# A SEARCH ON THE INTEGER SOLUTIONS TO TERNARY QUADRATIC DIOPHANTINE EQUATION $z^2 = Dx^2 + y^2$ , D = odd prime

## K.Meena<sup>1</sup>, S.Vidhyalakshmi<sup>2</sup>, M.A. Gopalan<sup>3</sup>

<sup>1</sup> Former VC, Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

<sup>2</sup>Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

<sup>3</sup> Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India.

## ABSTRACT

The homogeneous ternary quadratic diophantine equation given by  $z^2 = Dx^2 + y^2$ , D = odd prime is analyzed for its non-zero distinct integer solutions through different methods. Also, formulae for generating sequence of integer solutions based on the given solutions are presented. **KEYWORDS:** Ternary quadratic, Integer solutions, Homogeneous cone.

## **INTRODUCTION**

It is well known that the quadratic diophantine equations with three unknowns (homogenous (or) non-homogenous) are rich in variety [1,2]. In particular, the ternary quadratic diophantine equations of the form  $z^2 = Dx^2 + y^2$  are analyzed for values of D = 29,41,43,47,55,61,63,67 in [3-10]. These results motivated us to obtain non-zero distinct integer solutions to the homogeneous ternary quadratic diophantine equation given by  $z^2 = Dx^2 + y^2$ , D = odd prime through different methods. Also, formulas for generating sequence of integer solutions based on the given solutions are presented.

## **METHOD OF ANALYSIS**

The ternary quadratic diophantine equation to be solved for its integer solutions is  $z^2 = Dx^2 + y^2, D = odd \ prime$ (1)

We present below different methods of solving (1)

#### Method: 1

(1) is written in the form of ratio as

$$\frac{z+y}{x} = \frac{Dx}{z-y} = \frac{\alpha}{\beta}, \ \beta \neq 0$$
(2)



which is equivalent to the system of double equations

$$\alpha x - \beta y - \beta z = 0$$
$$Dx\beta + \alpha y - \alpha z = 0$$

Applying the method of cross-multiplication to the above system of equations, one obtains

$$x = x (\alpha, \beta) = 2\alpha\beta$$
  

$$y = y (\alpha, \beta) = \alpha^{2} - D\beta^{2}$$
  

$$z = z (\alpha, \beta) = \alpha^{2} + D\beta^{2}$$

which satisfy (1).

#### Note: 1

It is observed that (1) may also be represented as below:

$$\frac{z+y}{Dx} = \frac{x}{z-y} = \frac{\alpha}{\beta}, \ \beta \neq 0$$

Employing the procedure as above, the corresponding solutions to (1) are given by :

$$x = 2\alpha\beta, y = D\alpha^2 - \beta^2, z = D\alpha^2 + \beta^2$$

#### Method: 2

(1) is written as the system of double equations in Table 1 as follows:

## **Table: 1 System of Double Equations**

| System  | Ι  | П     | Ш      |
|---------|----|-------|--------|
| z + y = | Dx | $x^2$ | $Dx^2$ |
| z-y=    | x  | D     | 1      |

Solving each of the above system of double equations, the values of x, y & z satisfying (1) are obtained. For simplicity and brevity, in what follows, the integer solutions thus obtained are exhibited.

## Solutions for system: I

$$x = k, y = \frac{(D-1)}{2}k, z = \frac{(D+1)}{2}k$$



#### Solutions for system: II

$$x = 2k + 1$$
,  $y = 2k^{2} + 2k - \frac{(D-1)}{2}$   $z = 2k^{2} + 2k + \frac{(D+1)}{2}$ 

Solutions for system: III

$$x = 2k + 1$$
,  $y = D(2k^{2} + 2k) + \frac{(D-1)}{2}$ ,  $z = D(2k^{2} + 2k) + \frac{(D+1)}{2}$ ,

## Method: 3

Let 
$$z = y + k$$
,  $k \neq 0$  (3)  
 $\therefore (1) \Rightarrow 2ky = Dx^2 - k^2$ 

Assume

$$x = k \left( 2\alpha + 1 \right) \tag{4}$$

$$\therefore y = D\left(2k\alpha^2 + 2k\alpha\right) + \frac{(D-1)}{2}k$$
(5)

In view of (3),

$$z = D\left(2k\alpha^2 + 2k\alpha\right) + \frac{(D+1)}{2}k\tag{6}$$

Note that (4), (5), (6) satisfy (1).

