A STUDY ON THE HYPERBOLA
 $Y^{2}=14 x^{2}+1$

J.Shanthi ${ }^{1}$
${ }^{1}$ Assistant professor, Department of mathematics, SIGC, Trichy

P.Deepalakshmi ${ }^{2}$
${ }^{2}$ PG Scholar, Department of mathematics, SIGC, Trichy

M.A.Gopalan ${ }^{3}$
${ }^{3}$ Professor, Department of mathematics, SIGC, Trichy

Abstract

The binary quadratic equation $y^{2}=14 x^{2}+1$ is considered and a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a few remarkable observations are illustrated. KEYWORDS: Binary quadratic, hyperbola, integral solutions, pell equation.

INTRODUCTION

Any non-homogeneous binary quadratic equation of the form $y^{2}-D x^{2}=1$, where D is a given positive non-square integer, requiring integer solutions for x and y is called Pellian equation (also known pell-Fermat equation). In cartesian co-ordinates, the equation has the form of a hyperbola. The pellian equation has infinitely many distinct integer solutions as long as D is not a perfect square and the solutions are easily generated recursively from a single fundamental solution, namely, the solution with x, y positive integers of smallest possible size. One may refer [1-9] for a few choices of Pellian equations along with their corresponding integer solutions.

The solutions to Pellian equations have long been of interest to mathematicians. Even small values of D can lead to fundamental solutions which are quite large. For example, when $D=61$, the fundamental solution is (1766319049, 226153980). The above results motivated us to search for integer solutions to other choices of Pellian equation. This paper concerns with the Pellian equation $y^{2}=14 x^{2}+1$, a few interesting properties among the solutions are presented. Employing the integral solutions of the equation under consideration, a few remarkable observations are illustrated.

METHOD OF ANALYSIS

The hyperbola represented by the non-homogeneous quadratic equation under consideration is

$$
\begin{equation*}
y^{2}=14 x^{2}+1 \tag{1}
\end{equation*}
$$

The smallest positive integer solution is $\mathrm{x}_{0}=4, \mathrm{y}_{0}=15$
If $\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ represents the general solution of $(\mathbf{1})$,then
$X_{n}=(1 / 2 \sqrt{ }) g_{n}$
$\mathrm{Y}_{\mathrm{n}}=(1 / 2) \mathrm{f}_{\mathrm{n}}$
where
$\mathrm{f}_{\mathrm{n}}=(15+4 \sqrt{ } 14)^{\mathrm{n}+1}+(15-4 \sqrt{ } 14)^{\mathrm{n}+1}$
$\mathrm{g}_{\mathrm{n}}=(15+4 \sqrt{ } 14)^{\mathrm{n}+1}-(15-4 \sqrt{ } 14)^{\mathrm{n}+1}$
A few numerical solutions to (1) are presented in table below:
Table: Numerical solutions

n	X_{n}	Y_{n}
0	4	15
1	120	449
2	3596	13455
3	107760	403151
4	3229204	12081075
5	9768360	362029099

Observations

$>$ The values of x_{n} are even whereas the values of y_{n} are odd
$>\mathrm{x}_{\mathrm{n}} \equiv 0(\bmod 4), \mathrm{y}_{2 \mathrm{n}} \equiv 0(\bmod 3)$
$>$ A few interesting relations among the solutions are given below:

