqV) = T f(p)N. 

Note that this condition is equivalent to the requirement that the composition be surjective. 

    
  
→       

      

       
 

Be surjective. 

Obviously, if dim M + dim V < dim N, then f  g is possible only if f ( M ) and g( V ) are disjoint. 

http://www.eprajournals.com/


                                                                                                                                                                                   ISSN (Online): 2455-3662 

     EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
          Volume: 6 | Issue: 11 |November 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188 

 
 

                                                                  2020 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 55 

The notation f  g will be replaced by f  V whenever V is a submanifold  and g an identity map. The meaning of M 

 V is also clear. 

In certain situations the second map in 2.1.2 is a differential of a map ;hence the composition is also a differential. 

This is the case when V is a fibre of a smooth fibre bundle N with projection  . Then, if   maps a manifold M into 

N, the differential of     is precisely the composition in. 

 

2.1.2. This differential is surjective if and only if the point  ( V ) is a regular value of    Thus we have: 

(2.1.3)  

Proposition: Let f: M   N, where N is a smooth fiber bundle with projection  , and let Fq be a fiber over a point 

q. Then f  Fq i f and only if q is regular value of     

Viewing the product W x V as a bundle over W, we obtain from this and the Brown-Sard Theorem the following: 

 

(2.1.4)  

Corollary:  Iff : M  W x V, then there is a dense set of points q  V such that f  W x (q). 

As another corollary we have a characterization of cross sections: 

(2.1.5)  

Corollary: Let N be a smooth fiber bundle over M. A submanifold V   N is a cross section of the bundle if and 

only if V intersects every fiber Fq transversely in a single point s (q). 

Proof :The necessity is clear. To prove that the condition is sufficient we have to show that the map s: M   N is 

smooth. To do this, we first note that s is the inverse of   V and that, by 1.1.3, 

D(   ) : Ts(q)V  TqM 

Is surjective. Since dim V = dim M, D(    ) is an isomorphism. Now, it follows from the Implicit Function Theorem 

that the inverse of    is smooth.  

For example, if V is the image of the imbedding R  R
2
given by 

t  ( t 
3
 , t ) , 

then V is a smooth submanifold of R
2
and a continuous section of R

2 
considered as a trivial line bundle over the x 

axis. But it is not a smooth section: It is not transversal to the y axis. 
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The notion of transversality generalizes that of a regular value: Iff: M  N and q  N, then q is a regular value of f if 

and only if  f   {q} and( f |  M )  {q} Replacing q by a closed submanifold V, we obtain the following 

generalization of 1.1.7: 

(2.1.6)  

Proposition: If f Vand  ( f |   M  )      then W=       is a neat submanifold of M. Moreover, vW = f*vV. 

Proof : Let p  W and q = f ( p). By II,1.2.3(b) there is in N a neighbourhood U of q and a map h: U  R
r 
such that  

            

Moreover, we can identify Dh at q with  

TqN  TqN / TqV. 

Now, 

   ( U) is an open neighbourhood of p,  

    ( U)    =          , 

 

and both Dhf and D(hf  |dM) are surjective by the assumption. By 1. 2.3(b) again, W is a submanifold of M. 

Note that codimM( W) = codimN( V ) . 

Let now d be the dimension of the kernel of the composite map 

    
  
→    

 
    

   

  
 

Since  0
 Df is surjective, m - d  codim V, i.e., d  m - codim V =dim W. On the other hand, TW   Ker( 0

 Df); thus 

d  dim W. It follows that d = dim W ; hence Ker( 0
 Df) = TW. Therefore f: W  V induces a bundle map 

 

TwM / TW = vW  vV = TvN/ TV 

A very nice application of 1.1.4 is a simple proof, due to M. Hirsch, of Brouwer's Fixed Point Theorem. 

 

(2.1.7)  

Theorem: There is no (continuous) retraction         . 

Proof: Observe first that it is enough to prove that there is no smooth retraction. For if 
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           . 

is a continuous retraction, then there is a smooth 1/2-approximation r' to r that is also the identity map on    . This 

is not yet a retraction, but since the origin is not in r'(D
n
) we can compose r' with the projection from the origin to 

obtain a smooth retraction. 

