NEW GENERALIZED CIESARO SPACE WITH SOME TOPOLOGICAL PROPERTIES

Rayees Ahmad

Article DOI: https://doi.org/10.36713/epra8493 DOI No: 10.36713/epra8493

Abstract

The sequence space introduced by M. Et and have studied its various properties. The aim of the present paper is to introduce the new pranormed generalized difference sequence space. $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$ and $[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$, We give some topological properties and inclusion relations on these spaces. 2010 AMS Mathematical Subject Classification: 46A45; 40C05. KEYWORDS: Paranormed sequence space; α-, β - and γ-duals.

1. INTRODUCTION

A sequence space is defined to be a linear space of real or complex sequences. Throughout the paper N, R and C denotes the set of non-negative integers, the set of real numbers and the set of complex numbers respectively. Let ω denote the space of all sequences (real or complex). Let l_{∞} and c be Banach spaces of bounded and convergent sequences $x=\left\{x_{n}\right\}_{n=0}^{\infty}$ with supremum norm $\mathrm{P} x \mathrm{P}=\sup _{n}\left|x_{n}\right|$. Let T denote the shift operator on ω, that is, $T x=\left\{x_{n}\right\}_{n=1}^{\infty}, T^{2} x=\left\{x_{n}\right\}_{n=2}^{\infty}$ and so on. A Banach limit L is defined on l_{∞} as a non-negative linear functional such that L is invariant i.e., $L(S x)=L(x)$ and $L(e)=1, e=(1,1,1, \ldots)$ (see, [12]).

Lorentz (see, [12]), called a sequence $\left\{x_{n}\right\}$ almost convergent if all Banach limits of x, $L(x)$, are same and this unique Banach limit is called F-limit of x. In his paper, Lorentz proved the following criterian for almost convergent sequences.

A sequence $x=\left\{x_{n}\right\} \in l_{\infty}$ is almost convergent with F-limit $L(x)$ if and only if

$$
\lim _{m \rightarrow \infty} t_{m n}(x)=L(x)
$$

where, $\quad t_{m n}(x)=\frac{1}{m} \sum_{j=0}^{m-1} T^{j} x_{n},\left(T^{0}=0\right)$ uniformly in $n \geq 0$.

We denote the set of almost convergent sequences by f.

Several authors including Duran (see, [5]), Ganie et al (see, [1, 2, 3, 4, 22]), King (see, [10]), Lorentz (see, [12]) and many others have studied almost convergent sequences. Maddox (see, $[15,14]$) has defined x to be strongly almost convergent to a number α if

$$
\lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k+m}-\alpha\right|=0, \text { uniformly in } \mathrm{m} .
$$

By [f] we denote the space of all strongly almost convergent sequences. It is easy to see that $c \subset f \subset[f] \subset ł_{\infty}$.

The concept of paranorm is related to linear matric spaces. It is a generalization of that of absolute value. Let X be a linear space. A function $P: x \rightarrow R$ is called a paranorm, if (see, [13, 24])

$$
\begin{array}{ll}
\text { (p.1) } & p(0) \geq 0 \\
\text { (p.2) } & p(x) \geq 0 \forall x \in X \\
\text { (p.3) } & p(-x)=p(x) \forall x \in X \\
\text { (p.4) } & p(x+y) \leq p(x)+p(y) \forall x, y \in X \text { (triangle inequality) }
\end{array}
$$

(p.5) if $\left(\lambda_{n}\right)$ is a sequence of scalars with $\lambda_{n} \rightarrow \lambda(n \rightarrow \infty)$ and $\left(x_{n}\right)$ is a sequence of
vectors with $p\left(x_{n}-x\right) \rightarrow 0 \quad(n \rightarrow \infty)$, then $p\left(x_{n} \lambda_{n}-x \lambda\right) \rightarrow 0 \quad(n \rightarrow \infty)$, (continuity of multiplication of vectors).

A paranorm p for which $p(x)=0$ implies $x=0$ is called total. It is well known that the metric of any linear metric space is given by some total paranorm (see, [15]).

