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ABSTRACT 
This paper deals with fully explore properties of the self-concordant function in Euclidean space and develop gradient-

based algorithms for optimization of such function. Define the self-concordant function on Riemannian manifolds, 

explore its properties and devise corresponding  optimization algorithms and generalize a quasi-Newton method on 

smooth manifolds without the Riemannian structure.  

      We first review the classical Riemannian approaches and then the relatively recent non-Riemannian approaches. 

 

 

1- RIEMANNIAN APPROACH 
1.1 -Steepest descent method on manifolds: 
The steepest descent method is the simplest method for the optimization on Riemannian manifolds and it has 
good convergence properties but slow linear convergence rate. This method was first introduced to manifolds by 
Luenberger [48, 49] and Gabay [25]. In the early nineties, this method was carried out to problems in systems 
and control theory by Brockett [13], Helmke and Moore [34], Smith [66] and Mahony [51]. 
 

1.2 -Newton method on manifolds: 
Compared against the steepest descent method, the Newton method has a faster (quadratic) local convergence 
rate. In 1982, Gabay extended the Newton method to a Riemannian sub-manifold of Rn by updating iterations 
along a geodesic. Other independent work has been developed to extend the Newton method on Riemannian 
manifolds by Smith [67] and Mahony [51, 52] restricting to the compact Lie group, and by Udriste [70] 
restricting to convex optimization problems on Riemannian manifolds. Edelman, Arias and Smith [19] also 
introduced a Newton method for the optimization on orthogonality constraints – the Stiefel and Grassmann 
manifolds. There is also a recent paper by Dedieu, Priouret and Malajovich [18] which studied the Newton 
method to find zero of a vector field on general Riemannian manifolds. 
 
1.3-Quasi-Newton method on manifolds: 
Even though the Newton’s method has faster quadratic convergence rate, it requires computing the inverse of a 
symmetric matrix, called the Hessian consisting of the second order local information of the cost function. 
Therefore, it increases the computational cost. In order to avoid this problem, the quasi-Newton method in 
Euclidean space was presented by Davidon [17] in late 1950s. This method uses only the first order information 
of the cost function to approximate the Hessian inverse and has a super-linear local convergence rate. Since 
then, various quasi-Newton methods have been introduced. However, among them, the most popular methods 
are the Davidon-Fletcher-Powell (DFP) [22] method andthe Broyden [15, 16] Fletcher [21] Goldfarb [28] 
Shanno [65] (BFGS) method. 
In the early eighties, Gabay [65] firstly generalized the BFGS method to a Riemannian manifold. However, he 
did not give the complete proof of the convergence of his method. Recently, Brace and Manton [12] developed 
an improved BFGS method on the Grassmann manifold and achieved a lower computational complexity 
compared to Gabay’s method 
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1.4-Conjugate gradient method on manifolds: 
While considering the large scale optimization problems with sparse Hessian matrices, the quasi-Newton 
methods encounter difficulties. Due to avoiding computing the inverse of the Hessian, the conjugate gradient 
method can be used for solving such problems. 
This method was originally developed by Hestenes and Stiefel [38] in the 1950s to solve large scale systems of 
linear equations. Then in the mid 1960s, Fletcher and Reeves [24] popularized this method to solve 
unconstrained optimization problems. In 1994, Smith [67] extended this method to Riemannian manifolds and 
later Edelman, Arias and Smith [19] applied his method specifically on the Stiefel and Grassmann manifolds. 
 

2-SELF-CONCORDANT FUNCTIONS ON RIEMANNIAN MANIFOLDS:  
Self-concordant functions play an important role in developing interior point algorithms for solving certain 
convex constrained optimization problems including linear programming. It is therefore natural to attempt to 
extend the definition of self-concordance to functions on Riemannian manifolds, and then exploit this definition 
to derive novel optimization algorithms on Riemannian manifolds. In fact, the self-concordant concept has been 
extended to Riemannian manifolds . 
 
