A SEARCH ON THE INTEGER SOLUTIONS TO TERNARY QUADRATIC DIOPHANTINE EQUATION $\mathrm{z}^{2}=\mathbf{D} \mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{D}=$ odd prime

K.Meena ${ }^{1}$, S.Vidhyalakshmi ${ }^{2}$, M.A. Gopalan ${ }^{3}$
${ }^{1}$ Former VC, Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.
${ }^{3}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India.

Abstract

The homogeneous ternary quadratic diophantine equation given by $z^{2}=D x^{2}+y^{2}, D=o d d$ prime is analyzed for its non-zero distinct integer solutions through different methods. Also, formulae for generating sequence of integer solutions based on the given solutions are presented. KEYWORDS: Ternary quadratic, Integer solutions, Homogeneous cone.

INTRODUCTION

It is well known that the quadratic diophantine equations with three unknowns (homogenous (or) non-homogenous) are rich in variety [1,2]. In particular, the ternary quadratic diophantine equations of the form $z^{2}=D x^{2}+y^{2}$ are analyzed for values of $D=29,41,43,47,55,61,63,67$ in [310]. These results motivated us to obtain non-zero distinct integer solutions to the homogeneous ternary quadratic diophantine equation given by $z^{2}=D x^{2}+y^{2}, D=o d d$ prime through different methods. Also, formulas for generating sequence of integer solutions based on the given solutions are presented.

METHOD OF ANALYSIS

The ternary quadratic diophantine equation to be solved for its integer solutions is $z^{2}=D x^{2}+y^{2}, D=$ odd prime

We present below different methods of solving (1)

Method: 1

(1) is written in the form of ratio as

$$
\begin{equation*}
\frac{z+y}{x}=\frac{D x}{z-y}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{2}
\end{equation*}
$$

which is equivalent to the system of double equations

$$
\begin{aligned}
& \alpha x-\beta y-\beta z=0 \\
& D x \beta+\alpha y-\alpha z=0
\end{aligned}
$$

Applying the method of cross-multiplication to the above system of equations, one obtains

$$
\begin{aligned}
& x=x(\alpha, \beta)=2 \alpha \beta \\
& y=y(\alpha, \beta)=\alpha^{2}-D \beta^{2} \\
& z=z(\alpha, \beta)=\alpha^{2}+D \beta^{2}
\end{aligned}
$$

which satisfy (1).

Note: 1

It is observed that (1) may also be represented as below:

$$
\frac{z+y}{D x}=\frac{x}{z-y}=\frac{\alpha}{\beta}, \beta \neq 0
$$

Employing the procedure as above, the corresponding solutions to (1) are given by :

$$
x=2 \alpha \beta, y=D \alpha^{2}-\beta^{2}, z=D \alpha^{2}+\beta^{2}
$$

Method: 2

(1) is written as the system of double equations in Table 1 as follows:

Table: 1 System of Double Equations

System	I	II	III
$z+y=$	$D x$	x^{2}	$D x^{2}$
$z-y=$	x	D	1

Solving each of the above system of double equations, the values of $x, y \& z$ satisfying (1) are obtained. For simplicity and brevity, in what follows, the integer solutions thus obtained are exhibited.

Solutions for system: I

$$
x=k, \quad y=\frac{(D-1)}{2} k, z=\frac{(D+1)}{2} k
$$

Solutions for system: II

$$
x=2 k+1, \quad y=2 k^{2}+2 k-\frac{(D-1)}{2} \quad z=2 k^{2}+2 k+\frac{(D+1)}{2}
$$

Solutions for system: III

$$
x=2 k+1, y=D\left(2 k^{2}+2 k\right)+\frac{(D-1)}{2}, z=D\left(2 k^{2}+2 k\right)+\frac{(D+1)}{2},
$$

Method: 3

$$
\begin{equation*}
\text { Let } \mathrm{z}=\mathrm{y}+\mathrm{k}, \quad k \neq 0 \tag{3}
\end{equation*}
$$

$$
\therefore(1) \Rightarrow 2 k y=D x^{2}-k^{2}
$$

Assume

$$
\begin{align*}
x & =k(2 \alpha+1) \tag{4}\\
\therefore y & =D\left(2 k \alpha^{2}+2 k \alpha\right)+\frac{(D-1)}{2} k \tag{5}
\end{align*}
$$

In view of (3),

$$
\begin{equation*}
z=D\left(2 k \alpha^{2}+2 k \alpha\right)+\frac{(D+1)}{2} k \tag{6}
\end{equation*}
$$

Note that (4), (5), (6) satisfy (1).