The following inequality will be used throughout this paper. Let $p=\left(p_{k}\right)$ be a sequence of positive real numbers with $0<p_{k} \leq \sup _{k} p_{k}=H<\infty$ and let $D=\max \left(1,2^{H-1}\right)$. For $a_{k}, b_{k} \in \mathrm{C}$. We have (see, $[13,14]$) that

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}} .\right\} \tag{1}
\end{equation*}
$$

Nanda (see, $[18,19]$) defined the following:

$$
\begin{aligned}
& {[f, p]=\left\{x: \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k+m}-\alpha\right|^{p_{k}}=0 \text { uniformly in } \mathrm{m}\right\},} \\
& {[f, p]_{0}=\left\{x: \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k+m}\right|^{p_{k}}=0 \text { uniformly in } \mathrm{m}\right\},} \\
& {[f, p]_{\infty}=\left\{x: \sup _{m, n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k+m}\right|^{p_{k}}<\infty\right\} .}
\end{aligned}
$$

The difference sequence spaces,

$$
X(\Delta)=\left\{x=\left(x_{k}\right): \Delta x \in X\right\},
$$

where $X=l_{\infty}, c$ and c_{0}, were studied by Kizmaz (see, [11]).

It was further generalized by Et and Çolak (see, [8]), Ganie et al (see, [3]), Sengönül (see, [21]) and many others.

Further, it was Tripathy et al (see, [23]) generalized the above notions and unified these as follows:

$$
\Delta_{n}^{m} x_{k}=\left\{x \in \omega:\left(\Delta_{n}^{m} x_{k}\right) \in Z\right\}
$$

where

$$
\Delta_{n}^{n} x_{k}=\sum_{\mu=0}^{n}(-1)^{\mu}\binom{n}{r} x_{k+m \mu},
$$

and

$$
\Delta_{n}^{0} x_{k}=x_{k} \forall k \in \mathrm{~N} .
$$

Recently, M. Et (see, [6]) defined the following:

$$
\begin{aligned}
& \left.[f, p]\left(\Delta^{r}\right)=\left\{x=\left(x_{k}\right): \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left[f\left(\mid \Delta^{r} x_{k+m}-\alpha\right)\right)\right]^{p_{k}}=0, \text { uniformly in } \mathrm{m}\right\}, \\
& {[f, p]_{0}\left(\Delta^{r}\right)=\left\{x=\left(x_{k}\right): \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left[f\left(\left|\Delta^{r} x_{k+m}\right| \mid\right)\right]^{p_{k}}=0, \text { uniformly in } \mathrm{m}\right\},} \\
& {[f, p]_{\infty}\left(\Delta^{r}\right)=\left\{x=\left(x_{k}\right): \sup _{n} \frac{1}{n} \sum_{k=1}^{n}\left[f\left(\Delta^{r} x_{k+m} \mid\right)\right]^{p_{k}}<\infty, \text { uniformly in } \mathrm{m}\right\} .}
\end{aligned}
$$

Following Maddox (see, [16])and Ruckle (see, [20]), a modulus function g is a function from $[0, \infty)$ to $[0, \infty)$ such that
(i) $g(x)=0$ if and only if $x=0$,
(ii) $g(x+y) \leq g(x)+g(y) \forall x, y \geq 0$
(iii) g is increasing,
(iv) g if continuous from right at $x=0$.

Maddox (see, [15])introduced and studied the following sets:

$$
\begin{aligned}
& f_{0}=\left\{x \in \omega: \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left|x_{k+m}\right|=0 \text { uniformly in } m\right\} \\
& f=\left\{x \in \omega: x-l e \in f_{0} \text { for some in } l \in \mathrm{C}\right\}
\end{aligned}
$$

of sequences that are strongly almost convergent to zero and strongly almost convergent.

Let $p=\left(p_{k}\right)$ be a sequence of positive real numbers with $0<p_{k} \leq \sup _{k} p_{k}=M$ and $H=\max (1, M)$.