## Method: 4

(1) is written as

$$y^2 + Dx^2 = z^2 = z^2 * 1 \tag{7}$$

Assume z as

$$z = a^2 + Db^2 \tag{8}$$

Write 1 as

$$1 = \frac{\left[D - 1 + i \ 2\sqrt{D}\right] \left[D - 1 - i \ 2\sqrt{D}\right]}{\left(D + 1\right)^2} \tag{9}$$

Using (8) & (9) in (7) and employing the method of factorization, consider

$$\left(y+i\sqrt{D}x\right) = \left(a+i\sqrt{D}b\right)^2 \cdot \frac{\left[D-1+i\ 2\sqrt{D}\right]}{\left(D+1\right)}.$$



Equating the real&imaginary parts, it is seen that

$$x = \frac{1}{(D+1)} \left[ 2(D-1)ab + 2[a^{2} - Db^{2}] \right]$$

$$y = \frac{1}{(D+1)} \left[ (D-1)[a^{2} - Db^{2}] - 4Dab \right]$$
(10)

Since our interest is to find the integer solutions, replacing *a* by (D+1)A & b by (D+1)B in (10) & (8), the corresponding integer solutions to (1) are given by

$$x = x (A, B) = (D+1) [2 (D-1) AB + 2 [A^{2} - DB^{2}]],$$
  

$$y = y (A, B) = (D+1) [(D-1) [A^{2} - DB^{2}] - 4DAB],$$
  

$$z = z (A, B) = (D+1)^{2} [A^{2} + DB^{2}]$$

## Note 2:

It is worth to observe that, one may write 1 as follows:

$$1 = \frac{\left[ (Dr^{2} - s^{2}) + i\sqrt{D} \cdot 2rs \right] (Dr^{2} - s^{2}) - i\sqrt{D} \cdot 2rs}{(Dr^{2} + s^{2})^{2}}$$

$$1 = \frac{\left[ \left[ 2k^{2} + 2k - \frac{(D-1)}{2} \right] + i\sqrt{D}(\cdot 2k + 1) \right] \left[ 2k^{2} + 2k - \frac{(D-1)}{2} \right] - i\sqrt{D} \cdot (2k + 1) \right]}{\left( 2k^{2} + 2k + \frac{(D+1)}{2} \right)^{2}}$$

$$1 = \frac{\left[ (2k^{2} + 2k)D + \frac{(D-1)}{2} + i\sqrt{D}(\cdot 2k + 1) \right] (2k^{2} + 2k)D + \frac{(D-1)}{2} - i\sqrt{D} \cdot (2k + 1) \right]}{\left| (2k^{2} + 2k)D + \frac{(D+1)}{2} \right|^{2}}$$

Following the above procedure, one may obtain difference sets of integer solutions to (1).

### Method 5:

(1) is also written as  $z^2 - Dx^2 = y^2 = y^2 * 1$ 

Assume *y* as

$$y = a^2 - Db^2$$

Note that 1 may be represented as follows:



Choice (i): 
$$1 = \frac{(D+1+2\sqrt{D})(D+1-2\sqrt{D})}{(D-1)^2}$$
  
Choice (ii):  $1 = \frac{[(Dr^2+s^2)+\sqrt{D}\cdot 2rs](Dr^2+s^2)-\sqrt{D}\cdot 2rs}{(Dr^2-s^2)^2}$ 

