t-REGULAR t-DERIVATIONS ON p-SEMISIMPLE BCIK-ALGEBRAS

S Rethina Kumar
Assistant Professor, Department of Mathematics, Bishop Heber college, Trichy 620017.
Tamilnadu. India.

Abstract

In this paper, Introduced BCIK - algebra and its properties, and also we introduce the notion of derivation of a BCIKalgebra and investigate some related properties. We introduce the notion of t-derivation of a BCIK-algebra and investigate related properties. Moreover, we study \boldsymbol{t}-derivation in a p-simisimple BCIK-algebra and establish some results on \boldsymbol{t}-derivations in a p-semisimple BCIK-algebra. KEYWORDS: BCIK-algebra, \boldsymbol{p}-semisimple, \boldsymbol{t}-derivations, \boldsymbol{t}-regular.

1. INTRODUCTION

In 1966, Y. Imai and K. Iseki [1,2] defined BCK - algebra in this notion originated from two different sources: one of them is based on the set theory the other is form the classical and non - classical propositional calculi. In [3]. Y.B. Jun and X.L. Xin applied the notion of derivation in ring and near - ring theory to BCI algebras, and they also introduced a new concept called a derivation in BCI-algebras and its properties. We introduce combination BCK-algebra and BCI-algebra to define BCIK-algebra and its properties and also using Lattices theory to derived the some basic definitions, an algebra of type (1,0), also known as BCIK-algebra, and they also introduced a new concept called a regular derivation in BCIK-algebras. We introduce left derivation psemisimple algebra and its properties.

After the work of Jun and Xin (2004) [3], many research articles have appeared on the derivations of BCIalgebras In different aspects as follows: in 2005 [13], Zhan and Liu have given the notion of f-derivation of BCIalgebras and studied p-semisimple BCI -algebras by using the idea of regular f-derivation in BCI-algebras. In 2006 [14] Abujabal and Al-sheshri have extended the results of BCI-algebra. Further, in the next year 2007[15] they defined and studied the notion of left derivation of BCI-algebra and incestigated some properties of left derivation in p-semisimple BCI-algebras. In 2009 [16], Ozturk and Ceven have defined the notion of derivation and generalized derivation determined by a derivation for a complicated subtraction algebra and discussed some related properties. Also, in 2009 [17], Ozturk et al. have introduced the notion of generalized derivation in BCI-algebras and established some results. Further, they have given the idea of torsion free BCI-algebra and explored some properties. In 2010 [18], Al-Shehri has applied the notion of left-right (resp.,right-left)derivation in BCI-algebra in BCI-algebra and obtained some of its properties. In 2011[19], IIbira et al, have studied the notion of left-right(resp.,rightleft)symmetric biderivation in BCI -algebras.

Motivated by a lot work done on derivations of BCI-algebra and on derivations of other related abstract algebraic structures, in this paper we introduce the notion of t-derivation on BCIK-algebras and obtain some of its related properties. Further, we characterize the notion of p-semisimple BCIK-algebra xby using the notion of tderivation and show that if d_{t} and $d_{t}{ }^{\prime}$ are t-derivations on X, then d_{t} o d_{t},' is also a t-derivation and $d_{t} o d_{t}{ }^{\prime}=d_{t}{ }^{\prime}$ o d_{t}. Finally, we prove that $\mathrm{d}_{\mathrm{t}}{ }^{\prime} * \mathrm{~d}_{\mathrm{t}}$, where d_{t} and d_{t} ' are t -derivations on a p-semisimple BCIK-algebra.

2. PRELIMINARIES

Definition 2.1 BCIK algebra
Let X be a non-empty set with a binary operation * and a constant 0 . Then ($\mathrm{X}, *, 0$) is called a BCIK Algebra, if it satisfies the following axioms for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
$\left(\right.$ BCIK-1) $x * y=0, y^{*} x=0, z^{*} x=0$ this imply that $x=y=z$.
$($ BCIK-2 $)\left(\left(x^{*} y\right) *(y * z)\right) *\left(z^{*} x\right)=0$.
$(\mathrm{BCIK}-3)(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y}=0$.
$\left(\right.$ BCIK-4) $x * x=0, y^{*} y=0, z^{*} z=0$.
$(B C I K-5) ~ 0 * x=0,0 * y=0,0 * z=0$.
For all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$. An inequality \leq is a partially ordered set on X can be defined $\mathrm{x} \leq \mathrm{y}$ if and only if
$\left(x^{*} y\right) *(y * z)=0$.
Properties 2.2. [5] I any BCIK - Algebra X, the following properties hold for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
(1) $0 € X$.
(2) $x * 0=x$.
(3) $x * 0=0$ implies $x=0$.
(4) $0 *(x * y)=(0 * x) *(0 * y)$.
(5) $X^{*} y=0$ implies $x=y$.
(6) $X^{*}(0 * y)=y^{*}(0 * x)$.
(7) $0 *(0 * x)=x$.
(8) $x * y \in X$ and $x \in X$ imply y $\in X$.
(9) $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}$
(10) $x *(x *(x * y))=x * y$.
(11) $(x * y) *(y * z)=x * y$.
(12) $0 \leq x \leq y$ for all $x, y \in X$.
(13) $x \leq y$ implies $x^{*} z \leq y^{*} z$ and $z^{*} y \leq z^{*} x$.
(14) $x * y \leq x$.
(15) $x * y \leq z \Leftrightarrow x * z \leq y$ for all $x, y, z \in X$
(16) $\mathrm{x} * \mathrm{a}=\mathrm{x} * \mathrm{~b}$ implies $\mathrm{a}=\mathrm{b}$ where a and b are any natural numbers (i. e)., $\mathrm{a}, \mathrm{b} \in \mathrm{N}$
(17) $a * x=b * x$ implies $a=b$.
(18) $a^{*}(a * x)=x$.

Definition 2.3. [4, 5, 6, 7] Let X be a BCIK - algebra. Then, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$:
(1) X is called a positive implicative BCIK - algebra if $(x * y) * z=(x * z) *(y * z)$.
(2) X is called an implicative BCIK - algebra if $x^{*}\left(y^{*} x\right)=x$.
(3) X is called a commutative BCIK - algebra if $x^{*}\left(x^{*} y\right)=y^{*}\left(y^{*} x\right)$.
(4) X is called bounded BCIK - algebra, if there exists the greatest element 1 of X, and for any $x \in X, 1 * x$ is denoted by GG_{x},
(5) X is called involutory BCIK - algebra, if for all $x \in X, G G_{x}=x$.

