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ABSTRACT 
 This paper is devoted to the  study of smooth mappings and it has been shown its mapping of surface into 3-dimensional 

spaces, as well as Thom-Boardman singularities. Certain other results have also been proved. 

 In mathematics,  singularity theory  studies spaces that are almost manifolds, but not quite. A string can serve as an 

example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it 

on the floor, and flattening it. In some places the flat string will cross itself in an approximate "X" shape. The points on the 

floor where it does this are one kind of singularity, the double point: one  bit of the floor corresponds to more than one bit of 

string. Perhaps the string will also touch itself without crossing, like an underlined "U". This is another kind of singularity. 

Unlike the double point, it is not stable, in the sense that a small push will lift the bottom of the "U" away from the 

"underline". 

Vladimir Arnold describes the main goal of singularity theory as describing how objects depend on parameters, 

particularly in cases where the properties undergo sudden change under a small variation of the parameters. These situations 

are called perestroika bifurcations or catastrophes. Classifying the types of changes and characterizing sets of parameters 

which give rise to these changes are some of the main mathematical goals. 

 A simple example might be the outline of a smooth object like a kidney bean. From some angles the outline is a 

smooth curve but as the object is rotated, the outline will first form a sharp corner and then a self-intersection with cusps. 

Singularities can occur in a wide range of mathematical objects, from matrices depending on parameters to wave fronts. 

 
1-Preliminaries  

Singularities arise naturally in a huge number of different areas of mathematics and science. As a 
consequence Singularity Theory lies at the cross roads of the paths connecting the most important areas of 
applications of mathematics with its most abstract parts. For example, it connects the investigation of optical 
caustics with simple Lie algebras and regular polyhedral  theory, while also relating hyperbolic PDE wave fronts to 
knot theory and the theory of the shape of solids to commutative algebra. 

The main goal in most problems of singularity theory is to understand the dependence of some objects of 
analysis and geometry, or physics, or from some other science on parameters. For generic points in the parameter 
space their exact values influence only the quantitative aspects of the phenomena, their qualitative, topological 
features remaining stable under small changes of parameter values. 

However, for certain exceptional values of the parameters these qualitative features may suddenly change 
under a small variation of the parameter. This change is called a perestroika, bifurcation or catastrophe in different 
branches of the sciences. A typical example is that of Morse surgery, describing the perestroika of the level variety 
of a function as the function crosses through a critical value. (This has an important complex counterpart - the  
Picard-Lefschetz theory concerning the branching of integrals.) Other familiar examples include caustics and 
outlines or profiles of surfaces obtained from viewing or projecting from a point, or in a given direction. 

In spite of its fundamental character, and the central position it now occupies in mathematics, singularity 
theory is a surprisingly young subject. So, for example, one can consider the singularities arising from the 
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orthogonal projections a generic surface in 3-space, a problem of surely classical interest. Their classification was 
completed as recently as 1979.  

In one sense singularity theory can be viewed as the modern equivalent of the differential calculus, and this 
explains its central position and wide applicability. In its current form the subject started with the fundamental 
discoveries of Whitney (1955), Thom (1958), Mather (1970), Brieskorn (1971). Substantial results and exciting new 
developments within the subject have continued to flow in the intervening years, while the theory has embodied 
more and more applications. 

This program  will bring together experts within the field and those from adjacent areas where singularity 
theory has existing or potential application. Applications of particular interest include those to wave propagation, 
dynamical systems, quantum field theory, and differential and algebraic geometry, but these should not be deemed 
prescriptive. It is the program’s aim both to foster exciting new developments within singularity theory, and also to 
build bridges to other subjects where its tools and philosophy will prove useful. 

 
2-How Singularities may arise 

In singularity theory the general phenomenon of points and sets of singularities is studied, as part of the 
concept that manifolds (spaces without singularities) may acquire special, singular points by a number of 
routes. Projection is one way, very obvious in visual terms when three-dimensional objects are projected into two 
dimensions (for example in one of our eyes); in looking at classical statuary the folds of drapery are amongst the 
most obvious features. Singularities of this kind include caustics, very familiar as the light patterns at the bottom of a 
swimming pool. 

Other ways in which singularities occur is by degeneration of manifold structure. The presence 
of symmetry can be good cause to consider orbifolds, which are manifolds that have acquired "corners" in a process 
of folding up, resembling the creasing of a table napkin. 

