A SEARCH ON INTEGER SOLUTIONS TO NON-HOMOGENEOUS TERNARY CUBIC EQUATION $9\left(x^{2}-y^{2}\right)+x+y=4 z^{3}$

Dr.N.Thiruniraiselvi ${ }^{1}$, Dr.M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Nehru Memorial College, Affiliated to Bharathidasan University, Trichy-621 007, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract

This paper concerns with the problem of obtaining non-zero distinct integer solutions to non-homogeneous ternary cubic Diophantine equation $9\left(x^{2}-y^{2}\right)+x+y=4 z^{3}$. A few relations between the solutions are presented.

KEY WORDS: ternary cubic, non-homogeneous cubic, integer solutions

NOTATION

$$
t_{m, n}=n\left[1+\frac{(n-1)(m-2)}{2}\right]
$$

INTRODUCTION

The cubic Diophantine equations are rich in variety and offer an unlimited field for research [1,2]. In particular, refer [3-16] for a few problems on cubic equation with 3 unknowns. This paper concerns with an interesting non-homogeneous cubic Diophantine equation with three unknowns given by $9\left(x^{2}-y^{2}\right)+x+y=4 z^{3}$ for determining its infinitely many non-zero distinct integral solutions. A few relations between the solutions are presented.

METHOD OF ANALYSIS

Consider the non-homogeneous cubic Diophantine equation

$$
\begin{equation*}
9\left(x^{2}-y^{2}\right)+x+y=4 z^{3} \tag{1}
\end{equation*}
$$

Different ways of solving (1) are presented below:
WAY: 1
The substitution of the linear transformations

$$
\begin{equation*}
x=k u+v, y=k u-v, z=u \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}=18 v+1 \tag{3}
\end{equation*}
$$

whose smallest positive integer solution is

$$
u_{0}=19, v_{0}=20
$$

Assume that

$$
\begin{equation*}
u_{1}=h-u_{0}, v_{1}=v_{0}+h \tag{4}
\end{equation*}
$$

be the second solution to(3).Substituting (4) in (3) and simplifying , note that

$$
h=2 u_{0}+18
$$

In view of (4), one obtains

$$
u_{1}=u_{0}+18, v_{1}=2 u_{0}+v_{0}+18
$$

Repeating the above process again and again, the general solution $\left(u_{n}, v_{n}\right)$
to (3) is given by

$$
u_{n}=u_{0}+18 n, v_{n}=2 n u_{0}+v_{0}+18 n^{2}
$$

In view of (2), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=(k+2 n) u_{0}+v_{0}+18 n(k+n), \\
& y_{n}=(k-2 n) u_{0}-v_{0}+18 n(k-n), \\
& z_{n}=u_{0}+18 n
\end{aligned}
$$

Properties:
(i) $x_{n}-y_{n}-76 n-40$ is a perfect square
(ii) $x_{n}-y_{n}-72 t_{3, n} \cong 0(\bmod 40)$
(iii) $\quad x_{n}-y_{n}-72 t_{74, n} \cong 71(\bmod 111)$
(iii) $\quad x_{n}-y_{n}-72 t_{3, n}-2 z_{n}+78 \cong 0(\bmod 4)$

WAY: 2

Considering

$$
\begin{equation*}
x=k u+v^{2}, y=k u-v^{2}, z=u \tag{5}
\end{equation*}
$$

in (1), it reduces to the Pellian equation

$$
u^{2}=18 v^{2}+1
$$

whose general solution $\left(\boldsymbol{u}_{\boldsymbol{n}}, \boldsymbol{v}_{n}\right)$ is given by

$$
u_{n}=\frac{f_{n}}{2}, v_{n}=\frac{g_{n}}{2 \sqrt{18}}, n=0,1,2, \ldots
$$

where

$$
\begin{aligned}
& f_{n}=(17+4 \sqrt{18})^{n+1}+(17-4 \sqrt{18})^{n+1}, \\
& g_{n}=(17+4 \sqrt{18})^{n+1}-(17-4 \sqrt{18})^{n+1},
\end{aligned}
$$

In view of (5), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\frac{k}{2} f_{n}+\frac{1}{12} g_{n}^{2} \\
& y_{n}=\frac{k}{2} f_{n}-\frac{1}{72} g_{n}^{2} \\
& z_{n}=\frac{1}{2} f_{n}
\end{aligned}
$$

Properties:

1. $z_{n}^{2}-9\left(x_{n}-y_{n}\right)=1$
2. $\left(x_{2 n+1}+y_{2 n+1}\right)-36 k\left(x_{n}-y_{n}\right)=2 k$
3. $\left(x_{n}+y_{n}\right)^{2}-36\left(x_{n}-y_{n}\right) k^{2}=4 k^{2}$
4. Each of the following expressions is a perfect square:

- $36\left(x_{n}-y_{n}\right)+4, k\left(x_{2 n+1}+y_{2 n+1}+2 k\right)$
- $k^{2}\left(x_{3 n+2}+y_{3 n+2}+3\left(x_{n}+y_{n}\right)\right)$ is a cubical integer
- $k^{3}\left(x_{4 n+3}+y_{4 n+3}+4\left(x_{2 n+1}+y_{2 n+1}+2 k\right)-2 k\right)$ is a bi-quadratic integer