Suppose now that           is a smooth retraction, let p    be a regular value of r, and let L be the connected 

component of r
-1

( p) containing p. Since r 
-1

( p) is a neat submanifold, L is an arc with end points p andq,p  q and q 

    . This implies p = r ( q ) = q, a contradiction.  

The notion of transversality already appeared, in disguise, in the definition of neat submanifolds:1,2.8.1 means 

nothing else but that M  dN.Moreover, as we have seen, this condition characterizes neat submanifolds. 

The following theorem, which for simplicity is stated for closed manifolds only, provides the expected geometric 

justification of the definition of transversality. 

(2.1.8)  

Theorem :Let M
m

 and V
r 
be closed transversal submanifolds  of N

n 
and let p  M  V. If n  m + r, then there 

is in N a chart U about p in which U  M is represented by the space of the first m coordinates and U  Vis 

represented by the space of the last r coordinates. 

 

Proof  : We will prove this in the special case dim N = m + r. we can say that there is a chart U in N about p such 

that U  M corresponds to the space of the first m coordinates. We will simply identify this chart with R
m
 X R

r
 The 

part of V lying in it can then be represented by an image of R
r 
under an imbedding 

f: R
r R

m
x R

r
, 

where 

               and f (0) = 0 = p. 

 

The transversality assumption means that the Jacobean of   is of rank r at 0. Now, consider the map  

g : R
m

x R
r R

m
x R

r
 

given by  

g ( x , y ) = (x +          )x R
m
, Y  R

r
. 
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Note that g at 0 is of rank m + r; hence it is a chart if restricted to a suitably small neighbourhood U of 0 in R
m

x R
r
.  

Since  

g(0, y ) = f( y ) , g(x, 0) = (x, 0), 

it is precisely the chart we were looking for. 

 

(2.1.9)  

Corollary: Let M
m

,   
    

 be submanifolds  of N
n
, n = m + r. Suppose that V1V2 intersect M in the same point p 

and that this intersection is transversal. Then there is an isotopy  of N that keeps M fixed and brings V1to 

coincide with V, in a neighbourhood  of p. 

 

Proof :By 1.1.6 there is a chart U = R
m

x R
r
in N about p that intersects M in R

m
x 0 and V1 in 0 x R

r
A sufficiently 

small chart U2= R
r 
about p in V2 is represented in U as an imbedded R

r 
transversal to R

m
 x 0 and intersecting it in the 

origin. 

 

Now, choosing  “straighten” U2 by an isotopy so that it becomes a linear subspace of R
m

x R
r 
still transversal to R

m 
x 

0. An obvious isotopy brings it then to coincide with 0 x R
r
. These isotopies  restricted to the unit disc D

r 
in U2 and 

set to be stationary on M extend to an isotopy  of N that sends 

D
r V2to V1. 

2.2 

TRANSVERSALITY THEOREM 

The concept of transversality derives its strength from the theorem of Thom asserting that if      M   N and V is a 

submanifold of N, then f can be approximated by maps transversal on V. We will obtain the theorem of Thom as a 

consequence of the following fundamental theorem: 

(2.2.1) 

Theorem: Let   be a vector bundle otter V and let   M   N= E (  ) be a smooth map. Then there is a section s: 

V  E such that f  s. 

 

http://www.eprajournals.com/
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Before proving 2.2.1 we will consider the following situation: We are given a fiber bundle  with projection  and 

base E, and maps 

f: M  E, g1: V  E (  ) . 

This yields a diagram 

 

          
  
       

  
←   

 

 

      
 
      

     Dig : 2.2 (a) 

where M1,  1are, respectively, the total space and the projection of the induced bundle f *   , fl is the natural map, 

and g =  gl. We have: 

(2.2.2) 

Proposition: If   fl g1     then   f  g. 

Proof  : Suppose that f ( p ) = g ( q ) . We have to show that 

Df( TpM) + Dg(TqV) = Tf(p)E. 

 

Note first that there is a point P1in M1such that f 1 ( p1 ) = g1(q) and 

 1(p1)=pThe assumption fl g1, means that 

   (     )     (   )              

 

Now apply D  to both sides of this and note that D  ,D  1are both surjective. Thus, by commutativity, 

                       

     (     )      (   ) 

   (        )    (   ) 
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Proof of 2.2.1 Assume first that   is trivial, i.e., E = V x R
k
. Then 1.3.1 yields a (dense set of points) q in R

k 
such that 

f   V x {q} Of course, each such V x { q } can be interpreted as a section of  , which proves 2.2.1for a trivial bundle 

 . 