Method: 4

(1) is written as

$$
\begin{equation*}
y^{2}+D x^{2}=z^{2}=z^{2} * 1 \tag{7}
\end{equation*}
$$

Assume z as

$$
\begin{equation*}
z=a^{2}+D b^{2} \tag{8}
\end{equation*}
$$

Write 1 as

$$
\begin{equation*}
1=\frac{[D-1+i 2 \sqrt{D}][D-1-i 2 \sqrt{D}]}{(D+1)^{2}} \tag{9}
\end{equation*}
$$

Using (8) \& (9) in (7) and employing the method of factorization, consider
$(y+i \sqrt{D} x)=(a+i \sqrt{D} b)^{2} \cdot \frac{[D-1+i 2 \sqrt{D}]}{(D+1)}$.

Equating the real\&imaginary parts, it is seen that

$$
\left.\begin{array}{l}
x=\frac{1}{(D+1)}\left[2(D-1) a b+2\left[a^{2}-D b^{2}\right]\right] \\
y=\frac{1}{(D+1)}\left[(D-1)\left[a^{2}-D b^{2}\right]-4 D a b\right] \tag{10}
\end{array}\right\}
$$

Since our interest is to find the integer solutions, replacing a by $(D+1) A \& b$ by $(D+1) B$ in $(10) \&(8)$, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=x(A, B)=(D+1)\left[2(D-1) A B+2\left[A^{2}-D B^{2}\right]\right] \\
& y=y(A, B)=(D+1)\left[(D-1)\left[A^{2}-D B^{2}\right]-4 D A B\right] \\
& z=z(A, B)=(D+1)^{2}\left[A^{2}+D B^{2}\right]
\end{aligned}
$$

Note 2:

It is worth to observe that, one may write 1 as follows:

$$
1=\frac{\left.\left[\left(D r^{2}-s^{2}\right)+i \sqrt{D} \cdot 2 r s\right]\left(D r^{2}-s^{2}\right)-i \sqrt{D} \cdot 2 r s\right]}{\left(D r^{2}+s^{2}\right)^{2}}
$$

$1=\frac{\left[\left(2 k^{2}+2 k-\frac{(D-1)}{2}\right)+i \sqrt{D}(\cdot 2 k+1]\left[\left(2 k^{2}+2 k-\frac{(D-1)}{2}\right)-i \sqrt{D} \cdot(2 k+1)\right]\right.}{\left(2 k^{2}+2 k+\frac{(D+1)}{2}\right)^{2}}$

$$
1=\frac{\left[\left(2 k^{2}+2 k\right) D+\frac{(D-1)}{2}+i \sqrt{D}(\cdot 2 k+1]\left[\left(2 k^{2}+2 k\right) D+\frac{(D-1)}{2}-i \sqrt{D} \cdot(2 k+1)\right]\right.}{\left|\left(2 k^{2}+2 k\right) D+\frac{(D+1)}{2}\right|^{2}}
$$

Following the above procedure, one may obtain difference sets of integer solutions to (1).

