
ISSN (Online): 2455-3662 

 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
Volume: 7| Issue: 9| September 2021|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2021: 8.047 || ISI Value: 1.188 

 
 
 

                                                                  2021 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 
54 

 

A REVIEW ON GAS CONSUMPTION AND GAS 

PREDICTION IN ETHEREUM SMART CONTRACTS 

 

Kuldeep Nageshawar
1
, Rupali chourey

2
, Dr. Ritu Shrivastava

3 

1
Research Scholar, Department of Computer Science and Engineering,  

Sagar Institute of Research & Technology, Bhopal, India 

 

 
2
Asst. Professor, Department of Computer Science and Engineering,  

Sagar Institute of Research & Technology, Bhopal, India 

  

 
3
Dean & HOD, Department of Computer Science and Engineering,  

Sagar Institute of Research & Technology, Bhopal, India  
 

 

Article DOI: https://doi.org/10.36713/epra8349 
DOI No: 10.36713/epra8349 

 
ABSTRACT 

 This paper is a review of some real-time issues associated with the development of Ethereum smart contracts like out of 

gas exception and gas inefficient code patterns and focuses on the methods and solutions presented in recent years. With 

the help of this paper, we are trying to summarize the methods which can be used in future researches for gas prediction 

with the help of old transaction data and machine learning algorithms and have a look at old researches which are trying 

to predict with the help of regression algorithms and their efficiency. 
KEYWORDS: Blockchain, Etherium, Gas Consumption, Gas Prediction, Transaction 

 

 

I. INTRODUCTION 
Ethereum is a blockchain-based software platform that 

is primarily used to support the world’s second-largest 

cryptocurrency by market capitalization after Bitcoin. 

Value exchange is the main use case of the Ethereum 

blockchain today, often via the blockchain’s native 

token, ether. Ethereum uses smart contracts to leverage 

the benefits of blockchain. Unlike other blockchains, 

Ethereum is programmable using a Turing complete 

language[1], i.e., developers can code smart contracts 

that control digital value, run exactly as programmed, 

and are immutable. Every single operation in smart 

contracts requires some amount of gas to execute in an 

Ethereum virtual machine. 

 

II. BACKGROUND 
 Blockchain 

Blockchain is a tamper evident and tamper resistance 

digital ledger implemented in a distributed fashion and 

usually without a central authority. It enables a 

community of users to record transactions in a shared 

ledger within that community.   

      In 2008, the Blockchain idea was combined with 

several other technologies and computing concepts to 

create modern cryptocurrencies: electronic cash 

protected through cryptographic mechanisms instead of 

a central repository or authority. It allowed users to 

securely transfer crypto-currencies, known as 

“Bitcoins” without a centralized regulator. Besides, 

Ethereum, NXT, and Hyperledger Fabric were also 

proposed as blockchain-based systems used for the 

cryptocurrency [2].In Bitcoin the transfer of digital 

money takes place in a distributed system. Bitcoin 

users can digitally sign and transfer their rights to that 

information to another user and the Bit-coin blockchain 

records this transfer publicly, allowing all participants 

of the network to independently verify the validity of 

the transactions. Trust in the Bitcoin network is 

maintained by the 4 essential properties. 

● Ledger – the technology uses an append-only 

ledger to provide full transactional history. 

Unlike traditional databases, transactions and 

values in a blockchain are not overridden. 

● Secure – blockchains are cryptographically 

secure, ensuring that the data contained within 

http://www.eprajournals.com/
https://doi.org/10.36713/epra8349


ISSN (Online): 2455-3662 

 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
Volume: 7| Issue: 9| September 2021|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2021: 8.047 || ISI Value: 1.188 

 
 
 

                                                                  2021 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 
55 

the ledger has not been tampered with and that 

the data within the ledger is attestable. 

● Shared – the ledger is shared amongst multiple 

participants. This provides transparency across 

the node participants in the blockchain 

network. [3] 

● Distributed – the blockchain can be 

distributed. This allows for scaling the number 

of nodes of a blockchain network to make it 

more resilient to attacks by bad actors. By 

increasing the number of nodes, the ability for 

a bad actor to impact the consensus protocol 

used by the blockchain is reduced 

Block-chain types are categorized based on who has 

the permission to publish the blocks in that network. 