Definition 2.4. [5, 7] Let X be a bounded BCIK-algebra. Then for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$:
(1) $\mathrm{G} 1=0$ and $\mathrm{G} 0=1$,
(2) $\mathrm{GG}_{\mathrm{x}} \leq \mathrm{x}$ that $\mathrm{GG}_{\mathrm{x}}=\mathrm{G}\left(\mathrm{G}_{\mathrm{x}}\right)$,
(3) $G_{x} * G_{y} \leq y * x$,
(4) $y \leq x$ implies $G_{x} \leq G_{y}$,
(5) $\mathrm{G}_{\mathrm{x} * \mathrm{y}}=\mathrm{G}_{\mathrm{y} * \mathrm{x}}$
(6) $\mathrm{GGG}_{\mathrm{x}}=\mathrm{G}_{\mathrm{x}}$.

Theorem 2.5. [8] Let X be a bounded BCIK-algebra. Then for any $x, y \in X$, the following hold:
(1) X is involutory,
(2) $x * y=G_{y} * G_{x}$,
(3) $x * G_{y}=y * G_{x}$,
(4) $x \leq G_{y}$ implies $y \leq G_{x}$.

Theorem 2.6. [5] Every implicative BCIK-algebra is a commutative and positive implicative BCIK-algebra.
Definition 2.7. [10,11] Let X be a BCIK-algebra. Then:
(1) X is said to have bounded commutative, if for any $x, y \in X$, the set $A(x, y)=\left\{t \in X: t^{*} x \leq y\right\}$ has the greatest element which is denoted by x o y ,
(2) $(\mathrm{X}, *, \leq)$ is called a BCIK-lattices, if (X, \leq) is a lattice, where \leq is the partial BCIK-order on X , which has been introduced in Definition 2.1.

Definition 2.8. [11] Let X be a BCIK-algebra with bounded commutative. Then for all $x, y, z \in X$:
(1) $y \leq x \circ\left(y^{*} x\right)$,
(2) $(x$ o z) $*(y$ o $z) \leq x * y$,
(3) $(x * y) * z=x *(y o z)$,
(4) If $x \leq y$, then x o $z \leq y o z$,
(5) $z^{*} x \leq y \Leftrightarrow z \leq x$ o y.

Theorem 2.9. [12] Let X be a BCIK-algebra with condition bounded commutative. Then, for all $x, y, z \in X$, the following are equivalent:
(1) X is a positive implicative,
(2) $\mathrm{x} \leq \mathrm{y}$ implies x o $\mathrm{y}=\mathrm{y}$,
(3) $\mathrm{xox}=\mathrm{x}$,
(4) $(\mathrm{x} \mathrm{o} \mathrm{y)} * \mathrm{z}=(\mathrm{x} * \mathrm{z}) \mathrm{o}(\mathrm{y} * \mathrm{z})$,
(5) $\mathrm{xoy}=\mathrm{xo}\left(\mathrm{y}^{*} \mathrm{x}\right)$.

Theorem 2.10. [8, 9, 10] Let X be a BCIK-algebra.
(1) If X is a finite positive implicative BCIK-algebra with bounded and commutative the (X, \leq) is a distributive lattice,
(2) If X is a BCIK-algebra with bounded and commutative, then X is positive implicative if and only if (X, \leq) is an upper semi lattice with $x \vee y=x$ o y, for any $x, y \in X$,
(3) If X is bounded commutative BCIK-algebra, then BCIK-lattice (X, \leq) is a distributive lattice, where $\mathrm{x} \wedge \mathrm{y}=$ $y^{*}\left(y^{*} x\right)$ and $x \vee y=G\left(G_{x} \wedge G_{y}\right)$.

Theorem 2.11. [8] Let X be an involutory BCIK-algebra, Then the following are equivalent:
(1) (X, \leq) is a lower semi lattice,
(2) (X, \leq) is an upper semi lattice,
(3) (X, \leq) is a lattice.

Theorem 2.12. [6] Let X be a bounded BCIK-algebra. Then:
(1) every commutative BCIK-algebra is an involutory BCIK-algebra.
(2) Any implicative BCIK-algebra is a Boolean lattice (a complemented distributive lattice).

Theorem 2.13. [7, 9] Let X be a BCK-algebra, Then, for all $x, y, z \in X$, the following are equivalent:
(1) X is commutative,
(2) $x * y=x *\left(y^{*}\left(y^{*} x\right)\right)$,
(3) $x *(x * y)=y^{*}\left(y^{*}\left(x^{*}\left(x^{*} y\right)\right)\right)$,
(4) $x \leq y$ implics $x=y^{*}\left(y^{*} x\right)$.

3. Regular Left derivation p-semisimple BCIK-algebra

Definition 3.1. Let X be a p-semisimple BCIK-algebra. We define addition + as $\mathrm{x}+\mathrm{y}=\mathrm{x}^{*}(0 * y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. Then $(X,+)$ be an abelian group with identity 0 and $x-y=x * y$. Conversely, let $(X,+)$ be an abelian group with identity 0 and let $x-y=x * y$. Then X is a p-semisimple BCIK-algebra and $x+y=x *(0 * y)$, for all x, $y \in X$ (see [16]). We denote $x \square y=y *(y * x), 0 *(0 * x)=a_{x}$ and
$L_{p}(X)=\{a \in X / x * a=0$ implies $x=a$, for all $x \in X\}$.
For any $x \in X . V(a)=\{a \in X / x * a=0\}$ is called the branch of X with respect to a. We have $x * y \in V(a * b)$, whenever $x \in V(a)$ and $y \in V(b)$, for all $x, y \in X$ and all $a, b \in L_{p}(X)$, for $0 *\left(0 * a_{x}\right)=a_{x}$ which implies that $a_{x} * y$ $\in L_{p}(X)$ for all $y \in X$. It is clear that $G(X) \subset L_{p}(X)$ and $x *(x * a)=a$ and $a * x \in L_{p}(X)$, for all a $\in L_{p}(X)$ and all $x \in X$. For more detail, we refer to [17,18,19,20,21].