Method 5:

(1) is also written as

$$
z^{2}-D x^{2}=y^{2}=y^{2} * 1
$$

Assume y as

$$
y=a^{2}-D b^{2}
$$

Note that 1 may be represented as follows:

Choice (i) : $1=\frac{(D+1+2 \sqrt{D})(D+1-2 \sqrt{D})}{(D-1)^{2}}$
Choice (ii): $\quad 1=\frac{\left.\left[\left(D r^{2}+s^{2}\right)+\sqrt{D} \cdot 2 r s\right]\left(D r^{2}+s^{2}\right)-\sqrt{D} \cdot 2 r s\right]}{\left(D r^{2}-s^{2}\right)^{2}}$
Choice (iii):
$1=\frac{\left[\left(2 k^{2}+2 k+\frac{(D+1)}{2}\right)+\sqrt{D}(\cdot 2 k+1]\left[\left(2 k^{2}+2 k+\frac{(D+1)}{2}\right)-\sqrt{D} \cdot(2 k+1)\right]\right.}{\left(2 k^{2}+2 k-\frac{(D-1)}{2}\right)^{2}}$

Choice(iv):

$$
1=\frac{\left[\left(2 k^{2}+2 k\right) D+\frac{(D+1)}{2}+\sqrt{D}(\cdot 2 k+1]\left[\left(2 k^{2}+2 k\right) D+\frac{(D+1)}{2}-\sqrt{D} \cdot(2 k+1)\right]\right.}{\left|\left(2 k^{2}+2 k\right) D+\frac{(D-1)}{2}\right|^{2}}
$$

It is worth mentioning that the repetition of the process as in method 4 for each of the above choices leads to different set of solutions to (1).

GENERATION OF SOLUTIONS

Different formulas for generating sequence of integer solutions based on the given solution are presented below:

Let $\left(x_{0}, y_{0,}, z_{0}\right)$ be any given solution to (1)

Formula: 1

Let $\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
x_{1}=-(D-1) x_{0}+h, y_{1}=(D-1) y_{0}, z_{1}=(D-1) z_{0}+h, \tag{11}
\end{equation*}
$$

be the $2^{\text {nd }}$ solution to (1).Using (11) in (1) and simplifying, one obtains

$$
h=2 D x_{0}+2 z_{0}
$$

In view of (11), the values of x_{1} and z_{1} is written in the matrix form as

$$
\left(x_{1}, z_{1}\right)^{t}=M\left(x_{0}, z_{0}\right)^{t}
$$

where

$$
M=\left(\begin{array}{cc}
D+1 & 2 \\
2 D & D+1
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{\text {th }}$ solutions x_{n}, z_{n} given by

$$
\left(x_{n}, z_{n}\right)^{t}=M^{n}\left(x_{0}, z_{0}\right)^{t}
$$

If α, β are the distinct eigen values of M, then

$$
\alpha=D+1+2 \sqrt{D}, \quad \beta=D+1-2 \sqrt{D}
$$

We know that

$$
M^{n}=\frac{\alpha^{n}}{(\alpha-\beta)}(M-\beta I)+\frac{\beta^{n}}{(\beta-\alpha)}(M-\alpha I), I=2 \times 2 \text { identity matrix }
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) x_{0}+\left(\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{D}}\right) z_{0} \\
& y_{n}=(D-1)^{n} y_{0}, \\
& z_{n}=\frac{\sqrt{D}}{2}\left(\alpha^{n}-\beta^{n}\right) x_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) z_{0}
\end{aligned}
$$

Formula: 2

Let $\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
x_{1}=3 x_{0}, y_{1}=3 y_{0}+h, z_{1}=2 h-3 z_{0}, \tag{12}
\end{equation*}
$$

be the $2^{\text {nd }}$ solution to (1).Using (12) in (1) and simplifying, one obtains

$$
h=2 y_{0}+4 z_{0}
$$

In view of (12), the values of y_{1} and z_{1} is written in the matrix form as

$$
\left(y_{1}, z_{1}\right)^{t}=M^{n}\left(y_{0}, z_{0}\right)^{t}
$$

where

$$
M=\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{\text {th }}$ solutions y_{n}, z_{n} given by

$$
\left(y_{n}, z_{n}\right)^{t}=M^{n}\left(y_{0}, z_{0}\right)^{t}
$$

If α, β are the distinct eigen values of M, then

$$
\alpha=1, \beta=9
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=3^{n} x_{0} \\
& y_{n}=\left(\frac{9^{n}+1}{2}\right) y_{0}+\left(\frac{9^{n}-1}{2}\right) z_{0} \\
& z_{n}=\frac{\left(9^{n}-1\right)}{2} y_{0}+\left(\frac{9^{n}+1}{2}\right) z_{0}
\end{aligned}
$$