In the general case there is a bundle   such that       is trivial.There is a natural projection   of E (  ) onto E, 

which is a projection of a vector bundle. Thus we have the left part of diagram 2.2(a) 

Since   is trivial, there is a section g1 transverse to f1 . This completes the diagram 2.2(a)and we can apply 2.2.2 to 

deduce that g   f: It remains to be shown that g is a section of   This follows from the fact that g1 is a section and the 

obvious commutativity of the diagram 

         

 

 

     E 

where all maps are projections of vector bundles. 

 

2.3 

THE MORSE LEMMA 

 

Let X be a smooth manifold,       a smooth function. Since   is one dimensional as a manifold, the derivative 

of f must have rank zero or one at each p   X. 

Thus a critical point p of f is simply a point for which all the partial derivatives of f vanish. Relative to any 

coordinate system we have: 

(
  

   
)
 

   (
  

   
)
 

   

However, not all critical points are created equal. The following tool encodes the critical information that we will 

use to construct normal forms for the structure of functions near most critical points. 

 

Definition 2.3.1.  

Let       be a smooth function. 

http://www.eprajournals.com/
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(1) The Hessian of f at p, with respect to local coordinates x1, … , xn, is the matrix 

    (
   

      
)
 

 

of second order partial derivatives: 

 

[
 
 
 
 
 (

   

   
 
)
 

  (
   

      
)
 

       

(
   

      
)
 

   (
   

   
 
)
 ]
 
 
 
 
 

 

 

(2) A critical point p of f is degenerate if det  Hp(f) = 0. Otherwise, p is non- 

degenerate. 

(3) The index of f at a non-degenerate critical point p is the maximum dimension of a vector subspace of  n
on 

which Hp(f) is negative definite. 

Remark2.3.2 Hp(f) is negative definite on V if the corresponding bilinear form 

H :  n 
x  n   

is negative definite, i.e. H( v , v) <0 for every non-zero v   V . 

Equivalently, the index can be viewed as the number of negative Eigen values of the non-singular Hessian matrix. 

Note that we have defined the Hessian of f at p in a way that depends on the 

particular chart chosen at p. There also exists an invariant formulation of the Hessian using the concept of intrinsic 

derivative .While we have avoided the latter approach for simplicity, we must now do a little work to verify that the 

degeneracy and index of a function at a point are well-defined notions. 

Proposition 2.3.4. The degeneracy and index of f at p do not depend on the coordinates chosen on X. 

Proof. Let A = Hp(f) be the Hessian matrix with respect to the coordinates  

x1 ,…,  xn given by a chart        of X at p.  

Let 

 :  (U)   (U) 

be a change of coordinates defined by 

http://www.eprajournals.com/
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 (x1 ,…,  xn) = (y1(x1 ,…,  xn), … , yn(x1 ,…,  xn)). 

Then the matrix P =(d  )0 is non-singular, and the matrix of the Hessian of f at p with respect to the coordinates y1 

,…,  yn is given by (P
-1

)
T
AP

-1
.  

 

The latter claim is an exercise in quadratic forms, namely that a change of coordinates replaces a quadratic form 

with matrix A by a quadratic form with matrix B
T
AB, where B is non-singular. Clearly A is singular  iff  BAB

T 
is 

singular. And if A is non-singular, than A and BAB
T 

have the same index by Sylvester's Law . 

 

By the Submersion Lemma, a smooth function is locally equivalent at a regular point to projection onto the first 

coordinate. The Morse Lemma provides normal forms for the local behavior of smooth functions at non-degenerate 

critical points. 

 

Theorem 2.3.5 (Morse Lemma). Let        be a smooth function, p  X a non-degenerate critical point of f, 

and ¸ the index of f at p. Then near p, f is equivalent to the map 

            
      

      
       

  

Our proof of the Morse Lemma fleshes out the sketch given by Milnor and will require the following calculus result. 

