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ABSTRACT 
The requirement for a stable supply of electrical energy to meet the needs of the modern world has expanded dramatically, 

necessitating near-faultless power system functioning. The main goal is to reduce the frequency and duration of undesired 

power transformer outages by imposing a high point demand that includes criteria for dependability (no false tripping) and 

operating speed (quick fault detection and clearance time). For many years, the second harmonic restraint concept has been 

widely applied in industrial applications. It employs the discrete Fourier transform (DFT) and frequently confronts issues 

like lengthy restrain times and the inability to distinguish internal defects from magnetizing inrush circumstances. As a 

result, artificial neural networks (ANNs), a strong tool for artificial intelligence (AI) that can imitate and automate 

information, have been suggested for defect identification and tracking in normal and inrush conditions. For the 

investigation of power transformer transient conditions under diverse settings, the wavelet transform (WT) is utilized, which 

has the capacity to extract information from transient signals in both the time and frequency domains at the same time. In 

the MATLAB/SIMULINK environment, all of the above-mentioned conditions of a power transformer to be investigated in a 

power system are modelled. 
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INTRODUCTION 

Transformers are necessary and vital 

components of power systems. Power transformer 

protection measures vary based on the situation due 

to their sizes and variety. High rupturing capacity 

(HRC) fuses will serve for small distribution 

transformers with less than 1.5 MVA. Overcurrent 

relays are used by others. Deferential protection 

based on the circulating current theory is frequently 

used for bigger power transformers. Differential 

protection compares primary and secondary currents 

by converting them to a common base. During 

normal operation, the difference between these 

currents is negligible. For external defects, the 

difference is also minimal, but it is bigger than for 

normal operating conditions. However, when a 

transformer experiences an internal fault, the 

difference becomes significant. For optimal 

operation, differential protection is predicated on 

matching the transformer's primary and secondary 

currents. When a transformer is turned off, it usually 

leaves some residual flux in its core. The core is 

likely to saturate when the transformer is re-

energized later. The primary windings of a saturated 

transformer draw significant magnetizing currents 

from the power system. The differential protection 

relay is activated as a result of the significant 

differential current. 

Significant efforts have been made to develop 

digital relaying algorithms due to the multiple benefits 

of digital relaying in terms of costs, performance, 

dependability, and flexibility. There have been a 

number of algorithms proposed for the deferential 

protection of power transformers [1], [2], and [3]. In 

general, an acceptable protection scheme has the 

following characteristics: dependability, cost, ease of 

use, and high speed of operation. 

Traditional digital protective relays have a 

number of flaws. For example, they are typically 

based on algorithms that estimate the basic component 

of current and voltage signals while ignoring higher 

frequency transient components. Furthermore, phasor 

estimate necessitates a cycle's sliding window, which 

might result in a large delay. Furthermore, precision 

cannot be guaranteed. For examining the frequency 

content of stationary processes, the Fourier transform 

is quite useful. Other approaches for estimating the 

frequency content must be used when working with 

non-stationary systems.[4] 

As a result, wavelet decomposition is suitable 

for analyzing transitory signals and achieving 

significantly better current characterization and 

discrimination. Wavelets allow a signal to be 

decomposed into several levels of resolution 

(frequency octaves). Large windows are utilized to 
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acquire the low frequency components of the signal, 

whereas tiny windows reflect discontinuities, because 

the basis function (Mother Wavelet) is dilated at low 

frequencies and compressed at high frequencies. [5] 

 

MATHEMATICAL MODEL OF 

PROPOSED MODEL 

Starting with the DT signal x[n] of length N, 

the first level m = 1 decomposition produces two sub 

band DT signals as 
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where a1[n] and d1[n] are the 

first-level approximations and the first 

level details respectively. k is a constant, and g[n] 

and h[n] are the low-pass filter and the high-pass 

filter respectively, which are associated with the used 

wavelet function. To increase the frequency 

resolution and ensuring the time localization of each 

frequency sub band, the outputs of both the filters 

i.e., Low Pass Filter (LPF) and High Pass Filter 

(HPF) are down sampled by two at the end of each 

stage of filtering. The second-level decomposition (m 

= 2) produces following four sub bands. 
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Where, dd2[n] represents the highest 

frequency sub band of the second level of the WT 

decomposition equation 2 and 4. Fig. 1 shows 

Decomposing of a discrete signal x[n] using a two- 

level WT. The successive Low pass filtering (LPF) 

and High pass filtering (HPF) stages that implement 

the WPT decomposition. 