 
3 - Arnold's view 

While Thom was an eminent mathematician, the subsequent fashionable nature of elementary catastrophe 
theory as propagated by Christopher Zeeman caused a reaction, in particular on the part of Vladimir Arnold.[2] He 
may have been largely responsible for applying the term singularity theory to the area including the input from 
algebraic geometry, as well as that flowing from the work of Whitney, Thom and other authors. He wrote in terms 
making clear his distaste for the too-publicized emphasis on a small part of the territory. 

 The foundational work on smooth singularities is formulated as the construction of equivalence relations on 
singular points, and germs. Technically this involves group actions of Lie groups on spaces of jets; in less abstract 
terms Taylor series are examined up to change of variable, pinning down singularities with enough derivatives. 
Applications, according to Arnold, are to be seen in simplistic  geometry, as the geometric form of classical 
mechanics. 

 
4-Duality 

An important reason why singularities cause problems in mathematics is that, with a failure of manifold 
structure, the invocation of  Poincare duality is also disallowed. A major advance was the introduction 
of  intersection  chorology, which arose initially from attempts to restore duality by use of strata. Numerous 
connections and applications stemmed from the original idea, for example the concept of perverse 
sheaf in homological algebra. 

 
5-Other Possible Meanings 

The theory mentioned above does not directly relate to the concept of mathematical singularity as a value at 
which a function is not defined. For that, see for example isolated singularity, essential singularity, removable 
singularity. The monodromy  theory of  differential equations, in the complex domain, around singularities, does 
however come into relation with the geometric theory. Roughly speaking,  monodromy  studies the way a covering 
map can degenerate, while singularity theory studies the way a manifold can degenerate; and these fields are linked 
definitions. 

 
6-Cone-like singularities 

A manifold with singularities of Baas-Sullivan type is a topological space  ̅that looks like a manifold outside 
of a compact 'singularity set', while the singularity set has a neighborhood that looks like the product of manifold 
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and a cone. Here is a precise definition. Let P1 be a closed manifold. A manifold with a P1-singularity is a space of 
the form 

 
 

 ̅=A∪A(1)×P1A(1)×CP(1) 

∂A=A(1)×P1 
 
Here, A is a manifold with boundary A(1). 
More complex singularities occur if, instead of taking a cone over only one manifold P1, we allow a 
collection {P1,...,Pk} of several closed manifolds. In this case, we define a a manifold with a {P1,...,Pk}-singularity 

to be a (second-countable and Hausdorff) topological space   ̅locally homeomorphic to one of the spaces 
 

Rn, Rn1×CP1, Rn2×CP1×CP2,.... 
 

An alternative approach to manifolds with singularities would be to remove the singular set and to define an 
equivalence relation on the remaining manifold that 'remembers' the singularities.  

 

7- Σ-manifolds 
An alternative definition can be given. Let (P1,...,Pk) be a (possibly empty) collection of closed manifolds and 

denote by P0 the set containing only one point. Then define Σk:=(P0,P1,...,Pk). For a 

subset I={i1,...,iq}⊂{0,...,k} define PI:=Pi1×...×Piq. 

A manifold M is a Σk-Manifold if there is given 
 

1. a partition ∂M=∂0M∪...∪∂kM, such that ∂IM:=∂i1∩...∩∂iq M is a manifold for each I={i1,...,iq}⊂{0,...,k}, 
and such that 

∂(∂IM)=∪j∉I∂jM∩∂IM 
 

. 

1. for each I⊂{0,...,k} a manifold βIM and a diffeomorphism 
2.  

ϕI:∂IM→βIM×PI 

 

such that if J⊂I and ι:∂IM→∂JM is the inclusion, then the composition 
 

ϕJ∘ι∘ϕ−1I:βIM×PI→βJM×PJ 

 

restricts to the identity on the factor PJ in PI. The diffeomorphisms  ϕI  are called product structures. 

On a Σk-manifold M, there is a canonical equivalence relation ∼: two points x,y∈M are defined to be equivalent if 

there is an I⊂{0,...,k} such that x,y∈∂IM and pr∘ϕI(x)=pr∘ϕI(y), where pr:βIM×PI→βIM is the projection. Now we 

can give a general definition: a manifold with a Σk-singularity is a topological space  ̅ of the form 
 

 ̅  A/∼ 

for a Σk-manifold A. 
The spaces defined above as manifolds with a (P1,...,Pk)-singularity are contained in this new definition. Given 

manifolds P1,...,Pk, set Σk=(P0,P1,...,Pk). Removing a neighborhood of the cone-tips in a manifold with (P1,...,Pk)-

singularity  ̅gives a Σk-manifold M. Now the collapsing of the equivalence relation in M corresponds to the  re-
attachment of the cone-ends. 