 

Lemma 2.3.6. Let f be a smooth function on some convex region      , with  f(0) = 0. Then there exist smooth 

functions           on V with 

            = ∑     
 
             

and  

gi(0) = 
  

   
                   

Proof: Let  

            

 ∫
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 ∫ ∑
  

   

 

   
              

 

 

 

by the fundamental theorem of calculus and the chain rule. Note that convexity guarantees that the above integral is 

defined. So it suffices to set 

            ∫
  

   
              

 

 

 

where gi(0) = 
  

   
    again follows from the fundamental theorem of calculus. 

Proof of the Morse Lemma. In Part A, we will prove the existence of a change of coordinates on the domain which 

yields the diagonalized  quadratic form 

 

       
       

 . 

In Part B we will show that the index of  

        
      

      
        

             

 

Part A. We can assume without loss of generality that 0 = p = f(p) and X =   ,since we are only concerned with 

local equivalence., there exist smooth functions          on   with 

            ∑              
 

   
 

and  

gi(0) = 
  

   
    

Since 0    ,is a critical point, we have 
  

   
        

for every1   i  n. Therefore, this time to each of the gi.So there exist smooth functions hij, 1  I , j   n, such that 

            = ∑      
 
             

Substitution gives 

            = ∑        
 
               

Furthermore, we can assume hij= hji(otherwise replace each hijwith  

1/2 (hij+ hji)). 

http://www.eprajournals.com/
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Differentiating gives 
   

      
(0) = 2hij(0), so the matrix 

(hij(0)) = ( 
 

 
 

   

      
(0))). 

By hypothesis, 0 is a non-degenerate critical point of f, so we conclude that (hij(0)) is non-singular. 

 

We now proceed as in the proof of the diagonalization of quadratic forms. 

Suppose by induction that there exist coordinates        on a neighbourhood U1 of 0 such that 

              
         

  ∑         

 

     
          

 

on U1, where the Hij are smooth functions with Hij= Hji and the matrix (Hij(0)) non-singular. We have already 

established the base case r = 0. 

For the induction step, we first show that we can make Hrr(0)   0 by a non- 

singular linear transformation on the last n-r +1 coordinates. The proof works the same for any r, so for simplicity 

let r = 1. If we have Hii(0)   0 for some       then we are done by transposing u1 and ui. Otherwise, since 

(Hij(0)) is non-singular, 

there exists some Hii(0)   0 with i  j. Through a pair of transpositions, we can assume H11(0) = 0 and H12(0) = 

H21(0)   0. We define a new set of coordinates   
      

 on U1 by 

  
  

 

 
        

  
  

 

 
        

  
    for i >2 

This linear transformation is invertible with inverse given by 

      
    

   

      
 
 
   

   

     
 for i >2 

Substituting in these new coordinates and regrouping terms, we have  

http://www.eprajournals.com/
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     ∑   
   

   
  

 

     
    

with  

  
                           

So without loss of generality we assume Hrr(0) >0 (sending ur to -ur if necessary). Then there exists a neighbourhood 

      on  Hrr  is positive .We  define a new set of coordinates        by 

vi= uifor i  r. 

   √            [   ∑
              

               
] 

 

Note vr is well-defined and smooth on U2. A simple calculation shows  

   
   

 √    

So 
   

   
        It follows from the Inverse Function Theorem that the change of coordinates map   defined by 

(       )  (v1(            vn(       )) 

is a diffeomorphism in some sufficiently small neighbourhood            Then 

     
          

  ∑        

 

     

 

 

    
          

  [  
        ∑      ∑

  
    

   
      

] 

 ∑
  
          

   
   

 ∑        

         

 

 

The term in brackets is   
  so it is clear that we can choose smooth functions    

          for i > r so that 

f(       ) =∑    
   

   ∑         
 
               

 

with           

http://www.eprajournals.com/
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 Further more, 

   
  
           

                 
   

 is non-singular. 

This completes the induction step and the first part of the proof. 

Part B. Define g :     by 

g(       ) =         
      

      
        

  

 

Computing partial derivatives we have  

      [

     
     

  

] 

 

The first   basis vectors span a subspace V   (n) on which Hp(g) is negative definite, so the index of g at p is at 

least  . The latter basis vectors span a subspace W    of dimension n -   ¸ on which Hp(g) is positive definite.  

 

If there exists a subspace   of dimension greater than   on which Hp(g) is positive definite, then    and W would 

intersect nontrivially, a contradiction. Therefore, the index of g at p equals   . 