Definition 3.2. ([3]) Let X be a BCIK-algebra. By a (l, r)-derivation of X, we mean a self d of X satisfying the identity

$$
d(x * y)=(d(x) * y) \wedge(x * d(y)) \text { for all } x, y \in X
$$

If X satisfies the identity

$$
\mathrm{d}(\mathrm{x} * \mathrm{y})=(\mathrm{x} * \mathrm{~d}(\mathrm{y})) \wedge(\mathrm{d}(\mathrm{x}) * \mathrm{y}) \text { for all } \mathrm{x}, \mathrm{y} \in \mathrm{X}
$$

then we say that d is a (r, l)-derivation of X
Moreover, if d is both a (r, l)-derivation and (r, l)-derivation of X, we say that d is a derivation of X.
Definition 3.3. ([3]) A self-map d of a BCIK-algebra X is said to be regular if $d(0)=0$.
Definition 3.4. ([3]) Let d be a self-map of a BCIK-algebra X. An ideal A of X is said to be d-invariant, if $d(A)=$ A. In this section, we define the left derivations

Definition 3.5. Let X be a BCIK-algebra By a left derivation of X, we mean a self-map D of X satisfying $D(x * y)=(x * D(y)) \wedge(y * D(x))$, for all $x, y \in X$.

Example 3.6. Let $\mathrm{X}=\{0,1,2\}$ be a BCIK-algebra with Cayley table defined by

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

Define a map D: X $\rightarrow \mathrm{X}$ by

$$
\mathrm{D}(\mathrm{x})=\left\{\begin{array}{c}
2 i f x=0,1 \\
0 i f x=2
\end{array}\right.
$$

Then it is easily checked that D is a left derivation of X .
Proposition 3.7. Let D be a left derivation of a BCIK-algebra X. Then for all $x, y \in X$, we have
(1) $x * D(x)=y * D(y)$.
(2) $D(x)=a_{D(x) \square x}$.
(3) $\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \wedge \mathrm{x}$.
(4) $\mathrm{D}(\mathrm{x}) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.

Proof.

(1) Let $x, y \in X$. Then

$$
\mathrm{D}(0)=\mathrm{D}(\mathrm{x} * \mathrm{x})=(\mathrm{x} * \mathrm{D}(\mathrm{x})) \wedge(\mathrm{x} * \mathrm{D}(\mathrm{x}))=\mathrm{x} * \mathrm{D}(\mathrm{x})
$$

Similarly, $D(0)=y * D(y)$. So, $D(x)=y * D(y)$.
2) Let $x \in X$. Then

$$
\begin{aligned}
\mathrm{D}(\mathrm{x}) & =\mathrm{D}(\mathrm{x} * 0) \\
& =(\mathrm{x} * \mathrm{D}(0)) \wedge(0 * \mathrm{D}(\mathrm{x})) \\
& =(0 * \mathrm{D}(\mathrm{x})) *((0 * \mathrm{D}(\mathrm{x})) *(\mathrm{x} * \mathrm{D}(0))) \\
& \leq 0 *(0 *(\mathrm{x} * \mathrm{D}(\mathrm{x})))) \\
& =0 *(0 *(\mathrm{x} *(\mathrm{x} * \mathrm{D}(\mathrm{x})))) \\
& =0 *(0 *(\mathrm{D}(\mathrm{x}) \wedge \mathrm{x})) \\
& =\mathrm{a}_{\mathrm{D}(\mathrm{x}) \square \mathrm{x}} .
\end{aligned}
$$

Thus $\quad D(x) \leq a_{D(x) \square x}$. But

$$
\mathrm{a}_{\mathrm{D}(\mathrm{x}) \square \mathrm{x}}=0(0 *(\mathrm{D}(\mathrm{x}) \wedge \mathrm{x})) \leq \mathrm{D}(\mathrm{x}) \wedge \mathrm{x} \leq \mathrm{D}(\mathrm{x})
$$

Therefore, $\mathrm{D}(\mathrm{x})=\mathrm{a}_{\mathrm{D}(\mathrm{x}) \llbracket \mathrm{x}}$.
(3) Let $\mathrm{x} \in X$. Then using (2), we have

$$
\mathrm{D}(\mathrm{x})=\mathrm{a}_{\mathrm{D}(\mathrm{x}) \square \mathrm{x}} \leq \mathrm{D}(\mathrm{x}) \wedge \mathrm{x}
$$

But we know that $\mathrm{D}(\mathrm{x}) \wedge \mathrm{x} \leq \mathrm{D}(\mathrm{x})$, and hence (3) holds.
(4) Since $\mathrm{a}_{\mathrm{x}} \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$, for all $\mathrm{x} \in \mathrm{X}$, we get $\mathrm{D}(\mathrm{x}) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$ by (2).

Remark 3.8. Proposition 3.3(4) implies that $\mathrm{D}(\mathrm{X})$ is a subset of $\mathrm{L}_{\mathrm{p}}(\mathrm{X})$.
Proposition 3.9. Let D be a left derivation of a BCIK-algebra X. Then for all $x, y \in X$, we have
(1) $\mathrm{Y}^{*}(\mathrm{y} * \mathrm{D}(\mathrm{x}))=\mathrm{D}(\mathrm{x})$.
(2) $\mathrm{D}(\mathrm{x}) * \mathrm{y} \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.

Proposition 3.10. Let D be a left derivation of a BCIK-algebra of a BCIK-algebra X . Then
(1) $\mathrm{D}(0) \in \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.
(2) $D(x)=0+D(x)$, for all $x \in X$.
(3) $D(x+y)=x+D(y)$, for all $x, y \in L_{p}(X)$.
(4) $\mathrm{D}(\mathrm{x})=\mathrm{x}$, for all $\mathrm{x} \in X$ if and only if $\mathrm{D}(0)=0$.
(5) $D(x) \in G(X)$, for all $x \in G(X)$.

Proof.