When dealing with manifolds with singularities it is convenient to work with the underlying Σ-manifold and make 
sure that all operations one performs on them are compatible with the equivalence relation. 
 

http://www.eprajournals.com/


                                                                                                                                                                                   ISSN (Online): 2455-3662 

     EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
          Volume: 6 | Issue: 11 |November 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188 

 
 

                                                                     2020 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 129 

8 -Singularities of differentiable mappings: 
A branch of mathematical analysis and differential geometry, in which those properties of mappings are studied 
which are preserved when the coordinates in the image and pre-image of the mapping are changed (or when changes 
are made which preserve certain supplementary structures); a general approach is proposed to the solution of various 
problems on degeneration of mappings, functions, vector fields, etc.; a classification is given of the most commonly 
encountered degenerations, and their normal forms, as well as algorithms which reduce to the normal forms, are 
determined. 

A point of the domain of definition of a differentiable mapping (i.e. a mapping of class , see Differentiable 
manifold) is said to be regular if the Jacobi matrix has maximum rank at this point, and critical in the opposite case. 
The classical implicit function theorem describes the structure of a mapping in a neighborhood of a regular point; in 
a neighborhood of this point and in a neighborhood of its image, there exist coordinates in which the mapping is 
linear. 
In many cases it is not sufficient to confine the area of study simply to regular points; it is therefore natural to 
consider the following questions: 
(a) the description of a mapping in a neighborhood of a critical point; 
(b) the description of the structure of the set of critical points. 
For an arbitrary mapping there are no answers to a) and b), for two reasons: In attempting to deal with all mappings, 
there is no chance of obtaining explicit results (for example, the set of critical points can locally be an arbitrary 
closed set), and for practical applications it is sufficient to know the answers for only a large set of mappings. 
The questions (a) and (b) and many others in the theory of singularities are studied along the following lines: 

i. a set of "untypical" and "pathological" mappings is excluded from consideration; 
ii. a criterion of "typicality" of a mapping is determined; 
iii.  it is ascertained that every mapping can be approximated by "typical" mappings; 
iv.  the "typical" mappings are studied. 

The choice of the set of typical mappings depends on the problem to be solved and is not unique: the fewer the 
mappings that are typical, the easier they are to study, although 2) and 3) require that the set of typical mappings is 
sufficiently broad and sufficiently constructively defined. 
 

9-Singularities of Smooth Maps 
A singular point of a smooth mapping  : M   N of manifolds is a point at which the rank of   is less than the 
minimum of dimensions of M and N. 
Singularities of smooth mappings have a nice classification, with respect to which for almost any smooth mapping 

 , the set of singular points of any type   forms a smooth sub manifold   ( ) ⊂M. We study those topological 
properties of the set 

  ( )  that does not change under homotopy of  . 

One of the first questions that arises in the singularity theory asks whether a singularity type   is in essential for a 

mapping  ; in other words, does there exist a homotopy of    eliminating all the  -singular points? The primary 

obstruction is defined as the chorology class [     ̅̅ ̅̅ ̅̅ ̅] ∈ H* (M; 2) dual to the closure of   ( )  .Remarkably, the 

class [     ̅̅ ̅̅ ̅̅ ̅] is a polynomial, called Thom polynomial. In Stiefel-Whitney classes of the tangent bundle TM and the 
induced bundle f*TN. 
The Thom polynomial turns out not to be a complete obstruction; O. Saeki constructed an example of a mapping 
from a 4-manifold into a 3-manifold where the chorology obstruction corresponding to certain singularities, cusps, is 
trivial though a homotopy to a general position mapping without cusp singular points does not exist. 
We consider smooth mappings of 4-manifolds into 3-manifolds, determine the secondary obstruction, prove its 
completeness and express it in terms of the chorology ring of the source manifold. 

Definition :  A general position mapping of a 4-manifold into 3-manifold without cusp singular points is called a 
fold mapping. 

Theorem: For a closed oriented 4-manifold M4, the following conditions are equivalent: 

                   i.          M4 admits a fold mapping into  3; 
ii. for every orient able 3-manifold N3, every homotopy class of mappings of M4 into N3 

contains a fold mapping; 

iii. there exists a chorology class ∈ 2 H2(M4;  ) such that x ∪ x is the first Pontrjagin class of 
M4. 
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For a simply connected manifold M4, we show that M4 admits no fold mappings into N3 if and only if M4 is 
homotopy equivalent to CP2 or CP2#CP2. 
 