 

A function f : X    is called Morse if all of its critical points are non-degenerate. Between the Submersion Lemma 

and the Morse Lemma, we have completely deter-mined the local structure of Morse functions.  

 

2.4. MORSE FUNCTIONS 

 

Suppose now that we are given a real valued function f: M  R. If, at a point   p  M, Df is non-degenerate, then, as 

we know, f at p is equivalent to a projection: non-degenerate in this case means the same as being of maximal rank. 

If Df  is degenerate at p, i.e., p is a critical point, then the local behavior of f at p can be quite complicated. 
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A fundamental idea due to M. Morse was to single out a class of functions with a particularly nice behavior at 

critical points and to show that they form a dense set, “Nice behavior” means that at critical points they behave like-

i.e., are equivalent to-one of the quadratic functions ∑    
                In particular, the list of possibilities is-

up to equivalence-finite. 

 

As usual, we prefer an invariant definition and the easiest way is to work in the cotangent space. Recall that,  

given  

f: M  R, df: M  T*M 

is the section of the cotangent bundle given at  

p  M by df ( X ) = X ( f ) , X  TpM. 

 

(2.4.1) Definition: We say that p  M is critical if df = 0 at p, i.e., if df  intersects the zero section Mo of the 

cotangent bundle above p. We say that p is a non-degenerate critical point if this intersection is transversal. A 

function f which has only non degenerate critical points, that is, such that df   Mo is called a Morse function. 

(2.4.2) 

Lemma: Critical points of a Morse function are isolated. 

 

We will delay for a moment the investigation of the local behavior of Morse functions and begin by showing that 

there are, indeed, a lot of them. 

(2.4.3) 

Lemma :Let M be a submanifold of R
k 

and let f: M  R. There is a dense set of linear functions L: R
k R such 

that f - L restricted to M is a Morse function. 

Proof We will build a diagram of spaces and maps in the following way: 

Begin with the cotangent bundle of R
k 
restricted to M, i.e., T*R

k
|M. This is also a bundle over T*M with the 

projection  .  

 

Then the map 
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df: M  T*M 

yields the induced bundle with total space E and all this forms the 

 
 
       

    
←     

 

        

 

 
  
→     

 

To get the triangle on the right, note that T*R
k 
I M is a trivial bundle, hence by 1.3.1 there is a dense set of constant 

sections M x {q} that are transverse to g. A constant section is a differential of a linear map L: R
k R. Thus to 

complete the diagram we choose as L a linear map such that dL |M      and observe that  

              . 

Now, 2.2.2 implies that df  d ( L (M ) , i .e., that d (f – L|M) is transversal to the zero section. 

(2.4.4)  

Theorem : Given f: M  R and  >0, there is a Morse function g : M  R such that |f-g | < . 

Proof: Consider M as a submanifold of the unit ball in an R
k 

and take as L a linear function such that |L| <   in the 

ball. 

Now, let M be a manifold with compact boundary and suppose that  M = V0 V1where the V1 are disjoint and 

compact.  

 

(2.4.5)  

Theorem: There is a Morse function f: M  I such that: 

( a ) f has no critical points in a neighbourhood of  M; 

( b ) f 
-1

 ( i ) = Vi ,i = 0,1. 

 

Proof:  Let  M x [0, 1)  M be a collar of  M. there is a smooth function g : M  I with the following properties: 
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g(x, t ) = t  for (x, t )  V0x [0, ½ ], 

 

g(x, t ) = 1 – t  for (x, t )  V1x [0, ½ ], 

 

1/4 <g ( x ) <3/4 elsewhere. 

Then g has properties (a) and (b) but is not necessarily Morse. To obtain a Morse function we assume that M is a 

submanifold of the unit ball in an R
k
and consider the function f = g +  L, where  : M + I is smooth, equals 0 in  M 

x[0,1/2] and equals 1 in M -  M x [0, ½] and L is a still to be chosen linear map of R
k
. 

Clearly, f satisfies (a) and, if |L|  <1/4 in M, then it satisfies (b) as well. 

Assume that some Riemannian metric is given in T*M. 

Since  

                      

we see that by taking L “small” we can make         ( as small as we want in the compact set  M x [0,1/2]. In 

particular, since |dg| is bounded away from 0 in this set, we can achieve that 

                      >0 

in  M x [0,1/2]., 

 

i.e., that f  has no critical points there. Then, if L is such that g + L is Morse in M, the same is true of f = g +  L. 