In that work, we can considered the convex programming problem 

     ( )       ( )                         ( ) 
 
Where M is a complete n-dimensional Riemannian manifold and developed a logarithmic barrier interior point 
method for solving it. Recall that in the Euclidean space, one approach for solving 

(i) Is the barrier interior point method which uses the barrier function to enforce the constraint; this 
barrier function is chosen to be self-concordant. In order to extend this idea to Riemannian 
manifolds, it is necessary to extend the concept of self-concordant functions to Riemannian 
manifolds.  

(ii) To this end, the concept of a self-concordant function was defined on Riemannian manifolds and 
some of its properties alos. Moreover, a Newton method with a step-size choice rule was proposed 
to keep the iterates inside the constraint and guarantee the convergence. 

In this chapter, we give a precise definition of a self-concordant function on a Riemannian manifold and derive 
properties of self-concordant functions which will be used to develop optimization algorithms; first a damped 
Newton method in this chapter, then a damped conjugate gradient method. Convergence proofs of the damped 
Newton method are also given. 
 

3-CONCEPTS OF RIEMANNIAN MANIFOLDS 
In this section, some fundamental concepts from differential geometry are introduced. However, we do not 
intend to present self-contained and complete exposure, and most of the proofs are omitted.  

Let an n-dimensional smooth manifold be denoted as M which is an embedded manifold in   The differential 
structure of M is a set of local charts covering M. Each local chart is a pair of a neighborhood and a smooth 
mapping from this neighborhood to an open set in Euclidean space. The tangent space of M at a point p can be 
denoted as Tp M: 

It is the set of linear mappings from all smooth functions passing through the point p to real numbers, satisfying 
the derivative condition. For n-dimensional manifolds, the tangent space at every point is an n-dimensional 
vector space with origin at this point of tangency.  
The normal space is the orthogonal complement of the tangent space in the ambient space. A smooth manifold 
M is called Riemannian manifold if it is endowed with a metric structure. 
In Euclidean space, a vector can be moved parallel to itself by just moving the base of the arrow. For the 
manifold if a tangent vector is moved to another point on the manifold parallel to itself in  its ambient space, it is 
generally not a tangent vector to the new point. 
However, we can transport tangent vectors along paths on the manifold by infinitesimally removing the 
component of the transported vector in the normal space.  

Assume that we want to move a tangent vector   along the curve   ( ) on the manifold. Then in every 

infinitesimal step, we first move   parallel to itself in the ambient Euclidean space and then remove the normal 
component. 
 
Let M denote a smooth n-dimensional geodesically complete Riemannian manifold. Recall that C ksmooth 

means derivatives of the order k exist and are continuous. For convenience, by smooth, we mean   that is, 
derivatives of all orders exist. 

 Let TpM denote the tangent space at the point p   M. Since M is a Riemannian manifold, it comes with an inner 

product       on  TpM for each p   M. This induces the norm      given by 
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     =       

 

 p for X  TpM. 

There is a natural way (precisely, the Levi-Civita connection) of defining acceleration on a Riemannian 
manifold which is consistent with the metric structure. A curve with zero acceleration at every point is called a 

geodesic. Since M is geodesically complete, given a point p   M and a tangent vector X   TpM, there exists a 

unique geodesic  X :    M such that 

 X(0) = p and  X(0) = X. 

We therefore define an exponential map  

Expp: TpM  M by 

Expp(X) =  X(1) 

for all X   TpM. Note that  Expp tX is the geodesic emanating from p in the direction X. Another consequence of 
M being  geodesically complete is that any two points on M can be joined by a geodesic of shortest length. The 

distance d(p , q) between two points p , q   M is defined to be the length of this minimizing geodesic.  
Since the length of the curve 

  ,    -     ( )                 

 it follows that if q = ExppX then  

d(p ,  q)       

where the inequality is possible if there exists a shorter geodesic connecting p and q. 

If   ,    -   is a smooth curve from p =   (0) to q =  (1), there is an associated linear isomorphism 

Tpq: TpM   TqM 

called  parallel transport. One of its properties is that lengths of vectors and angles between vectors are 
preserved, i.e.  

 X, Y   TpM,   pqX , pqY  <X , Y  . 