Formula: 3

Let $\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
x_{1}=-(D+1) x_{0}+h, y_{1}=-(D+1) y_{0}+h, z_{1}=(D+1) z_{0} \tag{13}
\end{equation*}
$$

be the $2^{\text {nd }}$ solution to (1).Using (13) in (1) and simplifying, one obtains

$$
h=2 D x_{0}+2 y_{0}
$$

In view of (13), the values of x_{1} and y_{1} is written in the matrix form as

$$
\left(x_{1}, y_{1}\right)^{t}=M^{n}\left(x_{0}, y_{0}\right)^{t}
$$

where

$$
M=\left(\begin{array}{cc}
D-1 & 2 \\
2 D & -D+1
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{\text {th }}$ solutions x_{n}, y_{n} given by

$$
\left(x_{n}, y_{n}\right)^{t}=M^{n}\left(x_{0}, y_{0}\right)^{t}
$$

If α, β are the distinct eigen values of M, then

$$
\alpha=D+1 \beta=-(D+1)
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\frac{\alpha^{n} D+\beta^{n}}{D+1} x_{0}+\frac{\alpha^{n}-\beta^{n}}{D+1} y_{0}, \\
& y_{n}=\frac{D\left(\alpha^{n}-\beta^{n}\right)}{D+1} x_{0}+\frac{\alpha^{n}+\beta^{n} D}{D+1} y_{0}, \\
& z_{n}=(D+1)^{n} z_{0}
\end{aligned}
$$

REFERENCES

1. L.E. Dickson, History of theory of Numbers, Vol. 2, Chelsea publishing Company,Newyork, 1952.
2. L.J. Mordel, Diophantine Equations, Academic press, Newyork, 1969.
3. Gopalan, M.A., Malika, S., Vidhyalakshmi, S, Integral solutions $61 x^{2}+y^{2}=z^{2}$, nternational Journal of Innovative Science, Engineering and Technology, Vol. 1, Issue 7, 271-273, September 2014.
4. Meena, K., Vidhyalakshmi, S., Divya, S., Gopalan M.A., Integral Points on the cone , Sch J., Eng.Tech., 2(2B), 301-304, 2014.
5. Shanthi, J., Gopalan, M.A., Vidhyalakshmi, S., Integer Solutions of the Ternary Quadratic Diophantine Equation $67 x^{2}+y^{2}=z^{2}$, paper presented in International Conference on Mathematical Methods and Computation, Jamal Mohammed College,Trichy, 2015.
6. Meena, K., Vidhyalakshmi, S., Divya, S., Gopalan, M A., On the Ternary Quadratic Diophantine Equation $29 x^{2}+y^{2}=z^{2}$, International journal of Engineering Research-online, Vol. 2., Issue.1., 67-71, 2014.
7. Akila, G., Gopalan, M.A., Vidhyalakshmi, S., Integral solution of $43 x^{2}+y^{2}=z^{2}$, International journal of Engineering Research-online, Vol. 1., Issue.4., 70-74, 2013.
8. Nancy, T., Gopalan, M.A., Vidhyalakshmi, S., On the Ternary Quadratic Diophantine Equation $47 x^{2}+y^{2}=z^{2}$, International journal of Engineering Research-online, Vol.1 Issue.4., 51-55, 2013.
9. Meena, K., Vidhyalakshmi, S., Loganayaki, B., A Search on the Integer Solutions to Ternary Quadratic Diophantine Equation $z^{2}=63 x^{2}+y^{2}$, International Research Journal of Education and Technology, Vol.1., Issue 5., 107-116, 2021.
10. Vidhyalakshmi, S., Gopalan, M.A., Kiruthika,V., ASearch on the Integer Solutions to Ternary Quadratic Diophantine Equation $z^{2}=55 x^{2}+y^{2}$, International Research Journal of Modernization in Engineering Technology and Science, Vol.3., Issue.1., 1145-1150, 2021.