 

2.5 Morse Functions are Generic 

We have seen that Morse functions have simple local behavior, but this result would be of little use if few functions 

satisfied the Morse property. In this section, we will see that in fact almost all functions are Morse. First, we had 

better make almost all precise. 

Definition 2.5.1 A property P is generic if the set 

{                            } 

is a residual subset of   (X , Y ). 
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The goal of this section is to show that the quality of being Morse is a generic property of smooth functions. Our 

strategy will be to translate non-degeneracy into a  transversality condition on jets and apply the Thom 

Transversality Theorem. 

 

Sr is the smooth submanifold of J
1
(X ,  ) consisting of those jets which drop rank by r. For a smooth function 

     , only S0 and S1 can benon-empty. 

 Moreover,  

              

maps critical points to S1 and regular points to S0. The following proposition provides the key link between non-

degeneracy and transversality. 

 

Definition2.5.2 Let      be a smooth map of manifolds. f is stable if the equivalence class of f  is open in 

   (X , Y ). with the    topology. 

 

Informally, f is stable if all nearby maps look like f. Note that if f is stable, 

then all of its differentially invariant properties are unchanged by sufficiently small perturbations of f. 

2.6 NEIGHBORHOOD OF A CRITICAL POINT 

There remains to investigate the behavior of a Morse function in a neighbourhood of a critical point. 

Suppose that p is a critical point of      and choose a local chart at p . The Hessian off at p is the matrix of 

second derivatives off at p . It depends on the choice of the local chart. However: 

 

(2.6.1)  

Lemma: Let p be a critical point off: Then p is non-degenerate if and only if the Hessian off at p is of maximal 

rank. 

Proof:  A choice of a chart in a neighbourhood U of p also gives a trivialization of the cotangent bundle restricted to 

U, that is, a projection 

            
    

http://www.eprajournals.com/


                                                                                                                                                                                   ISSN (Online): 2455-3662 

     EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
          Volume: 6 | Issue: 11 |November 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188 

 
 

                                                                  2020 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 71 

p is non-degenerate if and only if      
   is a regular value of   d f , i.e., if the differential of this map at p is 

surjective.  

In the chosen local coordinate system this means that the Jacobean of  df is to be of maximal rank. However, the 

map   df simply assigns to every point the coordinates of df at this point; thus its Jacobean is the Hessian of f at P. 

(2.6.2) 

 Proposition: Suppose that p is a non-degenerate critical point of f: 

Then in some system of local coordinates at p, f is given by 

     ∑     
  

 
      

 

Proof: Let f be a real valued function defined in a neighbourhood of 0   R
m
. 

Suppose that the Hessian of f at 0 is of maximal rank and that f (0) = 0. 

We have to show that there is a diffeomorphism h of a neighbourhood of 0 

such that 

               ∑  
 

   

 ∑  
 

   

 

This will be done in two steps. In the first we show that 

     ∑       
   

      

where the     are some functions of x and    =    . Thus f looks like a symmetric bilinear form-but with variable 

coefficients-which suggests that we should try to adapt one of usual procedures of diagonalization of such forms to 

our situation. This works, and that is the second step of the proof. Now the details. 

Since f has a critical point at 0 we have, by A ,2.2, 

     ∑       
 

 

where   (0)=(
  

   
)      .  

We can apply the same lemma once more to   to get 

  =∑       . 
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Now, setting 

    
 

 
         = ( h , + hji) 

we finally obtain equation (i). 

The diagonalization of   is now done inductively. Suppose that in some chart   is already in the form 

        
        

  ∑        
     

        

Through a linear change of coordinates we can achieve that          

hence          in a certain neighbourhood U of 0. Consider the transformation      F: U  R
m
            given by 

 yi= xi for i  k, 

 

The Jacobean of F at 0 does not vanish: Its determinant equals         
     

Therefore F is a diffeomorphism in a neighbourhood V  U of 0 in R
m
. 

Since 

        ∑   
  ∑

         

   
    

       

 

this concludes the inductive step.  

The number of minus signs in this local representation off at a critical non-degenerate point p does not depend on 

the choice of chart; it is called the index of p. 
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