Wavelet Transform (WT) is generated by 

analyzing the input current signal to a tree of low 

pass and high pass filtering operations as shown in 

figure 1. Down- sampling by 2 is taking place 

between any two successive levels. It is clear from 

the figure 1 that the frequency bandwidth of the levels 

band decreases with the growing of the level number, 

which means that the frequency resolution becomes 

higher by the increase of the level number. However, 

the higher the number of the levels the higher the 

processing time of the signal. The increase of the 

processing time is a problem when the number of the 

levels needed is high. 

 

Level 0 

 

 

Level 1 

 

 

Level 2 

 

Figure 1: Decomposing of a discrete signal x[n] 

using a two- level WPT 

It is obvious from the figure that by 

decomposing the signal f(n) the low and high 

frequencies, the low frequency of the first level is the 

approximation a1[n] of the signal and the high 

frequency is the details d1[n] of the input signal. 

Where the super fix 1 and 2 refers to the 1st and 2nd 

level of the wavelet decomposition respectively. Each 

part in the first level is also decomposed in the same 

manner into two parts of approximations and details. 

Therefore, it will produce four sub-bands by using the 

same filters used in the first level of decomposition. 

These basis functions are generated from one base 

function called the mother wavelet. The first and 

second level sub-bands are obtained using two filters 

(low and high). 

In transmission lines, there are four basic types 

of faults that can develop.  

 SLG (single line to ground) is an asymmetrical 

fault characterized by a sharp increase in phase 

current and a sharp decrease in the faulted phase 

voltage. When compared to other forms of defects, 

it is the most common in transmission lines.  

 LLG (double line to ground): This is another 

unsymmetrical fault that has the same tendency as 

the LG fault in that it involves two faulted phases.  
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 LL (Line to Line Fault): Unsymmetrical fault 

with a downward trend in phase voltage and a 

sudden rise in currents on all three phase voltages 

and currents that does not include a zero-sequence 

component. 

 LLL (Triple Line Fault): This is a symmetrical 

defect that causes all three phase voltages to 

collapse and all three phase currents to surge 

suddenly. 

Wavelet transform is used to recognize inrush 

current and separate it from internal transformer faults 

utilizing an Artificial Neural Network (ANN) as a 

classifier, keeping the above points in mind. Figure 2 

depicts a schematic representation of the planned work. 

Wavelet transform is used to extract valuable 

information from both defective and inrush generated 

transient current signals in the proposed technique. 

This data is subsequently utilized to train the ANN to 

distinguish between transients and relay malfunctions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed model flow chart 

RESULT  

In the MATLAB environment, a power system 

network is simulated, as shown in Figure 3. Table 1 

lists the power transformer's parameters. Current 

transformers are used to measure primary and 

secondary currents, and wavelet analysis is applied to 

signals collected under three different conditions: 

normal operation, magnetizing inrush, and internal 

fault. The simulation lasts 0.5 seconds, and the data is 

collected in two cycles with 130 samples each. 

In this proposed method, wavelet transform is 

first applied to decompose the differential current 

signals of power transformer system into a series of 

wavelet components each of which covers a specific 

frequency band. Thus, the time and frequency domain 

features of the transients’ signals are extracted for 

normal current, magnetizing inrush current, over 

excitation current, internal fault current. The sample of 

the differential current for 0.5 sec. is taken and is 

proceed in MATLAB Wavelet Tool box. One of the 

most popular mother wavelets suitable for a wide range 

of applications used is Daubechies’s wavelet. In this 

work Db6 wavelet is used. The implementation 

procedure of Wavelet Transform, in which x[n] is the 

original signal obtain from workspace Current1, 

Current2 and Current3. At the first stage, an original 

signal Current1, Current2 and Current3 is divided into 

two halves of the frequency bandwidth, and sent to both 

high-pass filter and low- pass filter. Then the output of 

low pass filter is further cut in half of the frequency 

bandwidth, and sent to the second stage; this procedure 

is repeated until the signal is decomposed to a pre-

defined certain level 6.  