For a point p   M and a tangent vector X   TpM, we use  p Expp(tX) to denote the parallel transport from the 

point p to the point Expp tX along the geodesic emanating from p in the direction X. 

Let N be an open subset of M. Consider the function f : N   . Given 

p   N and 

X  TpN, the first, second and third covariant derivatives of f are defined as follows: 

   ( )   
 

  
     { (      )}   ( ) 

  
  ( )   

  

   
     { (      )}   ( ) 

  
  ( )   

  

   
     { (      )}   ( ) 
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The gradient of f at p  N, denoted by gradp f, is defined as the unique tangent vector in TpN such that 

  f(p) = <gradpf ,X> 

for all X   TpN. 

The Hessian of f at p   N is the unique symmetric bilinear form Hessp f defined by the property 

      (   )    
  ( )          ( )  

Note that (5) fully defines Hessp f since 

      (   )  
      (       )        (   )        (   )

 
    ( ) 

         

4-SELF-CONCORDANT FUNCTIONS 
The definition of self-concordance to Riemannian manifolds requires carefully defining the convex set. 
Intuitively, the convex set on Riemannian manifolds can be determined by the geodesics connecting two points. 
However, there could be more than one geodesic connecting two points on Riemannian manifolds. For instance, 
for any two different points on the sphere, there exist two geodesics joining them. Therefore, there is no single 
best definition of convexity of selected subset . 
The definition of convexity is concerned with all geodesics of the whole Riemannian manifolds connecting two 
points. On the other hand, this definition limits the definition of convex functions since in most cases, the cost 
functions defined on Riemannian manifolds are locally convex. 
 

 To be more general, our definition goes as follows. We say a subset N of M is convex if for any p , q   N, out 
of all the geodesics connecting p and q, there is precisely one which is contained in N.  
 

Then, a function        is said to be convex if N is a convex set and for any geodesic   ,   -   ,the 

function f    ,   -    satisfies the usual definition of convexity, namely 
 

 (  ( )  (   ) ( ( ))      ( ( ))    ,   - 

If       is   smooth and N is convex, then f is convex if and only if  

  
  ( )   ¸ 0 

For all p   N and X   TpN. 

The epigraph epi(f) of f is defined by 

epi(f) = {f(p , t)   N x    | f(p    +  (8) 

A function f is said to be closed convex if its epigraph epi(f) is both convex and a closed subset of M  x  . 

Definition : 4.1 Let M be a smooth n-dimensional geodesically complete Riemannian manifold. 

Let         be a   -smooth closed function. Then f is self-concordant if 

1. N is an open convex subset of M; 

2. f is convex on N; 

3. there exists a constant Mf>0 such that the inequality 
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  ( )    ( 

 
  ( ))

 
     ( ) 

holds for all p   N and X   TpN. 

The reason why f is required to be closed in Definition 2 is to ensure that f  behaves nicely on the boundary of 

N; this is shown in the following proposition. 

4.2 -Proposition : 

Let f     be self-concordant. Let  (N) denote the boundary of N.Then for any  ̅    (N) and any sequence 

of points pk  N converging to  ̅ we have f(pk)    

Proof: first of all we choose for k = 2 ,3 ,…., define Xk   Tp1N to be such that pk:= Expp1Xkand pk  N. Since f is 

convex, In view of equation (7)we have 

 (         )  (1 - t)  (  ) + t  (  ) (10) 

where 0   t  1. 

It follows from equation (10) that if 0 < t  1 then 

 (  )  
 (         )   (  )

 
  (  )     (  ) 

                     (  )         

 (  )     
   

 (         )   (  )

 
  (  )      (  ) 

  (  )              

  (  )      (  ) 

Therefore the sequence * (  )} is bounded below by 

 (  )   (  )                   (  ) 

where we recall that Xk  Tp1N is such that pk:= Expp1Xk. 

Assume to the contrary that the sequence * (  )    +is bounded from above. Then it has a limit point  .̅ By 

considering a subsequence if necessary, we can regard it as a unique limit point of the sequence. 