(1) Follows by Proposition 3.3(4).
(2) Let $x \in X$. From Proposition 3.3(4), we get $D(x)=a_{D(x)}$, so we have

$$
\mathrm{D}(\mathrm{x})=\mathrm{a}_{\mathrm{D}(\mathrm{x})}=0 *(0 * \mathrm{D}(\mathrm{x}))=0+\mathrm{D}(\mathrm{x})
$$

(3) Let $x, y \in L_{p}(X)$. Then
$\mathrm{D}(\mathrm{x}+\mathrm{y})=\mathrm{D}(\mathrm{x} *(0 * \mathrm{y}))$

$$
=(\mathrm{x} * \mathrm{D}(0 * \mathrm{y})) \wedge((0 * \mathrm{y}) * \mathrm{D}(\mathrm{x}))
$$

$$
=((0 * y) * D(x)) *(((0 * y) * D(x) *(x * D(0 * y)))
$$

$$
\begin{aligned}
& =x * D(0 * y) \\
& =x *((0 * D(y)) \wedge(y * D(0))) \\
& =x * D(0 * y) \\
& =x *(0 * D(y)) \\
& =x+D(y)
\end{aligned}
$$

(4) Let $\mathrm{D}(0)=0$ and $\mathrm{x} \in X$. Then
$\mathrm{D}(\mathrm{x})=\mathrm{D}(\mathrm{x}) \wedge \mathrm{x}=\mathrm{x} *(\mathrm{x} * \mathrm{D}(\mathrm{x}))=\mathrm{x} * \mathrm{D}(0)=\mathrm{x} * 0=\mathrm{x}$.
Conversely, let $D(x)=x$, for all $x \in X$. So it is clear that $D(0)=0$.
(5) Let $\mathrm{x} \in \mathrm{G}(\mathrm{x})$. Then $0 *=\mathrm{x}$ and so
$\mathrm{D}(\mathrm{x})=\mathrm{D}(0$ * x$)$

$$
\begin{aligned}
& =(0 * \mathrm{D}(\mathrm{x})) \wedge(\mathrm{x} * \mathrm{D}(0)) \\
& =(\mathrm{x} * \mathrm{D}(0)) *((\mathrm{x} * \mathrm{D}(0)) *(0 * \mathrm{D}(\mathrm{x})) \\
& =0 * \mathrm{D}(\mathrm{x})
\end{aligned}
$$

This give $D(x) \in G(X)$.
Remark 3.11. Proposition 3.6(4) shows that a regular left derivation of a BCIK-algebra is the identity map. So we have the following:

Proposition 3.12. A regular left derivation of a BCIK-algebra is trivial.
Remark 3.13. Proposition 3.6(5) gives that $\mathrm{D}(\mathrm{x}) \in \mathrm{G}(\mathrm{X}) \subseteq \mathrm{L}_{\mathrm{p}}(\mathrm{X})$.
Definition 3.14. An ideal A of a BCIK-algebra X is said to be D -invariant if $\mathrm{D}(\mathrm{A}) \subset \mathrm{A}$.
Now, Proposition 3.8 helps to prove the following theorem.
Theorem 3.15. Let D be a left derivation of a BCIK-algebra X . Then D is regular if and only if ideal of X is D invariant.
Proof.
Let D be a regular left derivation of a BCIK-algebra X. Then Proposition 3.8. gives that $D(x)=x$, for all $x \in X$. Let $y \in D(A)$, where A is an ideal of X. Then $y=D(x)$ for some $x \in A$. Thus

$$
\mathrm{Y} * \mathrm{x}=\mathrm{D}(\mathrm{x}) * \mathrm{x}=\mathrm{x} * \mathrm{x}=0 € \mathrm{~A}
$$

Then $y \in A$ and $D(A) \subset A$. Therefore, A is D-invarient.
Conversely, let every ideal of X be D-invariat. Then $D(\{0\}) \subset\{0\}$ and hence $\mathrm{D}(0)$ and D is regular.
Finally, we give a characterization of a left derivation of a p-semisimple BCIK-algebra.
Proposition 3.16. Let D be a left derivation of a p-semisimple BCIK-algebra. Then the following hold for all x , y $\epsilon \mathrm{X}$:
(1) $D(x * y)=x * D(y)$.
(2) $\mathrm{D}(\mathrm{x}) * \mathrm{x}=\mathrm{D}(\mathrm{y}) * \mathrm{Y}$.
(3) $D(x) * x=y * D(y)$.

Proof.
(1) Let $x, y \in X$. Then $D(x * y)=(x * D(y)) \wedge \wedge(y * D(x))=x * D(y)$.
(2) We know that
$(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y})) \leq \mathrm{D}(\mathrm{y}) * \mathrm{y}$ and
$(\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x})) \leq \mathrm{D}(\mathrm{x}) * \mathrm{x}$.
This means that
$((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) *(\mathrm{D}(\mathrm{y}) * \mathrm{y})=0$, and
$((\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))) *(\mathrm{D}(\mathrm{x}) * \mathrm{x})=0$.
So
$((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) *(\mathrm{D}(\mathrm{y}) * \mathrm{y})=((\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))) *(\mathrm{D}(\mathrm{x}) * \mathrm{x})$.
Using Proposition 3.3(1), we get,
$(x * y) * D(x * y)=(y * x) * D(y * x)$.

By (I), (II) yields
$(\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))=(\mathrm{y} * \mathrm{x}) *(\mathrm{y} * \mathrm{D}(\mathrm{x}))$.
Since X is a p-semisimple BCIK-algebra. (I) implies that
$\mathrm{D}(\mathrm{x})$ * $\mathrm{x}=\mathrm{D}(\mathrm{y}) * \mathrm{y}$.
(3) We have, $\mathrm{D}(0)=\mathrm{x} * \mathrm{D}(\mathrm{x})$. From (2), we get $\mathrm{D}(0) * 0=\mathrm{D}(\mathrm{y}) * \mathrm{y}$ or $\mathrm{D}(0)=\mathrm{D}(\mathrm{y}) * \mathrm{y}$.

So $\mathrm{D}(\mathrm{x}) * \mathrm{x}=\mathrm{y} * \mathrm{D}(\mathrm{y})$.
Theorem 3.17. In a p-semisimple BCIK-algebra X a self-map D of X is left derivation if and only if and if it is derivation.

Proof.

Assume that D is a left derivation of a BCIK-algebra X . First, we show that D is a (r, l)-derivation of X . Then

$$
\begin{aligned}
\mathrm{D}(\mathrm{x} * \mathrm{y}) & =\mathrm{x} * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{D}(\mathrm{x}) * \mathrm{y}) *((\mathrm{D}(\mathrm{x}) * \mathrm{Y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) \\
& =(\mathrm{x} * \mathrm{D}(\mathrm{y})) \wedge(\mathrm{D}(\mathrm{x}) * \mathrm{y})
\end{aligned}
$$