2. MAIN RESULTS

In the present paper, we define the spaces $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$ and [$f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$, where $u=\left(u_{k}\right)$ is such that $u_{k} \neq 0 \forall k$, as follows:
$[f, g, p, u]\left(\Delta_{n}^{r}\right)=\left\{x=\left(x_{k}\right): \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}-\alpha\right|\right)\right)^{p_{k}}=0\right.$, uniformly in m$\}$,
$[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)=\left\{x=\left(x_{k}\right): \lim _{n} \frac{1}{n} \sum_{k=1}^{n}\left[g\left(\mid u_{k} \Delta_{n}^{r} x_{k+m}\right) \mid\right]^{p_{k}}=0\right.$, uniformly in m$\}$,
$[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)=\left\{x: \sup _{n} \frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)\right]^{p_{k}}<\infty\right.$, uniformly in m$\}$,
where $\left(p_{k}\right)$ is any bounded sequence of positive real numbers.

Theorem 1: Let $\left(p_{k}\right)$ be any bounded sequence and g be any modulus function. Then
$[f, g, p, u]\left(\Delta_{n}^{r}\right),[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$ and $[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ are linear space over the set of complex numbers.

Proof: We shall prove the result for $[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$ and the others follows on similar lines. Let $x, y \in[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$. Now for $\alpha, \beta \in \mathrm{C}$, we can find positive numbers A_{α}, B_{β} such that $|\alpha| \leq A_{\alpha}$ and $|\beta| \leq B_{\beta}$. Since f is sub-additive and Δ_{n}^{r} is linear

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r}\left(\alpha x_{k+m}+\beta y_{k+m}\right)\right|\right)\right]^{p_{k}} \\
& \leq \frac{1}{n} \sum_{k=1}^{n}\left[g\left(|\alpha| u_{k} \Delta_{n}^{r} x_{k+m} \mid\right)+g\left(|\beta| u_{k} \Delta_{n}^{r} \beta y_{k+m} \mid\right)\right]^{p_{k}} \\
& \leq D\left(A_{\alpha}\right)^{H} \frac{1}{n} \sum_{k=1}^{n}\left[g\left(|\alpha| u_{k} \Delta_{n}^{r} x_{k+m} \mid\right)\right)^{p_{k}} \\
& \quad+D\left(B_{\beta}\right)^{H} \frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|\alpha \| u_{k} \Delta_{n}^{r} x_{k+m}\right| \mid\right)\right]^{p_{k}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, uniformly in m. This proves that $\left[f, g, p, u_{k}\right]_{0}\left(\Delta_{n}^{r}\right)$ is linear and the result follows. W

Theorem 2: Let g be any modulus function. Then

$$
[f, g, p, u]\left(\Delta_{n}^{r}\right) \subset[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right) \text { and }[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right) \subset[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right) .
$$

Proof: We shall prove the result for $[f, g, p, u]\left(\Delta_{n}^{r}\right) \subset[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ and the second shall be proved on similar lines. Let $x \in[f, g, p, u]\left(\Delta_{n}^{r}\right)$. Now, by definition of g, we have

$$
\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)\right)^{p_{k}}=\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}-L+L\right|\right)\right]^{p_{k}}
$$

$$
\leq \frac{D}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}-L\right|\right)\right]^{p_{k}}+\frac{D}{n} \sum_{k=1}^{n}[g(|L|)]^{p_{k}}
$$

Thus, for any number L, there exists a positive integer K_{L} such that $|L| \leq K_{L}$, we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)\right]^{p_{k}}=\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}-L+L\right|\right)\right]^{p_{k}} \\
& \quad \leq \frac{D}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}-L\right|\right)\right]^{p_{k}}+\frac{D}{n}\left[K_{L} g(1)\right]^{p_{k}} \sum_{k=1}^{n} 1 .
\end{aligned}
$$