 Let    (    (  )). Then we have 

   (    (  ))   ̅  ( ̅ ̅)      (  ) 
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By definition,    epi(f). However, we have  ̅  epi(f) since  ̅  N. That is a contradiction since f is closed.  

Proposition- 4.3.  

Let          be self-concordant with constants Mfi , i = 1 , 2 and 

let     >0. Then the function f(x) =  f1(x) +  f2(x) is self-concordant with the constant 

      {
 

√ 
     

 

√ 
   }   (  ) 

Proof: let  fi; i = 1 , 2 are closed convex on N, f is closed convex on N, which can be easily write for  any fixed 

p   N and X   TpN, we have 

   
   ( )     ( 

 
   ( ))

 
          (  ) 

Now, consider two cases. 

Case One:    
   ( )     

 
  ( )    

Since f1 and f2 are both self-concordant, we have 

  
   ( )      (  ) 

  
   ( )       (  ) 

Therefore from the assumption, we obtain 

  
   ( )      (  ) 

  
   ( )       (  ) 

By the definition of self-concordance, it follows from (19) and (20) that 

  
   ( )      (  ) 

  
   ( )       (  ) 

Hence it follows that  

   
  ( )    ( 

 
  ( ))

 
     (  ) 

            {
 

√ 
     

 

√ 
   } 

Case One:    
   ( )     

 
  ( )    

Denote      
   ( )                                                 
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  ( ) 

(  
  ( ))

 
 

 
    

   ( )      
 
  ( ) 

    
   ( )      

 
  ( ) 

 
 

 

 
      

 
 

,       -
 
 

   (  ) 

Note that the last inequality is not changing when we replace (   ,  ) by (t     t  ) with t >0. Consequently, 

we can assume that         = 1. Let      . Then the right hand side of (24) becomes 

 

   

√ 
     

   

√ 
(   )      (  ) 

Now, consider (25) as a function in   [0 ,1]. 

As a result, its maximum is either  = 0 or  = 1. 
This completes the proof. If a function f is self-concordant with the constant Mf ; then the function Mf  

-2f is self-
concordant with the constant 1 as can be directly checked by a simple computation. As such, we assume Mf= 2 
for the rest of this chapter. Such functions are called standard self-concordant. 
 

Proposition -4.3.          (    )    
This property gives a safe bound for the line search along geodesics for optimization problems so that the search 
will always be in the admissible domain. We need the following lemma to prove it. 
 

Lemma 6.Let f : N    in (26) be a standard self-concordant function satisfying Assumption 

2. For a point p   N and a non-zero tangent vector X   TpN, recall the definitions of Exppt X and  pExpp(tX) in 

Section 4.2.  

Let 

  *             + 

Define a function 

       as follows 

 ( )   0  
       ( )  (      )1

 
 
 
    (  ) 

Then, the following results hold: 

1. |  ( )      

2.     ( )          (  ( )  ( ))    
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Proof: 

It can be calculated that 

  ( )   

 
  

,  
       ( )  (      )-

 0  
       ( )  (      )1

 
 

 

  
,  

       ( )  (      )-

 0  
       ( )  (      )1

 
 

 

The claim 1 follows directly from the definition of self-concordant function. 

we have  (      ) goes to  as        approaches the boundary of N. It implies that the function 

  
       ( )  (      ) cannot be bounded. 

 

Therefore, we have 

 ( )   as             (  ) 

Since the function f satisfies Assumption 2, by (27), we obtain 

     *   ( )   +      (  ) 

By the claim 1, we have 

 ( )   ( )       (  ) 

Combining (28) and (29), it follows that 

(  ( )  ( ))        (  ) 

In the following, two groups of properties will be given to reveal the relationship between two different points 
on a geodesic. They are delicate characteristics of self-concordant functions. 
In fact, they are the foundation for the polynomial complexity of self-concordant functions. 
 

Proposition :4.4.  For any p   N and Xp  TpN; such that for t  [0 ,1] the geodesic         is contained in N. 