Now, we show that D is a $(r, 1)$-derivation of X. Then

$$
\begin{aligned}
\mathrm{D}(\mathrm{x} * \mathrm{Y}) & =\mathrm{x} * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} * 0) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} *(\mathrm{D}(0) * \mathrm{D}(0)) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} *((\mathrm{x} * \mathrm{D}(\mathrm{x})) *(\mathrm{D}(\mathrm{y}) * \mathrm{y}))) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} *((\mathrm{x} * \mathrm{D}(\mathrm{y})) *(\mathrm{D}(\mathrm{x}) * \mathrm{y}))) * \mathrm{D}(\mathrm{y}) \\
& =(\mathrm{x} * \mathrm{D}(\mathrm{y}) *((\mathrm{x} * \mathrm{D}(\mathrm{y})) *(\mathrm{D}(\mathrm{x}) * \mathrm{Y})) \\
& =(\mathrm{D}(\mathrm{x}) * \mathrm{y}) \wedge(\mathrm{x} * \mathrm{D}(\mathrm{y})) .
\end{aligned}
$$

Therefore, D is a derivation of X .
Conversely, let D be a derivation of X. So it is a (r, l)-derivation of X. Then

$$
\begin{aligned}
\mathrm{D}(\mathrm{x} * \mathrm{y}) & =(\mathrm{x} * \mathrm{D}(\mathrm{y})) \wedge(\mathrm{D}(\mathrm{x}) * \mathrm{y}) \\
& =(\mathrm{D}(\mathrm{x}) * \mathrm{y}) *((\mathrm{D}(\mathrm{x}) * \mathrm{y}) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) \\
& =\mathrm{x} * \mathrm{D}(\mathrm{y})=(\mathrm{y} * \mathrm{D}(\mathrm{x})) *((\mathrm{y} * \mathrm{D}(\mathrm{x})) *(\mathrm{x} * \mathrm{D}(\mathrm{y}))) \\
& =(\mathrm{x} * \mathrm{D}(\mathrm{y})) \wedge(\mathrm{y} * \mathrm{D}(\mathrm{x}))
\end{aligned}
$$

Hence, D is a left derivation of X .

4. t-Derivations in a BCIK-algebra/p-Semisimple BCIK-algebra

The following definitions introduce the notion of t-derivation for a BCIK-algebra.
Definition 4.1. Let X be a BCIK-algebra. Then for $\mathrm{t} \in \mathrm{X}$, we define a self map $\mathrm{d}_{\mathrm{t}}: X \rightarrow X$ by $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x} * \mathrm{t}$ for all x ϵ X.

Definition 4.2. Let X be a BCIK-algebra. Then for any $t \in X$, a self map $d_{t}: X \rightarrow X$ is called a left-rifht t derivation or (l,r)-t-derivation of X if it satisfies the identity $d_{t}(x * Y)=\left(d_{t}(x) * y\right) \wedge\left(x * d_{t}(y)\right)$ for all $x, y \in X$.

Definition 4.3. Let X be a BCIK-algebra. Then for any $t \in X$, a self map $d_{t}: X \rightarrow X$ is called a left-right t derivation or (l,r)-t-derivation of X if it satisfies the identity $d_{t}(x * y)=\left(x * d_{t}(y)\right) \wedge\left(d_{t}(x) * y\right)$ for all $x, y \in X$.
Moreover, if d_{t} is both a $(1, r)$ and a(r.l)-t-derivation on X, we say that d_{t} is a t-derivation on X.
Example 4.4. Let $\mathrm{X}=\{0,1,2\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	1	2
0	0	0	2
1	1	0	2
2	2	2	0

For any $t \in X$, define a self map $d_{t}: X \rightarrow X$ by $d_{t}(x)=x * t$ for all $x \in X$. Then it is easily checked that d_{t} is a $t-$ derivation of X .

Proposition 4.5. Let d_{t} be a self map of an associative BCIK-algebra X. Then d_{t} is a (l,r)-t-derivation of X.
Proof. Let X be an associative BCIK-algebra, then we have

$$
\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=(\mathrm{x} * \mathrm{y})
$$

$$
\begin{aligned}
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} * 0 \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\}] \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{(\mathrm{x} * \mathrm{y}) * \mathrm{t}\}] \\
& =\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *[\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\} *\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\}] \\
& =((\mathrm{x} * \mathrm{t}) * \mathrm{y}) \wedge(\mathrm{x} *(\mathrm{y} * \mathrm{t})) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) .
\end{aligned}
$$

Proposition 4.6. Let d_{t} be a self map of an associative BCIK-algebra X. Then, d_{t} is a $(r, 1)$ - t-derivation of X.
Proof. Let X be an associative BCIK-algebra, then we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) & =(\mathrm{x} * \mathrm{y}) * \mathrm{t} \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} * 0 \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *[\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *\{(\mathrm{x} * \mathrm{t}) * \mathrm{y})] \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *[\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *\{(\mathrm{x} * \mathrm{y}) * \mathrm{t}\}] \\
& =\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *[\{(\mathrm{x} * \mathrm{t}) * \mathrm{y}\} *\{\mathrm{x} *(\mathrm{y} * \mathrm{t})\}] \\
& =(\mathrm{x} *(\mathrm{y} * \mathrm{t})) \wedge((\mathrm{x} * \mathrm{t}) * \mathrm{y}) \\
& =\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(d_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)
\end{aligned}
$$

Combining Propositions 4.5 and 4.6 , we get the following Theorem.
Theorem 4.7. Let d_{t} be a self map of an associative BCIK-algebra X. Then, d_{t} is a t-derivation of x.
Definition 4.8. A self map d_{t} of a BCIK-algebra X is said to be t-regular if $d_{t}(0)=0$.
Example 4.9. Let $\mathrm{X}=\{0, \mathrm{a}, \mathrm{b}\}$ be a BCIK-algebra with the following Cayley table:

$*$	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

(1) For any $t \in X$, define a self map $d_{t}: X \rightarrow X$ by

$$
\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x} * \mathrm{t}=\left\{\begin{array}{c}
b \text { if } x=0, a \\
0 \text { if } x=b
\end{array}\right.
$$

Then it is easily checked that d_{t} is $(1, r)$ and (r, l)-t-derivations of X, which is not t-regular.
(2) For any $t \in X$, define a self map $d^{\prime}: X \rightarrow X$ by

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x})=\mathrm{x} * \mathrm{t}= & 0 \text { if } \mathrm{x}=0, \mathrm{a} \\
& \mathrm{~b} \text { if } \mathrm{x}=\mathrm{b} .
\end{aligned}
$$

Then it is easily checked that d_{t}^{\prime} is $(1, r)$ and (r,l)-t-derivations of X, which is t-regular.
Proposition 4.10. Let d_{t} be a self map of a BCIK-algebra X. Then
(1) If d_{t} is a (l,r)-t- derivation of x, then $d_{t}(x)=d_{t}(x) \wedge x$ for all $x \in X$.
(2) If d_{t} is a (r,l)-t-derivation of X, then $d_{t}(x)=x \wedge d_{t}(x)$ for all $x \in X$ if and only if d_{t} is t-regular.