1. Public 

2. Private 

3. Consortium 

4. Hybrid 

 

 
Fig-1 Blockchain 

 Blockchain Mechanism 

A blockchain contains many blocks connected 

to its previous block. Every block contains the hash of 

the information of transactions for which that block is 

created (mined) and the hash of the previous block. 

The hash is a cryptographic term used to represent 

encrypted data of some real data encrypted by some 

encryption algorithm. Hash cannot be reversed into 

original form once it’s encrypted. Every block has two 

parts one is block header and another one is block data. 

There is an important aspect in Blockchain, who 

will publish the next block. This is solved by applying 

one of the possible consensus algorithms. The most 

widely used algorithms are Proof of Work, Proof of 

stake, Round robin, Proof of authority/Proof of 

Identity. 

In proof of work, the Publisher needs to solve a 

computationally difficult puzzle to publish a new 

block. Bitcoin uses a proof of work consensus model. 

Proof of stake is based on the idea that the more 

stake a publisher has invested into the blockchain is 

more likely to publish the block. Ethereum blockchain 

is the biggest block using proof of stake to get the next 

block into the chain. 

 

 
      

Fig 2  Blockchain mechanism [16] 

 

Smart Contract 

The smart contract is a technology used for 

maintaining a blockchain publically available to add 

transactions. Smart contracts are a block of codes that 

reside on multiple nodes distributed over the 

blockchain. Szabo (1994) defined a smart contract as a 

piece of computerized transaction protocol that 

satisfies contractual conditions such as payment terms, 

http://www.eprajournals.com/


ISSN (Online): 2455-3662 

 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
Volume: 7| Issue: 9| September 2021|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2021: 8.047 || ISI Value: 1.188 

 
 
 

                                                                  2021 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 
56 

confidentiality, or enforcement, reduces exceptions, 

and minimizes the need for trusted intermediaries [4] . 

Smart contracts use to maintain the trust between two 

anonymous parties without any third party, using a 

distributed ledger of transactions reside over the 

network. Smart contracts are typically used to automate 

the execution of contracts. Etherium is the widest 

network using smart contracts for maintaining the 

blockchain network used for multiple purposes. Smart 

contracts provide security and transparency for a 

blockchain distributed ledger. Once a smart contract is 

deployed. It starts working and whenever the 

conditions are satisfied in a smart contract, a new is 

added to the network. Usually, only the smart contract 

owner can destruct the contract [2]. 

 

Smart contract development 

 A smart contract is likely to be a class that 

includes state variables, functions, function 

modifiers, events, and structures that are intended to 

execute and control relevant events and actions 

according to the contract terms. Besides, it can even 

call other smart contracts. Each smart contract 

includes states and functions. The former are 

variables that hold some data or the owner’s wallet 

address [2].smart contract can be developed and 

deployed in different languages and Platforms 

 

Bitcoin [5]  is a public blockchain platform that can be 

used to process cryptocurrency transactions, but with a 

very limited computing capability. it uses a stack-based 

bytecode scripting language[2]. The ability to create a 

smart contract with rich logic using the Bitcoin 

scripting language is very limited. Major changes 

would need to be made to both the mining functions 

and the mining incentivization schemes to enable smart 

contracts proper on Bitcoin’s blockchain. 

 

NXT  is a public blockchain platform that includes 

built-in smart contracts as templates [6]. It relies 

entirely on a proof-of-stake consensus protocol. I allow 

us to choose the already developed template to use for 

creating a smart contract. Any type of customization is 

not allowed due to the lack of Turing completeness in 

its scripting language. 

    It includes a selection of smart contracts that are 

currently living. However, it is not Turing-complete, 

meaning only the existing templates can be used and 

no personalized smart contract can be deployed [2] 

 

Ethereum [7] is the first blockchain platform for 

developing smart contracts. It supports advanced and 

customized smart contracts with the help of a Turing 

complete virtual machine, called the Ethereum virtual 

machine (EVM)[6]. EVM is the runtime environment 

for smart contracts, and every node in the Ethereum 

network runs an EVM implementation and executes 

the same instructions. Solidity, as a high-level 

programming language, is used to write smart 

contracts, and the contract code is compiled down to 

EVM bytecode and deployed on the blockchain for 

execution[2]. The Ethereum platform can support 

withdrawal limits, loops, financial contracts, and 

gambling markets[6]. 