Let q =        If f : N    in equation (26) is a self-concordant function, the Following results hold: 

 

0  
      ( )1

 
 

 
0  

  
 ( )1

   

  0  
  

 ( )1
   

  (  ) 

 

 
      ( )     

 ( )  
  

  
 ( )

  0  
  

 ( )1

 
 

    (  ) 
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 ( )   ( )     
 ( )  0  

  
 ( )1

 
 
   4  0  

  
 ( )1

 
 
5    (  ) 

 

where   q is the parallel transport from p to q along the geodesic        . 

Proof. Let  ( ) be the same function defined in Lemma 6, where one can see that  ( )   ( )     

This is equivalent to equation 31  taking into account that 

 ( )=0  
  

 ( )1
    

 

 ( )  0  
      ( )1

 
 
 
 

Furthermore, 

 
      ( )     

 ( ) 

 ∫   
          

   (        )  
 

 

 

 ∫
 

  
  

          
   (        )     (  )

 

 

 

Which leads to equation (32) using the inequality (31). 
For the inequality  equation (33) , notice that : 

 ( )   ( )     
 ( ) 

 ∫ * 
          

   (        )     
 ( )+  

 

 

 

 ∫
 

 
2 

          
   (        )      

 ( )3   
 

 

 

 
0  

   
 ( )1

 
 

 4  0  
   

 ( )1

 
 
5

    

      0  
   

 ( )1
   

                            

∫
   

    
  

 

 

      (   ) 

which leads to the inequality equation (33) by replacing r with its original form. 
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Proposition :4.5. For any p   N and Xp  W(p ,1), let q =       . 

 If f : N    in equation (26) 

is a self-concordant function, then there holds: 

 

4  0  
  

 ( )1

 
 
5

 

  
  

 ( )     
      ( ) 

 
  

  
 ( )

4  0  
  

 ( )1

 
 
5

   (  ) 

 

 
      ( )     

 ( )  
  

  
 ( )

4  0  
  

 ( )1

 
 
5

   (  ) 

 

 ( )   ( )     
 ( )  0  

  
 ( )1

 
 
   4  0  

  
 ( )1

 
 
5  (  ) 

 

where   q is the parallel transport from p to q along the geodesic        . 

Proof:  

Let  (t) be a function defined in the following form: 

 ( )  
  

   
 (       )     (  ) 

where t  [0 , 1]. 

 

Since Xp   W(p , 1), we have          N for all t  [0 , 1]. 

 

Taking the first order derivative of  , we obtain 

|  ( )|  |
  

   
 (       )| 

 

 |  
      (    )

   .    (    )/| 
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   (  
      (   ) .    (    )/

 
 
(  

      (   )
 .    (    )/ 

 

   (  
      (   ) .    (    )/)

 
 
 ( ) 

 

 
 

 
(  

       (   ) .    (    )/)

 
 
 ( ) 

 

 
 

 

 0  
  

 ( )1
   

   0  
  

 ( )1
   

 ( )   (  ) 

 

Integrating both sides of the inequality (39) from 0 to 1, we have 

(  0   
 ( )1

   

)
 

 
 ( )

 ( )
 

 

(  0   
 ( )1

   

)
    (  ) 

 

which is equivalent to the inequality (35). 

Combining the inequality (35) and the formula (34), one obtains 

 
      ( )     

 ( )  ∫
 

  

  
   

 ( )

4  0  
  

 ( )1

 
 
5

 

 

 

   

 
  

   
 ( )

  0  
  

 ( )1

 
 

 

which proves the inequality (36). 

Combining this result and using the same technique as that used in the proof of the last property, there holds: 

 

 ( )   ( )     
 ( )  ∫        (   )   (        )  

 

 

    
 ( ) 

 ∫ {
 

 
0         (   )   (        )  1     

 ( )}    
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 ∫
  

   
 ( )

 4  0  
  

 ( )1

 
 
5

  

 

 

 

  0  
  ( ) ( )1

 
 
   (  0  

  
 ( )1

 
 
) 

 

As such, the inequality (37) is obtained by a simple transformation of this inequality. 
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