Proof.
(1) Let d_{t} be a (l,r)-t-derivation of X, then

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right) \wedge\left(\mathrm{x}^{*} * \mathrm{~d}_{\mathrm{t}}(0)\right) \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right] \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} * \mathrm{~d}_{\mathrm{t}}(0)\right] \\
& \leq \mathrm{x} *\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{x} .
\end{aligned}
$$

But $d_{t}(x) \wedge x \leq d_{t}(x)$ is trivial so (1) holds.
(2) Let d_{t} be a $(r, 1)$-t-derivation of X. If $d_{t}(x)=x \leq d_{t}(x)$ then

$$
\mathrm{d}_{\mathrm{t}}(0)=0 \wedge \mathrm{~d}_{\mathrm{t}}(0)
$$

$$
\begin{aligned}
& =\mathrm{d}_{\mathrm{t}}(0) *\left\{\mathrm{~d}_{\mathrm{t}}(0) * 0\right\} \\
& =\mathrm{d}_{\mathrm{t}}(0) * \mathrm{~d}_{\mathrm{t}}(0) \\
& =0
\end{aligned}
$$

Thereby implying d_{t} is t-regular. Conversely, suppose that d_{t} is t-regular, that is $d_{t}(0)=0$, then we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(0) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0) \\
& =\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right) \\
& =(\mathrm{x} * 0) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \\
& =\mathrm{x} \wedge \mathrm{~d}_{\mathrm{t}}(\mathrm{x}) .
\end{aligned}
$$

The completes the proof.
Theorem 4.11. Let d_{t} be a (1,r)-t-derivation of a p-semisimple BCIK-algebra X . Then the following hold:
(1) $\mathrm{d}_{\mathrm{t}}(0)=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}$ for all $\mathrm{x} \in X$.
(2) d_{t} is one- $0 n e$.
(3) If there is an element $x \in X$ such that $d_{t}(x)=x$, then d_{t} is identity map.
(4) If $x \leq y$, then $d_{t}(x) \leq d_{t}(y)$ for all $x, y \in X$.

Proof.
(1) Let d_{t} be a (l,r)-t-derivation of a p-semisimple BCIK-algebra X. Then for all $x \in X$, we have $x^{*} x=0$ and so

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(0) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{x}) \\
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right) \\
& =\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} *\left[\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\} *\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{x}
\end{aligned}
$$

(2) Let $d_{t}(x)=d_{t}(y) \Rightarrow x * t=y * t$, then we have $x=y$ and so d_{t} is one-one.
(3) Let d_{t} be t-regular and $x \in X$. Then, $0=d_{t}(0)$ so by the above part(1), we have $0=d_{t}(x) * x$ and, we obtain $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \in X$. Therefore, d_{t} is the identity map.
(4) It is trivial and follows from the above part (3).
(5) Let $\mathrm{x} \leq \mathrm{y}$ implying $\mathrm{x} * \mathrm{y}=0$. Now,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y}) & =(\mathrm{x} * \mathrm{t}) *(\mathrm{y} * \mathrm{t}) \\
& =\mathrm{x} * \mathrm{y} \\
& =0
\end{aligned}
$$

Therefore, $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$. This completes proof.
Definition 4.12. Let d_{t} be a t-derivation of a BCIK-algebra X. Then, d_{t} is said to be an isotone t-derivation if $x \leq y$ $\Rightarrow \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Example 4.13. In Example 4.9(2), $\mathrm{d}_{\mathrm{t}}{ }^{\prime}$ is an isotone t -derivation, while in Example 4.9(1), d_{t} is not an isotone t derivation.

Proposition 4.14. Let X be a BCIK-algebra and d_{t} be a t-derivation on X. Then for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, the following hold:
(1) If $d_{t}(x \wedge y)=d_{t}(x) d_{t}(x) d_{t}(x)$, then d_{t} is an isotone t-derivation
(2) If $d_{t}(x \wedge y)=d_{t}(x) * d_{t}(y)$, then d_{t} is an isotone t-derivation.

Proof.
(1) Let $d_{t}(x \wedge y)=d_{t}(x) \wedge d_{t}(x)$. If $x \leq y \Rightarrow x \wedge y=x$ for all $x, y \in X$. Therefore, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} \wedge \mathrm{y}) \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{y}) \\
& \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y}) .
\end{aligned}
$$

Henceforth $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$ which implies that d_{t} is an isotone t -derivation.
(2) Let $d_{t}(x * y)=d_{t}(x) * d_{t}(y)$. If $x \leq y \Rightarrow x * y=0$ for all $x, y \in X$. Therefore, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) & =\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0) \\
& =\mathrm{d}_{\mathrm{t}}\{\mathrm{x} *(\mathrm{x} * \mathrm{y})\} \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) *\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right\} \\
& \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})
\end{aligned}
$$

Thus, $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{d}_{\mathrm{t}}(\mathrm{y})$. This completes the proof.
Theorem 4.15. Let d_{t} be a t-regular (r, l)-t-derivation of a BCIK-algebra X . Then, the following hold:
(1) $\mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq \mathrm{x}$ for all $\mathrm{x} \in \mathrm{X}$.
(2) $d_{t}(x) * y \leq x * d_{t}(y)$ for all $x, y \in X$.
(3) $\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.
(4) $\operatorname{Ker}\left(d_{t}\right):=\left\{x \in X: d_{t}(x)=0\right\}$ is a subalgebra of X.