10-Regular Points of Smooth Mappings 
Given a smooth mapping f of a manifold M of dimension m into a smooth manifold N of dimension n, the 

differential       of the mapping f at a point x of M is a linear map from the tangent space TxM of M at x to the 

tangent space     N of N at       

 

      : TxM →      N. 

 

We say that x ∈ M is a regular point of the mapping f if the rank rkx(f) of the differential       is exactly max(m, 
n). Otherwise we say that the point x is  

a singular point of the mapping  . 
We observe that the set of regular points forms an open sub manifold of the source manifold. Indeed, if a 
homomorphism h of vector spaces sends a set {ei} of independent vectors into a set of independent vectors, then 

every homomorphism sufficiently close to h also sends the vectors {ei} into independent ones.  

Consequently, if   is a smooth mapping and x is a point of the source manifold, then the rank of the differential 

      at x is not greater than the rank of the differential      at any point y sufficiently close to x. In particular, in 

a small neighborhood of a regular point, the mapping   has no singular points. 
The regular points of a mapping have a simple description. In the case of a positive co dimension, n − m > 0, the 

regular points are precisely the points in a neighborhood of which the mapping   is an embedding. If the mapping   
is of a non-positive co dimension, i.e., n − m ≤ 0, then the regular points are the points of the source manifold in a 

neighborhood of which the mapping   is a submersion. 
 

11-Singular Points of Smooth Mappings 
We study singularities of smooth mappings up to an equivalence relation. 

Definition. Given two mappings fi : Mi  Ni, i = 1, 2, we say that the points 

x1∈ M1 and x2∈ M2 are of the same singularity type with respect to the right left equivalence if there are 
neighborhoods Ui containing xi, neighborhoods Vi containing fi(xi) and diffeomorphisms  
 

g : U1  U2, h : V1  V2 

 
that fit into the commutative diagram 

      

 

      

where the mappings fi|Ui are the restrictions of the mappings fi to Ui. 

It is convenient to describe a right-left singularity type, say   by choosing a normal form, i.e., a mapping 

        with singularity   at the origin. Once the normal form is chosen, we say that a mapping        has 

  singularity at a point x ∈ M if in some local coordinate neighborhoods of x in M and f(x) in N ,the mapping f has 
the form g. 
In the two subsequent sections we will consider examples of singularities in the cases of mappings of manifolds of 
small dimensions. 
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12-Mappings of Surfaces into 3-dimensional Spaces: 
One of the singularities of mappings from a surface into a 3-manifold is theWhitney umbrella. 
In a neighborhood of a Whitney umbrella, in some coordinates, the mapping f has the form 

f(u, v) = (uv, u, v2). 
 

Theorem: 1.1 (Whitney) Every mapping of a surface into a 3-manifold can be approximated by a mapping with 
singularities of only Whitney umbrella type. 
The set of Whitney umbrellas is a discrete set. In particular, a mapping of a closed surface may have only finitely 
many Whitney umbrellas. 
In fact, the number of Whitney umbrellas is even. To prove this, we describe the Whitney umbrellas as the end 
points of self-intersection curves. If the source surface is closed, then each connected component of self-intersection 
points is either a circle which has no end points or a closed interval which has two end points. Thus the number of 
Whitney umbrellas is twice the number of closed intervals of self-intersection points. 
If we consider mappings up to homotopy, then the Whitney umbrellas are no longer essential; every mapping of a 
surface into a 3-manifold is homotopic to an immersion. This follows from the Smale-Hirsch h-principle for 
immersions, which we will discuss in later sections. 
 

13-Mappings Between  Surfaces 
Singularities of mappings between surfaces were studied by Whitney who proved that every continuous mapping of 
surfaces can be approximated by a mapping with only regular points, fold singular points, and cusp singular points. 
A regular point of a mapping f, as it has been defined, is a point in a neighborhood of which the mapping f is a 
diffeomorphism. 
The fold and cusp singular types are defined by normal forms. We say that a singular point p is of the fold type or 
the cusp type if in some neighborhoods of p and f(p) there are coordinates in which the mapping f has the form 
 

f(x, y) = (x, y2) or f(x, y) = (x3 + xy, y) 
 

respectively As it follows from the normal forms of singularities, the set of singular points S of a mapping f with 
only fold and cusp singular points forms a smooth curve in the source manifold. The set of cusp points is discrete, 
while the set of fold points is the 1-dimensional complement to the cusp points in S. 
We note that the rank of the differential of the mapping f is 1 both at a point of the fold type and at a point of the 
cusp type. To distinguish a fold singular point from a cusp singular point, Whitney considered the restriction of the 
mapping f to the smooth curve of singular points S and observed that the cusp points of f are exactly the singular 
points of  f | S . 
The cusp singular points are essential even if we consider mappings up to homotopy. For example, the projective 

plane  P2 does not admit a mapping into 2 with only fold singular points . 