Choice (iii):

$$1 = \frac{\left[\left(2k^{2} + 2k + \frac{(D+1)}{2}\right) + \sqrt{D}(\cdot 2k + 1)\right]\left[\left(2k^{2} + 2k + \frac{(D+1)}{2}\right) - \sqrt{D}(\cdot 2k + 1)\right]}{\left(2k^{2} + 2k - \frac{(D-1)}{2}\right)^{2}}$$

Choice(iv):

$$1 = \frac{\left[(2k^{2} + 2k)D + \frac{(D+1)}{2} + \sqrt{D}(\cdot 2k + 1)\right](2k^{2} + 2k)D + \frac{(D+1)}{2} - \sqrt{D}(\cdot 2k + 1)\right]}{\left|(2k^{2} + 2k)D + \frac{(D-1)}{2}\right|^{2}}$$

It is worth mentioning that the repetition of the process as in method 4 for each of the above choices leads to different set of solutions to (1).

## **GENERATION OF SOLUTIONS**

Different formulas for generating sequence of integer solutions based on the given solution are presented below:

Let  $(x_0, y_0, z_0)$  be any given solution to (1)

## Formula: 1

Let  $(x_1, y_1, z_1)$  given by

$$x_1 = -(D-1)x_0 + h, y_1 = (D-1)y_0, z_1 = (D-1)z_0 + h,$$
(11)

be the 2<sup>nd</sup> solution to (1).Using (11) in (1) and simplifying, one obtains

$$h = 2Dx_0 + 2z_0$$

In view of (11), the values of  $x_1$  and  $z_1$  is written in the matrix form as



$$(x_1, z_1)^t = M(x_0, z_0)^t$$

where

$$M = \begin{pmatrix} D+1 & 2\\ 2D & D+1 \end{pmatrix} \text{ and } t \text{ is the transpose}$$

The repetition of the above process leads to the  $n^{th}$  solutions  $x_n, z_n$  given by

$$(x_n, z_n)^t = M^n (x_0, z_0)^t$$

If  $\alpha, \beta$  are the distinct eigen values of M, then

$$\alpha = D + 1 + 2\sqrt{D}, \quad \beta = D + 1 - 2\sqrt{D}$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{(\beta - \alpha)} (M - \alpha I), I = 2 \times 2 \text{ identity matrix}$$

Thus, the general formulas for integer solutions to (1) are given by

$$\begin{aligned} x_n &= \left(\frac{\alpha^n + \beta^n}{2}\right) x_0 + \left(\frac{\alpha^n - \beta^n}{2\sqrt{D}}\right) z_0 ,\\ y_n &= (D-1)^n y_0 ,\\ z_n &= \frac{\sqrt{D}}{2} \left(\alpha^n - \beta^n\right) x_0 + \left(\frac{\alpha^n + \beta^n}{2}\right) z_0 \end{aligned}$$

#### Formula: 2

Let  $(x_1, y_1, z_1)$  given by

$$x_1 = 3x_0, \ y_1 = 3y_0 + h, \ z_1 = 2h - 3z_0, \tag{12}$$

be the  $2^{nd}$  solution to (1).Using (12) in (1) and simplifying, one obtains

$$h = 2y_0 + 4z_0$$

In view of (12), the values of  $y_1$  and  $z_1$  is written in the matrix form as

$$(y_1, z_1)^t = M^n (y_0, z_0)^t$$

where



$$M = \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}$$
 and *t* is the transpose

The repetition of the above process leads to the  $n^{th}$  solutions  $y_n, z_n$  given by

$$(y_n, z_n)^t = M^n (y_0, z_0)^t$$

If  $\alpha, \beta$  are the distinct eigen values of M, then

$$\alpha = 1, \beta = 9$$

Thus, the general formulas for integer solutions to (1) are given by

$$x_n = 3^n x_0 ,$$
  

$$y_n = \left(\frac{9^n + 1}{2}\right) y_0 + \left(\frac{9^n - 1}{2}\right) z_0 ,$$
  