Transformer Rating 250 MVA 

Transformer frequency 50 Hz 

Transformer Winding 

Parameters 

R = 0.002 pu, 

L = 0.08 pu 

Magnetizing Resistance 

(Rm) 

500 pu 

Magnetizing Reactance 

(Rm) 

500 pu 

Table 1: Power transformer specification 

 

Figure 3: Simulink Model of Power Transformer 

Protection 

The set of signals thus represent the same original 

signal, but all corresponding to different frequency 

bands. It is pointing out that the frequency band of each 

detail of the wavelet transform is directly related to the 

sampling rate of the original signal. If the original signal 

is being sampled Fs Hz, the highest frequency that the 

signal could contain, from Nyquist’s theorem, would be 

Fs/2 Hz. This frequency would be seen at the output of 

the high frequency filter, which is the first detail. Thus, 

the band of frequencies between and would be captured 

in detail 1; similarly, the band of frequencies between 

and would be captured in detail 2, and so on. The WT is 

applied with four types of waveforms. These are normal 

condition, magnetizing inrush condition, over excitation 

condition and internal fault condition. WT coefficients 

for each condition obtained, for instance the average 

value, maximum value and normalization value can be 

calculated for these wavelets transform coefficients. The 

total number of the wavelet transform coefficients stays 

the same due to the nature of the discrete transform 

process. The mean values of d1 (first level), a1 (first 

Transformer model Simulation under various 

switching and fault condition 

Transient current signal 

analysis and RMS value 

coefficient calculations  

Generate 

training 

data  

Generate 

Testing 

data  

Development of Artificial 

Neural Network Training 

Architecture  

Classify Condition 

using ANN 

model 

Fault occurred 

Trip signal 

to C.B. 
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level), the average value of d1 (first level), a1 (first 

level), and the normalization of d1 (first level), a1 (first 

level) are calculated and stored. Each of the value of 

every single coefficient is also a feature of the data. 

The signal data generated by Simulink in MATLAB. 

Signals are sampled at the sampling rate of 40 samples 

per cycle (over a data window of half cycle). 

Different types of faults have been considered 

for the purpose of analysis these faults are detected 

based on recognizing their wave shapes, more 

precisely, by differentiating their wave shapes from the 

fault current wave shapes using wavelet transform. 

These are as follows: 

Normal operating condition 

The normal operating current waveform for 

phase R, Y and B is shown in Figure 4. For the 

simulated transformer, the rated current is 50 A. Figure 

5 depicts the wavelet decomposition of a normal 

condition with five levels of approximation and 

detailed coefficients. It is simulated using 1000 

samples across two cycles (0.5 sec). 

 

Fig 4: Normal operating current waveforms of 

phase RYB respectively. 

 

Fig 5: The wavelet decomposition of a normal 

condition 

Line to ground (LG) fault condition 

The Line to Ground Fault Condition waveforms 

is shown in Fig 6. Fig 7 shows the wavelet 

decomposition of LG fault condition. Figure 6 

illustrates a 0.2-second simulation of the LG fault 

waveform for phase A. Inrush current is 300 A, which 

is approximately three times the rated current. As a 

result, the differential relay perceives the excessive 

current as a fault and trips. In a transformer, flux is 

determined by residual flux, switching instant, and core 

magnetic characteristics. 

 

 

Fig 6: Line to Ground (LG) Fault Condition 

waveforms. 

 

Fig 7: The wavelet decomposition of LG fault 

condition. 

Double Line to ground (LLG) fault condition 

Fig 8 shows Double Line to Ground (LLG) Fault 

Condition waveforms as well as Fig 9 the wavelet 

decomposition of (LLG) fault condition. Wavelet 

analysis is performed using dB6 level 5 in this work. 

Figure 9 depicts the wavelet decomposition of the 

magnetizing inrush current in phase A, with 

approximate and detailed coefficients at five levels. It is 

simulated with 1000 samples for two cycles (0.2 sec). 

 

Fig 8: Double Line to Ground (LLG) Fault 

Condition waveforms. 
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Fig 9: The wavelet decomposition of (LLG) fault 

condition. 

Triple Line (LLL) fault condition 

Fig 10 shows Triple Line (LLL) Fault Condition 

waveforms as well as Fig 11 The wavelet 

decomposition of (LLL) fault condition. Wavelet 

analysis is performed using dB6 level 5 in this work. 

Figure 11 depicts the wavelet decomposition of the 

magnetizing inrush current in phase A, with 

approximate and detailed coefficients at five levels. It 

is simulated with 1000 samples for two cycles (0.2 

sec). 

 

Fig 10: Triple Line (LLL) Fault Condition 

waveforms. 

 

Fig 11: The wavelet decomposition of (LLL) fault 

condition. 