Way :3

Introduction of the transformations

$$
x=k u^{2}+v^{2}, y=k u^{2}-v^{2}, z=u
$$

in (1) leads to

$$
u=18 v^{2}+1
$$

Thus, the corresponding integer solutions to (1) are obtained as

$$
\begin{aligned}
& x=k\left(18 k^{2}+1\right)^{2}+k^{2}, \\
& y=k\left(18 k^{2}+1\right)^{2}-k^{2}, \\
& z=18 k^{2}+1
\end{aligned}
$$

Properties:
(i) $z=9(x-y)+1$
(ii) Each of the following expressions is a nasty number:

$$
3(x-y), 3(z-1), 3 k(x+y+4 k z+2 k)
$$

CONCLUSION

In this paper, we have presented different sets of non-zero distinct integer solutions to the ternary cubic equation $9\left(x^{2}-y^{2}\right)+x+y=4 z^{3}$. As the cubic Diophantine equations are rich in variety, one may search for the other choices of equations along with their solutions and relations among the solutions.

REFERENCES

1. L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing company, NewYork, 1952.
2. L.J. Mordell, Diophantine equations, Academic press, New York, 1969.
3. M.A. Gopalan, G. Sangeetha, "On the ternary cubic Diophantine equation $\mathrm{y}^{2}=\mathrm{D} \mathrm{x}^{2}+\mathrm{z}^{3}$ ", Archimedes J.Math 1(1), 2011, 7-14.
4. M.A. Gopalan, B. Sivakami, "Integral solutions of the ternary cubic equation $4 \mathrm{x}^{2}-4 \mathrm{xy}+6 \mathrm{y}^{2}=\left((\mathrm{k}+1)^{2}+5\right) \mathrm{w}^{3}$ ",Impact J.Sci.Tech, Vol.6, No.1, 2012, 15-22.
5. M.A. Gopalan, B. Sivakami, "On the ternary cubic Diophantine equation $2 \mathrm{XZ}=\mathrm{y}^{2}(\mathrm{x}+\mathrm{z})$ ", Bessel J.Math 2(3), 2012, 171-177.
6. S. Vidyalakshmi, T.R. Usharani, M.A. Gopalan, "Integral solutions of non-homogeneous ternary cubic equation $\mathrm{ax}^{2}+\mathrm{by}^{2}=(\mathrm{a}+\mathrm{b}) \mathrm{z}^{3}$ ", Diophantus J.Math 2(1), 2013, 31-38.
7. M.A. Gopalan, K. Geetha, "On the ternary cubic Diophantine equation $\mathrm{X}^{2}+\mathrm{y}^{2}-\mathrm{xy}=\mathrm{z}^{3}$ ", Bessel J.Math., 3(2), 2013,119-123.
8. M.A. Gopalan, S. Vidhyalakshmi, A.Kavitha "Observations on the ternary cubic equation $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{xy}=12 \mathrm{z}^{3}$ ", Antartica J.Math 10(5), 2013, 453-460.
9. M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi, "Lattice points on the non-homogeneous cubic equation $\mathrm{X}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$ ", Impact J.Sci.Tech, Vol.7, No.1, 2013, 21-25.
10. M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi "Lattice points on the non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$ ", Impact J.Sci.Tech, Vol.7, No1, 2013, 51-55,
11. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, "On the ternary non-homogenous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}-3(\mathrm{x}+\mathrm{y})=2\left(3 \mathrm{k}^{2}-2\right) \mathrm{z}^{3} "$, Impact J.Sci.Tech, Vol.7, No.1, 2013, 41-45.
12. S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, "On the ternary cubic Diophantine equation $4\left(\mathrm{x}^{2}+\mathrm{x}\right)+5\left(\mathrm{y}^{2}+2 \mathrm{y}\right)=-6+14 \mathrm{z}^{3}$ " International Journal of Innovative Research and Review (JIRR), Vol 2(3)., pp 34-39, July-Sep 2014
13. M.A. Gopalan, N. Thiruniraiselvi and V. Kiruthika, "On the ternary cubic diophantine equation $7 \mathrm{x}^{2}-4 \mathrm{y}^{2}=3 \mathrm{z}^{3}$ ", IJRSR, Vol.6, Issue-9, Sep-2015, 6197-6199.
14. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, , International Journal of Applied Research, 1(8), 2015, 209-212.
15. R. Anbuselvi, K. Kannaki, "On ternary cubic diophantine equation $3\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-5 \mathrm{xy}+\mathrm{x}+\mathrm{y}+1=15 \mathrm{z}^{3}$ ", IJSR, Vol.5, Issue-9, Sep 2016, 369-375.
16. G. Janaki, C. Saranya, "Integral solutions of the ternary cubic equation $3\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-4 \mathrm{xy}+2(\mathrm{x}+\mathrm{y}+1)=972 \mathrm{z}^{3},$, IRJET, Vol.04, Issue 3, March 2017, 665-669.