 

Hyperledger Fabric [8]   Is a private blockchain 

rather than a public blockchain listed above. 

Permissioned with only a collection of business-related 

organizations can join in through a membership service 

provider, and its network is built up from the peers 

who are owned and contributed by those organizations. 

Hyperledger Fabric is an open-source enterprise-grade 

distributed ledger technology platform, proposed by 

IBM and supports smart contracts. It offers modularity 

and versatility for a broad set of industry use cases. 

The modular architecture for Hyperledger Fabric 

accommodates the diversity of enterprise use cases 

through plug-and-play components [1]. 

In Ethereum, the state is made up of objects called 

"accounts", with each account having a 20-byte address 

and state transitions being direct transfers of value and 

information between accounts[7]. An Ethereum 

account contains four fields 

● The nonce, a counter used to make sure each 

transaction can only be processed once 

● The account's current ether balance 

● The account's contract code, if present 

● The account's storage (empty by default)  

 

III.  DISCUSSION 
      A smart contract is a computer program executed 

on virtual machines which use its resources to 

calculate blockchain blocks like memory and 

computational power. So programming smart 

contracts correctly and analysis of resources 

consumption in creating smart contracts is an 

important area of research. Some newly proposed 

programming languages such as Solidity, SmaCoNat 

[9], and  Flint [10]. For instance, Regnath and 

Steinhorst [9]  proposed a human-readable, security, 

and executable programming language called 

SmaCoNat. The authors converted programming 

language grammar into natural language sentences in 

order to improve program readability[2]. 

 

 Transaction and Gas 

Ethereum provides a decentralized Turing 

complete machine, namely the Ethereum Virtual 

Machine (EVM), to execute scripts using an 

international network of public compute nodes [19]. 

On Ethereum, people can use programming 

languages, e.g., Solidity11 and Viper12, to develop 

complex smart contract applications. 

http://www.eprajournals.com/


ISSN (Online): 2455-3662 

 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
Volume: 7| Issue: 9| September 2021|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2021: 8.047 || ISI Value: 1.188 

 
 
 

                                                                  2021 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 
57 

The term "transaction" is used in Ethereum to 

refer to the signed data package that stores a message 

to be sent from an externally owned account[7]. 

Ethereum uses a  pricing system i.e. gas [7] 

for all transactions running on it. Gas is a measure of 

how much computing resources a transaction would 

cost. People need to pay a gas fee (in Ethers) for each 

transaction they make, and a transaction would fail if 

it runs out of gas[11]. 

Whenever the user wants to make a 

transaction into the Ethereum blockchain, 

Transaction should contain two important parameters 

START GAS and GAS PRICE to start execution. 

START GAS is the limit and the GAS PRICE is a fee 

to pay to the miner per computational step[7]. If the 

transaction runs out of gas, all state changes revert 

except for the payment of the fees and if traction 

execution halts with some gas remaining then the 

remaining proportion of the fees is refunded to the 

sender. 

To calculate the transaction fee in ether, need 

to calculate the START GAS * GAS PRICE, Before 

initializing the transaction sender should have 

START GAS * GAS PRICE [7]  much ether into the 

Ethereum account.  If the transaction is completed 

successfully then the consumed gas * GAS PRICE 

amount of ether automatically passed to the minor 

account and the remaining gas from the START GAS 

will be returned to the sender. 

Due to the unique gas mechanism in smart 

contract development where the execution of smart 

contracts would cost gas and users need to pay the 

gas fee as a result, developers need to pay special 

attention to gas consumption during smart contract 

development. 

 

Gas is money 

On public blockchain platforms like 

Ethereum, all the resources that a smart contract uses 

would translate into actual direct costs that need to be 

paid by users in terms of gas. In other words, “Gas is 

money for users' ' (P1), thus developers need to be 

much more conscious of resource consumption [11]. 

A contract under Ethereum has to be executed under 

very right constraints. All The Resources the user 

would translate into actual direct costs. 

Every single operation in Ethereum, be it a 

transaction or a smart contract instruction execution, 

requires some amount of gas. The gas consumption 

of the Ethereum Virtual Machine (EVM) instructions 

is spelled out in [26]; importantly, instructions that 

use replicated storage are gas-expensive. 