Neural Network analysis 

The neural network is two-layered, with 4 

neurons in the output layer; nevertheless, there are 10 

hidden neurons and 4 inputs (detail and estimated 

coefficients) in the network. The Fig 12 shows Neural 

Network Architecture. 

 
Fig 12: Neural Network Architecture 

The Simulink generated 126 training sets of 

samples (100 sets for training and 26 sets for testing) in 

MATLAB. At a sampling rate of 40 samples per cycle, 

signals are captured (over a data window of half cycle). 

The transients in power transformers were analyzed 

using the Wavelet transform. The MATLAB (Wavelet 

Analysis) software is used to calculate the DWT 

coefficients of the signals using the data obtained from 

the simulations. This 100-coefficient training set has 

four different power transformer circumstances (normal, 

magnetizing inrush, overexcitation, and internal fault). 

Normal has 12 sets of coefficients, Line to Ground (LG) 

fault has 33 sets of coefficients, Double line to ground 

fault has 33 sets of coefficients, and Triple Line fault 

(LLL) as well as Triple line to ground fault (LLLG) has 

11 sets each of coefficients. 

After extensive testing, a hidden layer network 

with 10 neurons, 4 inputs, and 4 outputs was proven to 

be suitable for monitoring the various conditions of a 

power transformer. The network's outputs have a 

distinct set of values (for example, 0000 = normal, 

1001/0101/0011 = Line to Ground fault, 

1101/0111/1011 = Double line to ground fault, 1110 = 

Triple Line fault, 1111 = Triple line to ground fault). 

This network, which has four outputs, monitors all 

situations in the power transformer and only sends out a 

trip signal if there is an internal fault, which occurs 

when output is 0101. The training data of neural 

network is shown in table 2. 

S. 

No. 

Type of 

Fault 

Maximum Coefficient of Phase current 

Phase 

A 

Phase 

B 

Phase 

C 
Ground 

1 No Fault 0.2165 0.1703 0.0511 
4.4114e-

13 

2 A-G Fault 3.7083 0.1703 0.0511 10.7322 

3 B-G Fault 0.2165 4.9203 0.0511 11.0980 

4 C-G Fault 0.2165 0.1703 1.2278 9.0851 

5 
AB-G 

Fault 
3.2446 4.9203 0.0511 11.2850 

6 
BC-G 

Fault 
0.2165 4.9209 2.4476 11.0412 

7 
AC-G 

Fault 
3.2443 0.1703 0.6906 11.1381 

8 
ABC 

Fault 
5.6040 4.9210 2.8130 0.0017 

9 ABC-G 

Fault 
2.7761 4.9210 1.6953 11.6952 

Table 2: Training data for neural network. 
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Fig 13: Neural Network training performance 

 

 

Fig 14: Neural Network training Regression  

 

The number of inputs to the network and the 

number of neurons in the hidden layer were determined 

empirically when it came to the ANN construction. 

Experimenting with different network setups is a part 

of this process. The BP training approach has been 

discovered to perform satisfactorily with ANNs with 

fewer inputs and 10 neurons in the hidden layer. After 

11 iterations, neural network training, the learning 

process was shut down. Also, Fig 13 which shows 

Neural Network training performance After 5 epochs, 

the suggested network's training error was 0.015646, 

which was within acceptable bounds. Also, in Fig 14 

Neural Network training Regression the training R = 

0.99195 which is best training regression as it is 

approximately 1. In all circumstances, the network 

performs admirably, properly distinguishing between 

normal, inrush, over-excitation, and internal fault 

currents. Here, we'll talk about the competitive model 

and how well it works. 

 

CONCLUSION 

In this study, the Wavelet and Neural Network 

models for power transformer protection are discussed. 

The 4 input, 10 hidden layer, 4 output layer and 4 

output architecture was capable of correctly 

distinguishing between various power transformer 

situations such as normal, magnetizing inrush over-

excitation, and internal fault. The FFBP is effective at 

addressing classification problems, and a differential 

relay can be thought of as a classifier that determines 

what type of network event occurs. Neural Network 

training performance After 5 epochs, the suggested 

network's training error was 0.015646, which was 

within acceptable bounds. Also, Neural Network 

training Regression the training R = 0.99195. The 

WNN was trained for all possible sets of simulated 

data under various transformer operating conditions. 

For power transformer differential relaying, WNN-

based differential relaying shows promise in terms of 

security, accuracy, and speed. Within half of a cycle, 

the WNN effectively identifies and provides a trip 

signal, which is considered to be very quick. 
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