$$z_n = \frac{(9^n - 1)}{2} y_0 + \left(\frac{9^n + 1}{2}\right) z_0$$

Formula: 3

Let  $(x_1, y_1, z_1)$  given by

$$x_1 = -(D+1)x_0 + h, \ y_1 = -(D+1)y_0 + h, \ z_1 = (D+1)z_0,$$
(13)

be the  $2^{nd}$  solution to (1). Using (13) in (1) and simplifying, one obtains

$$h = 2Dx_0 + 2y_0$$

In view of (13), the values of  $x_1$  and  $y_1$  is written in the matrix form as

$$(x_1, y_1)^t = M^n (x_0, y_0)^t$$

where

$$M = \begin{pmatrix} D-1 & 2\\ 2D & -D+1 \end{pmatrix} \text{ and } t \text{ is the transpose}$$

The repetition of the above process leads to the  $n^{th}$  solutions  $x_n$ ,  $y_n$  given by

$$(x_n, y_n)^t = M^n (x_0, y_0)^t$$

If  $\alpha, \beta$  are the distinct eigen values of M, then



$$\alpha = D + 1 \beta = -(D + 1)$$

Thus, the general formulas for integer solutions to (1) are given by

$$x_{n} = \frac{\alpha^{n}D + \beta^{n}}{D+1}x_{0} + \frac{\alpha^{n} - \beta^{n}}{D+1}y_{0},$$
  
$$y_{n} = \frac{D(\alpha^{n} - \beta^{n})}{D+1}x_{0} + \frac{\alpha^{n} + \beta^{n}D}{D+1}y_{0},$$
  
$$z_{n} = (D+1)^{n}z_{0}$$

#### REFERENCES

- 1. L.E. Dickson, History of theory of Numbers, Vol. 2, Chelsea publishing Company, Newyork, 1952.
- 2. L.J. Mordel, Diophantine Equations, Academic press, Newyork, 1969.
- 3. Gopalan, M.A., Malika, S., Vidhyalakshmi, S, Integral solutions  $61x^2 + y^2 = z^2$ , nternational Journal of Innovative Science, Engineering and Technology, Vol. 1, Issue 7, 271-273, September 2014.
- 4. Meena, K., Vidhyalakshmi, S., Divya, S., Gopalan M.A., Integral Points on the cone , Sch J., Eng.Tech., 2(2B), 301-304, 2014.
- 5. Shanthi, J., Gopalan, M.A., Vidhyalakshmi, S., Integer Solutions of the Ternary Quadratic Diophantine Equation  $67x^2 + y^2 = z^2$ , paper presented in International Conference on Mathematical Methods and Computation, Jamal Mohammed College, Trichy, 2015.
- 6. Meena, K., Vidhyalakshmi, S., Divya, S., Gopalan, M A., On the Ternary Quadratic Diophantine Equation  $29x^2 + y^2 = z^2$ , International journal of Engineering Research-online, Vol. 2., Issue.1., 67-71, 2014.
- 7. Akila, G., Gopalan, M.A., Vidhyalakshmi, S., Integral solution of  $43x^2 + y^2 = z^2$ , International journal of Engineering Research-online, Vol. 1., Issue.4., 70-74, 2013.
- 8. Nancy, T., Gopalan, M.A., Vidhyalakshmi, S., On the Ternary Quadratic Diophantine Equation  $47x^2 + y^2 = z^2$ , International journal of Engineering Research-online, Vol.1 Issue.4., 51-55, 2013.
- 9. Meena, K., Vidhyalakshmi, S., Loganayaki, B., A Search on the Integer Solutions to Ternary Quadratic Diophantine Equation  $z^2 = 63x^2 + y^2$ , International Research Journal of Education and Technology, Vol.1., Issue 5., 107-116, 2021.
- 10. Vidhyalakshmi, S., Gopalan, M.A., Kiruthika,V., ASearch on the Integer Solutions to Ternary Quadratic Diophantine Equation  $z^2 = 55x^2 + y^2$ , International Research Journal of Modernization in Engineering Technology and Science, Vol.3., Issue.1., 1145-1150, 2021.