 

Performance issues and gas optimization 

Ethereum smart contracts are typically 

developed through solidity[12]. before being 

compiled into byte codes that can be executed by the 

Ethereum Virtual Machine (EVM). Programmatically 

gas is money, optimized smart contracts can lead to 

unnecessary gas leaks and, thus, to money losses.Q 

Every single operation in Ethereum, be it a 

transaction or a smart contract instruction execution, 

requires some amount of gas. 

 

Gas leaks in transaction 

The programming and coding choice depend 

on developers, data structures used, the number of 

cycles, the kind of instructions, the types of variables 

used, where and how they are initialized or valued, 

which may affect the gas consumption of a smart 

contract. 

Although Research outlines design patterns 

and guidelines for developing optimized code still 

developers feel pain to write gas-optimized code. 

GASMET SUITE [12] provides many gas 

smells which leads to gas leaks in the form of 

metrics. V, Functions Returning Local Variables 

(RLV), Global Variables (GV), Number of Loops 

(NLF6)., Number of non-32-bytes variables (NU), 

Indexed Parameters (IP), Number of Mappings 

(NM), Mappings and Arrays (MA), External Calls 

(EC), Boolean Variables (BV), Number of Events 

(NE) and  Defined Functions (DF)[12]. These all 

factors of coding have a great impact on the 

development of cost-effective smart contract 

development that will reduce gas leaks. 

GASOL[1] is a gas optimizer tool that can be 

used while developing a smart contract as a plugin in 

eclipse IDE. This tool  detects potential sources of 

optimization [1] and feeds them to the optimizer to 

generate an optimized Solidity function within a new 

file 

GASCHEKER[13]  is another tool for 

automatically identifying gas-inefficient code. It 

Identifies ten gas-inefficient programming patterns, 

some coding practices and space sequence then uses 

Symbolic execution to detect them in the Byte code. 

Patterns are like Opaque Predicate (comparison only 

single output), dead code (code will not be executed 

in practice), some In-efficient loop operations, and 

Wasted Disk Space[13]. 

 GASPER[14] is another tool like 

GASCHEKER  Identify 7 costly patterns to detect 

gas leaks by analyzing smart contract bytecode. 

 

Out-of-Gas Conditions and Gas Prediction  

Out of Gas is a vulnerability when using EVM 

for a smart contract this condition arises when the gas 

limit provided by the sender is exhausted in the 

middle of a transaction. Whenever an out of gas 

exception occurs the sender has to bear the losses. If 

the transaction does not exceed the amount of gas set 

by the initiator, then the latter will get back the ( 

GASPRICE  ×  GASLIMIT ) − Gas Cost; while the 

http://www.eprajournals.com/


ISSN (Online): 2455-3662 

 EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal 
Volume: 7| Issue: 9| September 2021|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2021: 8.047 || ISI Value: 1.188 

 
 
 

                                                                  2021 EPRA IJMR    |     www.eprajournals.com   |    Journal DOI URL: https://doi.org/10.36713/epra2013 
58 

Gas Cost is paid to the miner, Otherwise, the amount 

is lost[15]. Transaction History summarizes can be 

used to predict the amount of gas used by transaction 

for a given address. Being able to predict gas 

consumption has practical implications. The initiator 

set an appropriate Gas Limit, preventing transactions 

from running out of gas the initiator set an 

appropriate Gas Limit, preventing transactions from 

running out of gas. By using some predictive 

machine learning models trained on old transactional 

data some researchers try to predict the gas 

consumption of the transaction. 

fTX  is Frequency, i.e. the number of all 

transactions per day author trained some models with 

the help of these machine learning algorithms 

(Ordinary Least Squares (OLS), Ridge, Bayesian 

Ridge, Lasso, and Stochastic Gradient Descent 

Linear Regressions, Linear Support Vector 

Regression, and Decision Tree Regressor)[15] with 

the default hyperparameters, using 5-fold cross-

validation on the train set. Using R-Squared (R2) as 

the performance measure, which indicates how well 

the selected independent variables explain the 

variability in the dependent variable, the author 

selected and fine-tuned the best models (OLS and 

Lasso) using a Grid Search[15]. In the end, with a 

R
2
= 0,729373, the Lasso model performs best and 

gives the following equation: 

gasused = 14382 − 944 ∗ rrec − 1, 55e−11 ∗ rrec 

ETH − 776 ∗ rsent ETH + 81 ∗ rcontract +  9310952 ∗ 

µgasUsed − 48 ∗ NTX                                                                                           

(1) 

Where gas is consumed by the sender (µgas 

used), an account engages in transactions transferring 

ether ( rec ETH and sent ETH), the less that account 

is predicted to consume gas in a transaction; and the 

more an account actively uses Ethereum (NTX), the 

less it is predicted to consume gas[15].   