Since, $x \in[f, g, p, u]\left(\Delta_{n}^{r}\right)$, we have $x \in[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ and the proof of second result follows. W

Theorem 3: $[f,, g, p]_{0}\left(\Delta_{n}^{r}\right)$ is a paranormed space with

$$
\left.h_{\Delta}(x)=\sup _{m, n}\left(\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\mid u_{k} \Delta_{n}^{r} x_{k+m}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}} .
$$

Proof: From Theorem 2, for each $x \in[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right), h_{\Delta}(x)$ exists. Also, it is trivial that $h_{\Delta}(x)=h_{\Delta}(-x)$ and $\Delta_{n}^{r} x_{k+m}=0$ for $x=0$. Since, $h(0)=0$, we have $h_{\Delta}(x)=0$ for $x=0$. Since, $\frac{p_{k}}{M} \leq 1$ for $M \geq 1$, therefore, by Minkowski's inequality and by definition of g for each n that

$$
\begin{aligned}
& \left(\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}+\Delta_{n}^{r} y_{k+m}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
& \quad \leq\left(\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)+g\left(\left|u_{k} \Delta_{n}^{r} y_{k+m}\right| \mid\right]^{p_{k}}\right)^{\frac{1}{H}}\right.
\end{aligned}
$$

$$
\leq\left(\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}+\left(\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} y_{k+m}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}
$$

which shows that $h_{\Delta}(x)$ is sub-additive. Further, let α be any complex number. Therefore, we have by definition of g, we have

$$
h_{\Delta}(\alpha x)=\sup _{m, n}\left(\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} \alpha x_{k+m}\right|\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq S_{\alpha}^{\frac{H}{M}} h_{\Delta}(x)
$$

where, S_{α} is an integer such that $\alpha<S_{\alpha}$. Now, let $\alpha \rightarrow 0$ for any fixed x with $h_{\Delta}(x) \neq 0$. By definition of g for $|\alpha|<1$, we have for $n>N(\varepsilon)$ that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)\right]^{p_{k}}<\varepsilon \tag{2}
\end{equation*}
$$

As g is continuous, we have, for $1 \leq n \leq N$ and by choosing α so small that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left[g\left(\left|u_{k} \Delta_{n}^{r} x_{k+m}\right|\right)\right]^{p_{k}}<\varepsilon . \tag{3}
\end{equation*}
$$

Consequently, (2) and (3) gives that $h_{\Delta}(\alpha x) \rightarrow 0$ as $\alpha \rightarrow 0$.W

Theorem 4: The spaces $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f,, g, p]_{0}\left(\Delta_{n}^{r}\right)$ and $[f,, g, p]_{\infty}\left(\Delta_{n}^{r}\right)$ are not solid in general.

Proof: To show that the spaces $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f,, g, p]_{0}\left(\Delta_{n}^{r}\right)$ and $[f,, g, p]_{\infty}\left(\Delta_{n}^{r}\right)$ are not solid in general, we consider the following example.

Let $p_{k}=1=u_{k}$ for all k and $g(x)=x$ with $r=1=n$. Then, $\left(x_{k}\right)=(k) \in[f,, g, p]_{\infty}\left(\Delta_{n}^{r}\right)$ but $\left(\alpha_{k} x_{k}\right) \notin[f,, g, p]_{\infty}\left(\Delta_{n}^{r}\right)$ when $\alpha_{k}=(-1)^{k}$ for all $k \in \mathrm{~N}$. Hence is result follows. W

From above Theorem, we have the following corollary.

Corollary 5: The spaces $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f, g, p]_{0}\left(\Delta_{n}^{r}\right)$ and $[f,, g, p]_{\infty}\left(\Delta_{n}^{r}\right)$ are not perfect.

Theorem 6: The spaces $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$ and $[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ are not symmetric in general.