Proof.
(1) For any $\mathrm{x} \in X$, we have $\mathrm{d}_{\mathrm{t}}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x} * 0)=\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(0)\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=(\mathrm{x} * 0) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * 0\right)=\mathrm{x} \wedge \mathrm{d}_{\mathrm{t}}(\mathrm{x}) \leq$ x .
(2) Since $d_{t}(x) \leq x$ for all $x \in X$, then $d_{t}(x) * y \leq x * y \leq x * d_{t}(y)$ and hence the proof follows.
(3) For any $x, y \in X$, we have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y}) & =\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right) \\
& =\left\{\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\} *\left[\left\{\mathrm{~d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\} *\left\{\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})\right\}\right] \\
& =\left\{\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right\} * 0 \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y} \leq \mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})
\end{aligned}
$$

(4) Let x, $y \in \operatorname{ker}\left(d_{t}\right) \Rightarrow d_{t}(x)=0=d_{t}(y)$. From (3), we have $d_{t}(x * y) \leq d_{t}(x) * d_{t}(y)=0 * 0=0$ implying $d_{t}\left(x^{*} y\right) \leq 0$ and so $d_{t}(x * y)=0$. Therefore, $x * y \in \operatorname{ker}\left(d_{t}\right)$. Consequently $\operatorname{ker}\left(d_{t}\right)$ is a subalgebra of X. This completes the proof.
Definition 4.16. Let X be a BCIK-algebra and let $d_{t}, d_{t}{ }^{\prime}$ be two self maps of X. Then we define $d_{t} o d_{t}{ }^{\prime}: X \rightarrow X$ by $\left(d_{t}\right.$ o $\left.d_{t}{ }^{\prime}\right)(x)=d_{t}\left(d_{t}{ }^{\prime}(x)\right)$ for all $x \in X$.

Example 4.17. Let $X=\{0, a, b\}$ be a BCIK-algebra which is given in Example 4.4. Let d_{t} and d_{t} ' be two self maps on X as define in Example 4.9(1) and Example 4.9(2), respectively.

Now, define a self map d_{t} o $d_{t}^{\prime}: X \rightarrow X$ by

$$
\left(\mathrm{d}_{\mathrm{t}} \mathrm{o} \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x})=\left\{\begin{array}{l}
0 \text { if } x=a, b \\
b \text { if } x=0
\end{array}\right.
$$

Then, it easily checked that $\left(d_{t}\right.$ o $\left.d_{t}{ }^{\prime}\right)(x)=d_{t}\left(d_{t}{ }^{\prime}(x)\right)$ for all $x \in X$.
Proposition 4.18. Let X be a p-semisimple BCIK-algebra X and let d_{t}, d_{t} ' be (l,r)-t-derivations of X. Then, $d_{t} o d_{t}{ }^{\prime}$ is also a ($1, \mathrm{r}$)-t-derivation of X .
Proof. Let X be a p-semisimple BCIK-algebra. d_{t} and $\mathrm{d}_{\mathrm{t}}{ }^{\prime}$ are (1,r)-t-derivations of X . Then for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we get
$\left(d_{t} o d_{t}^{\prime}\right)(x * y)=d_{t}\left(d_{t}^{\prime}(x, y)\right)$

$$
\begin{aligned}
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left\{\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) *\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \\
& =\left\{\mathrm{x}^{*} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\} *\left[\left\{\mathrm{x}^{*} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\} *\left\{\mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\left\{\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\} \wedge\left\{\mathrm{x}^{*} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right\} \\
& =\left(\left(\mathrm{d}_{\mathrm{t}} \mathrm{o} \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} *\left(\mathrm{~d}_{\mathrm{t}} \mathrm{o} \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{y})\right)
\end{aligned}
$$

Therefore, $\left(d_{t}\right.$ o $\left.d_{t}{ }^{\prime}\right)$ is a (l,r)-t-derivation of X.
Similarly, we can prove the following.
Proposition 4.19. Let X be a p-semisimple BCIK-algebra and let $d_{t}, d_{t}{ }^{\prime}$ be (r,l)-t-derivations of X. Then, d_{t} o $d_{t}{ }^{\prime}$ is also a (r,l)-t-derivation of X.

Combining Propositions 3.18 and 3.19 , we get the following.
Theorem 4.20. Let X be a p-semisimple BCIK-algebra and let d_{t}, d_{t} ' be t-derivations of X. Then, $d_{t} o d_{t}$ ' is also a t derivation of X.

Now, we prove the following theorem
Theorem 4.21. Let X be a p-semisimple BCIK-algebra and let d_{t}, d_{t} ' be t-derivations of X. Then $d_{t} o d_{t}{ }^{\prime}=d_{t}{ }^{\prime}$ o d_{t}. Proof. Let X be a p-semisimple BCIK-algebra. d_{t} and $d_{t}{ }^{\prime}, t$-derivations of X. Suppose $d_{t}{ }^{\prime}$ is a $(1, r)$-t-derivation, then for all $x, y \in X$, we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x} * \mathrm{y})\right) \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right)\right) \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x}^{\prime} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) *\left\{\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) *\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \\
& =\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})\right) * \mathrm{y}\right) \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y}) .
\end{aligned}
$$

Again, if d_{t} is a (r, l)-t-derivation, then we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}{ }^{\prime}\left[\mathrm{d}_{\mathrm{t}}(\mathrm{x} * \mathrm{y})\right] \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}\left[\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{y}\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}\left[\mathrm{x} * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}}^{\prime}\left(\mathrm{d}_{\mathrm{t}}(\mathrm{y})\right)\right. \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})
\end{aligned}
$$

Therefore, we obtain

$$
\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)=\left(d_{t}^{\prime} \circ d_{t}\right)(x * y)
$$

By putting $\mathrm{y}=0$, we get

$$
\left(d_{t} o d_{t}^{\prime}\right)(x)=\left(d_{t}^{\prime} \quad o d_{t}\right)(x) \text { for all } x \in X
$$

Hence, $d_{t} o d_{t}{ }^{\prime}=d_{t}{ }^{\prime} \circ d_{\mathrm{t}}$. This completes the proof.
Definition 4.22. Let X be a BCIK-algebra and let $d_{t}, d_{t}{ }^{\prime}$ two self maps of X. Then we define $\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}: \mathrm{X} \rightarrow \mathrm{X}$ by $\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x})=\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.

Example 4.23. Let $X=\{0, a, b\}$ be a BCIK-algebra which is given in Example 3.4. let d_{t} and d_{t} be two self maps on X as defined in Example 4.9 (1) and Example 4.10 (2), respectively.