Let us sketch a proof that motivates the notion “homology obstruction. ” We note that any two mappings into  2 are 

homotopic. Thus to prove the claim it suffices to construct a mapping  P2  2 with fold and cusp singularities and 
then to show that the cusp singular points can not be eliminated by homotopy. 

 
14-Types of Singularities 
The right-left equivalence relation on singularities of smooth mappings is so fine that the number of different 
singularity types of a mapping is infinite in general. Besides, the behavior of the set of points of a right-left 
equivalence class under homotopy of a mapping has no simple description. 
To overcome the difficulties arising here one may consider a coarser relation in which a class of equivalence is a 
union of some, perhaps infinitely many, right-left equivalence classes of singularities. One of such relations playing 
a special role in singularity theory is the Thom-Boardman classification. 
Every continuous mapping of smooth manifolds admits an approximation by a mapping f with singularities of only 
finitely many different Thom-Boardman classes. Furthermore, the set of singular points of f of each Thom-
Boardman class is a sub manifold of the source manifold. 
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14.1- Naive Definition 
Let TM and TN denote the tangent bundles of smooth manifolds M and N respectively and df the differential of a 

smooth mapping f : M   N. The setSi = Si(f) is defined as the set of points x in M at which the kernel rank of f is krx 

f = i. Suppose that dim M = m   n = dimN.  
Suppose that for each i, the set Si is a sub manifold of M, then we can consider the restriction f|Si1 of f to Si1 and 
define the singular set Si1,i2 as the subset Si2(f|Si1) of Si1 . Again, if every set Si1,i2is a sub manifold of M, then the 

definition may be iterated. Thus, the set Si1,...,ikis defined by induction as Sik (f|Si1,...,ik−1 ). The index   = (i1, ..., ik) is 

called the symbol of the singularity. We will write   for Si1,...,ik . 

For example the Whitney fold singular points of a mapping between surfaces and the Whitney umbrella of a 
mapping of a surface into a 3-manifold are Thom-Boardman singular points of the type S1,0.From the Whitney 
description of singular points of a mapping between surfaces, it follows that the cusp singular points are of the type 
S1,1,0. 
Certainly, this natural definition makes sense only under heavy restrictions; 
the singular set Si1,...,ik can be defined only if the singularity stratum Si1,...,ik−1 is a sub manifold of the source 
manifold. By passing to jet spaces Boardman was able to extend the definition over all singular sets. 
 

14.2 -Finite Jet Space 

A singularity type of a mapping f : M    N at a point x ∈ M depends on the behavior of the mapping f only in a 

small neighborhood of x. So, we pass to germs. A germ at a point x ∈ M is an equivalence relation on mappings 

under which two mappings fi, i = 1, 2, defined on a neighborhood of x ∈ M represent the same germ at x if there is a 
possibly smaller neighborhood of x where the mappings f1, f2 coincide. 
A k-jet is, by definition, a class of ~k-equivalence of germs. Two germs f and g at x are ~k equivalent if at the point 

x the mappings f and g have the same partial derivatives of order   k. As partial derivatives involved, our definition 
implicitly assumes coordinate systems in neighborhoods of x and f(x) = g(x). It is easy to verify, however, that if in 

some coordinate systems f and g have the same partial derivatives of order   k, then the same is true for any other 
choice of the coordinate systems. 

If a k-jet    is represented by a mapping f at x, then we also say that    is a k-jet of the mapping f at x. 
 

The set of all k-jets Jk(M,N) is called the k-jet space of mappings of M into N. Let    be a k-jet at a point x ∈ M 
represented by some mapping f. 
 
If a coordinate system in a neighborhood of x and a coordinate system in a neighborhood of f(x) are fixed, then the 

k-jet    is determined by the Taylor polynomial of f at x of order k. In its turn, the set of polynomials of order k is 
naturally isomorphic to the finite dimensional Euclidean space as each polynomial characterized by the set of its 
coefficients. So, the k-jet space has a natural structure of a smooth manifold.  