Proof : To show that the spaces $[f, g, p, u]\left(\Delta_{n}^{r}\right),[f, g, p, u]_{0}\left(\Delta_{n}^{r}\right)$ and $[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ are not perfect in general, To show this, let us consider $p_{k}=1=u_{k}$ for all k and $g(x)=x$ with $n=1$. Then, $\left(x_{k}\right)=(k) \in[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ Let the re-arrangement of $\left(x_{k}\right)$ be $\left(y_{k}\right)$ where $\left(y_{k}\right)$ is defined as follows,

$$
\left(y_{k}\right)=\left\{x_{1}, x_{2}, x_{4}, x_{3}, x_{9}, x_{5}, x_{1} 6, x_{6}, x_{2} 5, x_{7}, x_{3} 6, x_{8}, x_{4} 9, x_{1} 0, \ldots\right\} .
$$

Then, $\left(y_{k}\right) \notin[f, g, p, u]_{\infty}\left(\Delta_{n}^{r}\right)$ and this proves the result.

REFERENCES

1. A. H. Ganie, N. A. Sheikh, Infinite matrices and almost convergence, Filomat, 29(6)(2015), 1183-1188..
2. A. H. Ganie and N. A. Sheikh, Infinite matrices and almost bouned sequences, Vietnam Journal of Mathematics, 42(2)(2014), 153-157.
3. A. H. Ganie and N. A. Sheikh, On some new sequence space of non-absolute type and matrix transformations, Jour. Egyptain Math. Soc., 21(2013), 34-40.
4. A. H. Ganie, N. A. Sheikh and T. Jalal, On some new type of invariant means with respect to modulus function, Int. J. Mod. Math. Sc, 13(1)(2015), 210-216.
5. J. P. Duran, Infinite matrices and almost convergence, math. Zeit., 128(1972), 75-83.
6. M. Et, Strongly almost summable difference sequences of order m defined by modulus, Studia Scientiarum Math. Hung., 40(2003), 463-476.
7. M. Et and M. Basarir, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35(3)(1997), 169-175.
8. M. Et and R. Çolak, On some generalised difference sequence spaces, Soochow J. Math. 21(1995), 377-386.
9. P. Kampthan and M. Gupta, Sequence spaces and series, Marcel Dekkar Inc., (1981).
10. J. P. King, Almost summable sequences, Proc. Ammer. Math. Soc., 16(1966), 1219-1225.
11. H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24(1981), 169-176.
12. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80(1948), 167-190.

EPRA International Journal of Multidisciplinary Research (IJMR) - Peer Reviewed Journal Volume: 7| Issue: 9| September 2021|| Journal DOI: 10.36713/epra2013 || SJIF Impact Factor 2021: 8.047 || ISI Value: 1.188
13. I. J. Maddox, Elements of Functionls Analysis, Cambridge Univ. Press, (1970).
14. I. J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc., 85(1979), 345-350.
15. I. J. Maddox, Spaces of strongly summable sequences, Qurt. J. Math., 18(1967), 345-355.
16. I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 161-166.
17. M. Mursaleen, Generalized spaces of difference sequences, Jour. Math. Anal. App., 203(1996), 738-745.
18. S. Nanda, Strongly almost convergent sequences, Bull. Cal. Math. Soc., 76(1984), 236-240.
19. S. Nanda, Strongly summable and strongly almost convergent sequences, Acta Math. Hung., 49(1987), 71-76.
20. W. H. Ruckle, FK spaces in which the sequence coordinate verctors in bounded, Canad. J. Math., 25(1973), 973-978.
21. M. Sengönül and F.Ba S ar, Some new Cesàro sequences spaces of non-absolute type, which include the spaces c_{o} and \mathcal{C}, Soochow J. Math., 1(2005), 107-119.
22. N. A. Sheikh and A. H. Ganie,On the space of λ-convergent sequence and almost convergence, Thai Journal of Math., 2(11) (2013), 393-398.
23. Tripathy, B. C., Esi, A., and Tripathy, B., On a new type of generalized difference Cesaro sequence spaces, 31(3)(2005), 33-340.
24. A. Wilansky, Summability through Functional Analysis, North Holland Mathematics Studies, Oxford, (1984).