- $\mathrm{x}_{\mathrm{n}+2}-30 \mathrm{x}_{\mathrm{n}+1}+\mathrm{x}_{\mathrm{n}}=0$
- $y_{n+2}-30 y_{n+1}+y_{n}=0$
- $4 y_{n}=x_{n+1}-15 x_{n}$
- $4 \mathrm{y}_{\mathrm{n}+1}=15 \mathrm{x}_{\mathrm{n}+1}-\mathrm{x}_{\mathrm{n}}$
- $4 y_{n+2}=449 x_{n+1}-15 x_{n}$
- $\mathrm{y}_{\mathrm{n}+2}=112 \mathrm{x}_{\mathrm{n}+1}+\mathrm{y}_{\mathrm{n}}$
- $2\left(y_{n+2}-y_{n+1}\right)=217 x_{n+1}-7 x_{n}$
- $8 \mathrm{y}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}+2}-\mathrm{x}_{\mathrm{n}}$
- $56 \mathrm{x}_{\mathrm{n}}=\mathrm{y}_{\mathrm{n}+1}-15 \mathrm{y}_{\mathrm{n}}$
- $56 x_{n+1}=15 y_{n+1}-y_{n}$
- $56 x_{n+2}=449 y_{n+1}-15 y_{n}$
- $\mathrm{y}_{\mathrm{n}+2}-56 \mathrm{x}_{\mathrm{n}+1}=15 \mathrm{y}_{\mathrm{n}+1}$
> Expressions representing square integers:
- $1 / 2\left(\mathrm{x}_{2 \mathrm{n}+2}-15 \mathrm{x}_{2 \mathrm{n}+1}+4\right)$
- $2\left(\mathrm{y}_{\mathrm{n}+1}+1\right)$
$>$ Expressions representing cubical integers:
- $1 / 2\left[x_{3 n+3}-15 x_{3 n+1}+3 x_{n+1}-45 x_{n}\right]$
- $2\left(\mathrm{y} 3_{\mathrm{n}+2}+3 \mathrm{y}_{\mathrm{n}}\right)$
$>$ Expressions representing biquadratic integers:
- $1 / 2\left(\mathrm{x}_{4 \mathrm{n}+4}-15 \mathrm{x}_{4 \mathrm{n}+3}\right)+4 \mathrm{f}_{\mathrm{n}}{ }^{2}-2$
- $1 / 2\left(\mathrm{x}_{4 \mathrm{n}+4}-15 \mathrm{x}_{4 \mathrm{n}+3}\right)+4\left[1 / 2\left(\mathrm{x}_{\mathrm{n}+1}-15 \mathrm{x}_{\mathrm{n}}\right)\right]^{2}-2$
- $2 \mathrm{y}_{4 \mathrm{n}+3}+4 \mathrm{f}_{\mathrm{n}}{ }^{2}-2$
- $2\left(\mathrm{y}_{4 \mathrm{n}+3}+4 \mathrm{y}_{\mathrm{n}+1}+3\right)$

Employing linear combinations among the solutions, one obtains solutions to other choices of hyperbolas

Example1: Let $\mathbf{X}=\mathrm{x}_{\mathrm{n}+1}-15 \mathrm{x}_{\mathrm{n}}, \mathbf{Y}=\mathrm{x}_{\mathrm{n}}$

$$
X^{2}=224 Y^{2}+16
$$

Note that (X, Y) satisfies the hyperbola
Example2: Let $\mathbf{X}=\mathrm{y}_{\mathrm{n}}, \mathbf{Y}=\mathrm{y}_{\mathrm{n}+1}-15 \mathrm{y}_{\mathrm{n}}$

$$
224\left(\mathrm{X}^{2}-1\right)=\mathrm{Y}^{2}
$$

Note that (X, Y) satisfies the hyperbola
$>$ Employing linear combinations among the solutions, one obtains solutions to other choices of parabolas

Example3: Let $\mathbf{X}=\mathrm{x}_{2 \mathrm{n}+2-2}-15 \mathrm{x}_{2 \mathrm{n}+1}+4, \mathbf{Y}=\mathrm{x}_{\mathrm{n}}$

$$
\mathrm{X}=112 \mathrm{Y}^{2}+8
$$

Note that (X, Y) satisfies the parabola
Example4: Let $\mathbf{X}=\mathrm{y}_{\mathrm{n}+1}+1, \mathbf{Y}=\mathrm{x}_{\mathrm{n}}$
$\mathrm{Y}^{2}=112(\mathrm{X}-2)$
Note that (X, Y) satisfies the parabola
$>$ considering suitable values of $\mathrm{X}_{\mathrm{n}} \& \mathrm{Y}_{\mathrm{n}}$, one generates $2^{\text {nd }}$ order Ramanujan numbers with base integers as real integers