There are more prediction models and 

machine learning algorithms like deep learning and 

neural networks that can be used to predict gas 

consumption in the future. 

 

IV. CONCLUSION 
        With the help of this review on gas consumption 

and tools available for DApps development we can 

conclude that Blockchain is an emerging technology 

creating DApps using Ethereum with help of 

Ethereum virtual machine to create smart contracts 

are in its middle age there is a large gap in researches 

and researchers need to research more on gas 

prediction. There are some tools available in the 

market for writing gas-efficient code development 

but minimal research is available on gas predictions. 

Tools are required to predict the gas required for the 

next transaction in the  Ethereum based smart 

contract. 

 

V. REFERENCES 
1. E. Albert, P. Gordillo, and G. Rom, “Ethereum 

Smart Contracts,” no. i, pp. 1–8. 

2. S. N. Khan, “Blockchain smart contracts: 

Applications, challenges, and future Blockchain 

smart contracts: Applications, challenges, and 

future trends,” no. April, 2021. 

3. D. Yaga and D. Yaga, Blockchain Technology 

Overview Blockchain Technology Overview. . 

4. L. Ante, “Smart Contracts on the Blockchain – A 

Bibliometric Analysis and Review,” no. 10, pp. 

1–48, 2020. 

5. S. Nakamoto, “Bitcoin : A Peer-to-Peer 

Electronic Cash System,” pp. 1–9. 

6. M. Alharby and A. van Moorsel, “Blockchain 

Based Smart Contracts : A Systematic Mapping 

Study,” pp. 125–140, 2017, doi: 

10.5121/csit.2017.71011. 

7. B. V. Buterin, “A NEXT GENERATION SMART 

CONTRACT & DECENTRALIZED 

APPLICATION PLATFORM,” no. January, pp. 

1–36, 2009. 

8. E. Androulaki et al., “Hyperledger Fabric : A 

Distributed Operating System for Permissioned 

Blockchains.” 

9. S. Steinhorst, “SmaCoNat : Smart Contracts in 

Natural Language,” doi: 

10.1109/FDL.2018.8524068. 

10. F. Schrans, “Writing Safe Smart Contracts in 

Flint,” no. June, 2018. 

11. W. Zou et al., “Smart Contract Development : 

Challenges and Opportunities,” no. March, pp. 

1–20, 2018. 

12. G. Canfora, A. Di Sorbo, S. Laudanna, A. Vacca, 

and C. A. Visaggio, “Profiling Gas Leaks in 

Solidity Smart Contracts,” 2020. 

13. T. Chen et al., “GasChecker : Scalable Analysis 

for Discovering Gas-Inefficient Smart 

Contracts,” vol. 14, no. 8, 2020, doi: 

10.1109/TETC.2020.2979019. 

14. T. Chen, X. Li, X. Luo, and X. Zhang, “Under-

optimized smart contracts devour your money,” 

SANER 2017 - 24th IEEE Int. Conf. Softw. Anal. 

Evol. Reengineering, pp. 442–446, 2017, doi: 

10.1109/SANER.2017.7884650. 

15. S. Bouraga, “An Evaluation of Gas Consumption 

Prediction on Ethereum based on Transaction 

History Summarization,” 2020 2nd Conf. 

Blockchain Res. Appl. Innov. Networks Serv. 

BRAINS 2020, no. September, pp. 49–50, 2020, 

doi: 10.1109/BRAINS49436.2020.9223288. 

16. R. A. Salha, M. A. El-Hallaq, and A. I. Alastal, 

“Blockchain in Smart Cities: Exploring 

Possibilities in Terms of Opportunities and 

Challenges,” J. Data Anal. Inf. Process., vol. 07, 

no. 03, pp. 118–139, 2019, doi: 

10.4236/jdaip.2019.73008. 

http://www.eprajournals.com/