Formally, let u  and v be coordinate covers of the manifolds M and N respectively. For each open set U ∈u and an 

open set V ∈v we define a subset WUV of the k-jet space as the set of the jets   , x ∈ U,represented by mappings 
sending x into V . Note that the subsets W = {WUV },where U and V range over elements of u  and v, cover the 
space of k-jets. Also, being isomorphic to the set of polynomials of order k, each of WUV is isomorphic to a 
Euclidean space.  
These isomorphism induce topologies, one for each WUV, that coincide on intersections 
 

            ∈      ∈   
 

Thus there is a natural topology on Jk(M,N). Moreover, the cover W together with homeomorphisms from WUV into 

the Euclidean space,  ∈     ∈   defines a smooth structure onJk(M,N). 

In fact the cover   not only helps to introduce a smooth structure on Jk(M,N) but also allows us to introduce on 

Jk(M,N) a structure of a smooth locally trivial bundle over M × N. Indeed, Jk(M,N) is covered by the sets    ∈
  each of which is a trivial bundle over U × V . We note that the bundle projection 
 

Jk(M,N)   M × N 
 

sends a k-jet    represented by a mapping f into the point x × f(x). 
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14.3- Infinite Jet Space 

A k-jet at a point x determines an  -jet for each  < k. Thus for each pair k,   with  < k we have a natural projection 
 

  
                  

The jet space        is a topological space defined as the inverse limit of the system {          
     though the 

jet space is infinite dimensional and we cannot 

define a smooth structure on        , still, using projections 
 

  
                  

 

we may define on         smooth functions, tangent vectors and submanifolds. 
We say that a function on the jet space is smooth if locally it is the composition of the projection onto some k-jet 
space and a smooth function on the k-jet space. Having defined smooth functions we may define a tangent vector at 

a jet    
The set of germs     of functions on         at the jet   is an algebra over R. 

A differential operator   at   is a correspondence 
 

              
 

that is linear, i.e., 

  (af + bg) = a  (f) + b  (g), f, g ∈     , a, b ∈ R, 
 

and satisfy the Leibniz rule 

   (fg) =    (f) +    (g),      f, g ∈      
 

We define a tangent vector at the jet   as a differential operator   . We may view a vector    as an infinite 

sequence of vectors     , k ∈ N, respectively tangent to the jet spaces Jk(M,N) at   
 ( ) such that 

 

(  
 )

 
                     

 

Indeed, let    denote the k-jet   
     

By definition of     , 

    =   ∈        
 

where each       is identified with a subset of         under the mapping induced by the projection 

              . Given a vector   ,its restrictions to       produce a sequence of operators    . 
 

14.4 - Thom-Boardman Singularities 

Given a smooth mapping  : M   N, at each point of the manifold M we have an infinite jet of f. The correspondence 

that takes a point x into the jet of  at x is a mapping 

j   : M         , 

called the jet extension of  . Similarly for each k, we define the k-jet extension jk   of  . If v is a vector at a point x 

of M, then the sequence of vectors d(jk  )(v) satisfies the condition 2.1 and therefore defines a vector d(j  )(v) at 

j  (x). 
Note that the map 

d(j  ) : TM   T  (M,N) 
 

is injective. The union of images of d(jf) over all mappings M   N is called the total tangent bundle of the jet space 

and is denoted by D. Given a jet j  (x), we will use the injective homomorphism d(j  )|Tx to identify the plane TxM 

with D|j  (x). 
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Every 1-jet at a point x ∈ M determines a homomorphism 
 

TxM   Tf(x)N, 

where f is a germ at x representing the jet. Let y be a point of the jet bundle and Ky⊂Dy the kernel of the 
homomorphism defined by the 1-jet component of y. 
Boardman proved that for every i1 the set 
 

∑  { ∈                 }
  

 

 

is a sub manifold of        . Let    denote the set of r integers (i1, ..., ir) such that i1          ir. Suppose that the 

sub manifold ∑         been already defined. 

 
Then define 

∑     ∈ ∑          ∑  
    

   
    

 
  

 

 
 

Boardman proved that for every symbol    the set ∑      a submanifold of       . 

A mapping   is called a general position mapping if the section j f is transversal to every sub manifold ∑    By the 

Thom Strong Transversality Theorem every mapping can be approximated by a general position mapping. 
 

Given a mapping  : M   N, a point x ∈ M is a singularity of type I if the image j  (x) is in∑   . As has been 

mentioned, for general position mappings,the definition of singularity types given by Boardman coincides with the 
naïve definition given in section 3.14.1. 
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