Now, define a self map $\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}: \mathrm{X} \rightarrow \mathrm{X}$ by

$$
\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}^{\prime}\right)(\mathrm{x})=\left\{\begin{array}{l}
0 \text { if } x=a, b \\
b \text { if } x=0
\end{array}\right.
$$

Then, it is easily checked that $\left(d_{t} * d_{t}^{\prime}\right)(x)=d_{t}(x) * d_{t}{ }^{\prime}(x)$ for all $x \in X$.
Theorem 4.24. Let X be a p-semisimple BCIK-algebra and let $d_{t} d_{t}$ ' be t-derivations of X. Then $d_{t} * d_{t}{ }^{\prime}=d_{t}{ }^{\prime} * d_{t}$. Proof. Let X be a p-semisimple BCIK-algebra. d_{t} and $\mathrm{d}_{\mathrm{t}}{ }^{\prime}$, t -derivations of X .
Since $d_{t}{ }^{\prime}$ is a (r, l)-t-derivation of X, then for all $x, y \in X$, we have

$$
\begin{aligned}
\left(d_{t} \circ d_{t}^{\prime}\right)(x * y)= & d_{t}\left(d_{\mathrm{t}}^{\prime}(x * y)\right) \\
& =d_{\mathrm{t}_{t}}\left[\left(\mathrm{x}^{*} * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right] \\
& =d_{\mathrm{t}}\left[\left(\mathrm{x}^{*} * d_{\mathrm{t}}^{\prime}(\mathrm{y})\right]\right.
\end{aligned}
$$

But d_{t} is a (l,r)-r-derivation, so

$$
\begin{aligned}
& =\left(\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right) \wedge\left(\mathrm{x} * \mathrm{~d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})\right)\right. \\
& =\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) .
\end{aligned}
$$

Again, if d_{t} ' is a (l,r)-t-derivation of X, then for all $x, y \in X$, we have

$$
\begin{aligned}
\left(\mathrm{d}_{\mathrm{t}} \circ \mathrm{~d}_{\mathrm{t}^{\prime}}^{\prime}\right)(\mathrm{x} * \mathrm{y}) & =\mathrm{d}_{\mathrm{t}}\left[\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x} * \mathrm{y})\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right) \wedge\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}^{\prime}}^{\prime}(\mathrm{y})\right)\right] \\
& =\mathrm{d}_{\mathrm{t}}\left[\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}^{\prime}}(\mathrm{y})\right) *\left\{\left(\mathrm{x}^{*} \mathrm{~d}_{\mathrm{t}^{\prime}}^{\prime}(\mathrm{y})\right) *\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)\right\}\right] \\
& =\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}^{\prime}}^{\prime}(\mathrm{x}) * \mathrm{y}\right)
\end{aligned}
$$

As d_{t} is a (r,l)-t-derivation, then

$$
\begin{aligned}
& =\left(d_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})\right) \wedge\left(\mathrm{d}_{\mathrm{t}}\left(\mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})\right) * \mathrm{y}\right) \\
& =\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y}) .
\end{aligned}
$$

Henceforth, we conclude

$$
\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{y})=\mathrm{d}_{\mathrm{t}}^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{y})
$$

By putting $\mathrm{y}=\mathrm{x}$, we get
$\mathrm{d}_{\mathrm{t}}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}^{\prime}(\mathrm{x})=\mathrm{d}_{\mathrm{t}}{ }^{\prime}(\mathrm{x}) * \mathrm{~d}_{\mathrm{t}}(\mathrm{x})$
$\left(\mathrm{d}_{\mathrm{t}} * \mathrm{~d}_{\mathrm{t}}{ }^{\prime}\right)(\mathrm{x})=\left(\mathrm{d}_{\mathrm{t}}{ }^{\prime} * \mathrm{~d}_{\mathrm{t}}\right)(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$.
Hence $\quad d_{t} * d_{t}{ }^{\prime}=d_{t}{ }^{\prime} * d_{t}$. This completes the proof.

5. CONCLUSION

Derivation is a very interesting and are of research in the theory of algebraic structures in mathematics. The theory of derivations of algebraic structures is a direct descendant of the development of classical Galosis theory. In this paper, we have considered the notation of t-derivations in BCIK-algebra and investigated the useful properties of the t-derivations in BCIK-algebra. Finally, we investigated the notion of t-derivations in a p-semisimple BCIKalgebra and established some results on t-derivations in a p-semisimple BCIK-algebra. In our opinion, these definitions and main results can be similarly extended to some other algebraic system such as subtraction algebras, B-algebras, MV-algebras, d-algebras, Q-algebras and so forth.

Acknowledgments

The author would like to thank the referees for their valuable suggestions and comments.

REFERENCES

1. Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, proc. Japan Academy,42(1966), 19-22.
2. K. Iseki, BCK - Algebra, Math. Seminar Notes, 4(1976), 77-86.
3. Y.B. Jun and X.L. Xin On derivations of BCI - algebras, inform. Sci., 159(2004), 167-176.
4. C. Barbacioru, Positive implicative BCK - algebra, MathematicaJ apenica 36(1967), pp. 11-59.
5. K. Iseki, and S. Tanaka, An introduction to the theory of BCK - algebra, Mathematica Japonica 23(1978), pp. 1-26.
6. J. Meng and Y.B. Jun, BCK - algebra, Kyung Moon Sa Co, Seoul, Korea. 1994.
7. S. Tanaka, A new class of algebra, Mathematics Seminar Notes 3 (1975), pp. 37-43.
8. Y.Huang, On involutory BCK-algebra, Soochow Journal of Mathematics 32(1) (2006), pp. 51-57.
9. S. Tanaka. $O n^{\wedge}$ ^- commutative algebras, Mathematics Seminar Notes 3(1975), pp. 59-64.
10. Y. Huang, BCI-algebras, Science Press, 2006.
11. K. Iseki, BCK-algebra with bounded commutative, Mathematica Japonica 24 (1979), pp. 107-119.
12. K. Iseki, On positive implicative BCK-algebra with condition bounded commutative, Mathematica Japonica 24(1979), pp. 107-119.
13. J. Zhan and Y.L. Liu, "on f-derivations of BCI-algebras", International Journal of Mathematics and Mathematical sciences, no. 11,pp. 1675-1684,2005.
14. H.A.S. Abujabal and N.O. Al-Shehri, "seme results on derivations of BCI-algebra", The journal of Natural Sciences and Mathematics, vol. 46, no. 1-2,pp. 13-19,2006.
15. H.A.S. Abujabal and N.O. Al-Shehri, "on left derivations of BCI-algebras", Soochow journal of Mathematics, vol.33, no. 4, pp. 509-515,2009.
16. M.A. Ozturk, Y. Ceven, and Y.B. Jun, "Generalized derivations of BCI-algbra", Honam Mathematical Journal, vol.31,no4,pp.601-609,2009.
17. N.O. Al-Shehri, "Derivations of B-algebras", Journal of King Abdulaziz University, vol. 22, no. 1, pp.71-83, 2010.
18. S. IIbira, A. Firat, and Y.B. Jun, "On symmetric bi-derivations of BCI-algebras", Applied Mathematical Sciences, vol.5, no.57-60,pp.2957-2966,2011.