For illustration, consider
$X_{1}=120=1 * 120=2 * 60=3 * 40=12 * 10=6 * 20$

Now, $1^{*} 120=2 * 60$
$\rightarrow(120+1)^{2}+(60-2)^{2}=(12-1)^{2}+(60+2)^{2}$
$\rightarrow 121^{2}+58^{2}=119^{2}+62^{2}=18005$
$1 * 120=3 * 40$
$\rightarrow(120+1)^{2}+(40-3)^{2}=(120-1)^{2}+(3+40)^{2}=16010$
$1 * 120=12 * 10$
$\rightarrow(120+1)^{2}+(12-10)^{2}=(20+1)^{2}+(12+10)^{2}=14645$
$1 * 120=6 * 20$
$\rightarrow(1+120)^{2}+(20-6)^{2}=(20+6)^{2}+(120-1)^{2}=14837$
$2 * 60=3 * 40$
$\rightarrow(2+60)^{2}+(40-3)^{2}=(60-2)^{2}+(40+3)^{2}=5213$
$3 * 40=12 * 10$
$\rightarrow(3+40)^{2}+(12-10)^{2}=(12+10)^{2}+(40-3)^{2}=1853$
$3 * 40=6 * 20$
$\rightarrow(3+40)^{2}+(20-6)^{2}=(20+6)^{2}+(40-3)^{2}=2045$
Note:

$$
\begin{aligned}
& 2 * 60=12 * 10 \rightarrow 31^{2}-29^{2}=11^{2}-1^{2} \\
& \rightarrow 31^{2}+1^{2}=11^{2}+29^{2}=962 \\
& 2 * 60=6 * 20 \rightarrow 31^{2}-29^{2}=13^{2}-7^{2} \\
& \rightarrow 31^{2}+7^{2}=29^{2}+13^{2}=1010 \\
& 12 * 10=6 * 20 \rightarrow 11^{2}-1^{2}=13^{2}-7^{2} \\
& \rightarrow 11^{2}+7^{2}=13^{2}+1^{2}=170
\end{aligned}
$$

Thus $18005,16010,14645,14837,5213,1853,2045,962,1010,170$ represent $2^{\text {nd }}$ order Ramanujan numbers
$>$ Considering suitable values of $x_{n} \& y_{n}$, one generates $2^{\text {nd }}$ order Ramanujan numbers with base integers as guassian integers

For illustration, consider again x_{1} represented by (*),
Now, $1^{*} 120=2 * 60 \rightarrow(1+\mathrm{i} 120)^{2}+(60-\mathrm{i} 2)^{2}=-10803$
Also, $1^{*} 120=2 * 60 \rightarrow(120+\mathrm{i})^{2}+(2-\mathrm{i} 60)^{2}=10803$
Note that $-10803 \& 10803$ represent $2^{\text {nd }}$ order Ramanujan numbers with base integers as gaussian integers.

In a similar manner, other $2^{\text {nd }}$ order Ramanujan numbers are obtained.

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal
Volume: 6 | Issue: 12 |December 2020 || Journal DOI: 10.36713/epra2013 || SJIF Impact Factor: 7.032 ||ISI Value: 1.188

REFERENCES

1. Telang S.J., "Number Theory", Tata Mcgraw hill Publishing company ltd, New Delhi, (2000).
2. Thomas Koshy, "Elementary Number Theory Applications", Academic Press, (2005).
3. Gopalan M.A and Janaki G, "Observations on $y^{2}=3 x^{2}+1$ ", Acta ciancia Indica, XXXIVM, No.2, (2008), 693-696.
4. Gopalan M.A and Yamuna R.S, "Remarkable Observations On The Binary Quadratic Equation", Impact J.Sci.Tech, Vol.4,No.4,(2010),61-65.
5. Gopalan M.A and Sangeetha G, "A Remarkable Observation On $y^{2}=10 x^{2}+1$, Impact J.Sci.Tech.,Vol. 4 No.4,(2010),103-106.
6. Gopalan M.A and Palanikumar R, "Observations On $y^{2}=12 x^{2}+1$ ", Antarctia J.Math., 8(2)(2011),149-152.
7. Gopalan M.A and Geetha K, "Observations On The Hyperbola $y^{2}=18 x^{2}+1$ ", RETELL, An Inter-disciplinary Research Journal Vol.13,No.1,(2012),81-83.
8. Gopalan M.A, Vijayalakshmi S, Usha Rani T.R and Malliga S, "Observations On $y^{2}=12 x^{2}-3$ ", Bessel Journal Of Math, 2(3),(2012), 153-158.
9. Gopalan M.A, Sumathi G and Vidhyalakshmi S, "Observations on $y^{2}=26 x^{2}+1$ ", Bessel Journal Of Math, Vol .4, Issue 1, (2014),21-25.
