

OBSERVATION ON THE PAPER ENTITLED INTEGRAL SOLUTION OF THE HOMOGENEOUS TERNARY CUBIC EQUATION $x^3 + y^3 = 52(x+y)z^2$

S. Vidhyalakshmi¹, J.Shanthi², K.Hema³, M.A.Gopalan⁴

^{1,2} Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

³ M.Phil Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy- 620 002, Tamil Nadu, India.

⁴ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

ABSTRACT

This paper concerns with the problem of obtaining non zero distinct integer solutions to the homogeneous ternary cubic equation $x^3 + y^3 = 52(x + y)z^2$. Also, formulae for generating sequence of integer solutions based on the given solution are presented.

KEYWORDS: Ternary cubic, Integer solutions, Homogeneous cubic, Generation of solutions.

INTRODUCTION

The theory of Diophantine equations in multidegree with multivariables offers a rich variety of interesting and fascinating problems[1-4]. One may refer [5-22] for cubic equation with three variables. It is observed that in [22]the authors have presented some patterns of integer solutions to the ternary cubic equation $x^3 + y^3 = 52(x + y)z^2$. It is noted that the above equation has other choices of non-zero distinct integer solutions.

Thus, in this paper, the other choices of non-zero distinct integer solutions to the above ternary cubic equation are obtained. Also, formulas for generating sequence of integer solutions based on the given solution are presented.

METHODS OF ANALYSIS

The homogeneous ternary cubic equation under consideration is

$$x^3 + y^3 = 52(x + y)z^2 \tag{1}$$

To start with , it is observed that (1) is satisfied by the triples

 $(x,y,z) = (16,12, \pm 2), (6,-2, \pm 1), (16,4, \pm 2), (48,36, \pm 6).$

However, we have other sets of nonzero distinct integer solutions to (1) which are illustrated below.

Introduction of the linear transformations

x=2(u+v),y=2(u-v)

(2)

in (1), it is written as

$$u^2 + 3v^2 = 13z^2 \tag{3}$$

The above equation is solved through different method for obtaining the values of

u,v,z. Substituting the values of u,v in (2) the corresponding values of x and y satisfying (1) are found.

We present below different methods of solving (3) and in view of (2), one obtains different sets of integer solutions to (1).

Set 1 :

Assume z as

$$z = a^2 + 3b^2 \tag{4}$$

Write 13 on the R.H.S. of (3) as

$$13 = (1 + i2\sqrt{3})(1 - i2\sqrt{3}) \tag{5}$$

Using (4) & (5) in (3) and employing the method of factorization, consider

$$u + i\sqrt{3}v = \left(1 + i2\sqrt{3}\right)\left(a + i\sqrt{3}b\right)^2$$

After Equating the real and imaginary terms on both sides, it is seen that

$$u = a^{2} - 3b^{2} - 12ab$$

$$v = 2a^{2} - 6b^{2} + 2ab$$

Using in (2), one has

$$x = 2(3a^{2} - 9b^{2} - 10ab)$$

$$y = 2(-a^{2} + 3b^{2} - 14ab)$$

$$(6)$$

Note : 1

In addition to (5), the integer 13 on the R.H.S. of (3) is written as

$$13 = \frac{(7 + i\sqrt{3})(7 - i\sqrt{3})}{4} \quad \text{or}$$
$$13 = \frac{(5 + i3\sqrt{3})(5 - i3\sqrt{3})}{4}$$

Following the above procedure ,one may obtain different set of integer solutions to (1).

Set 2 :

(3) is written as

$$u^2 = 13z^2 - 3v^2 = u^2 * 1 \tag{7}$$

Assume u as

$$u = 13a^2 - 3b^2$$
 (8)

Write 1 on the R.H.S. of (7) as

$$1 = \left(\sqrt{13} + 2\sqrt{3}\right)\left(\sqrt{13} - 2\sqrt{3}\right) \tag{9}$$

Using (8) and (9) in (7) and employing the method of factorisation, consider

$$\sqrt{13}z + \sqrt{3}v = \left(\sqrt{13} + 2\sqrt{3}\right)\left(\sqrt{13}a + \sqrt{3}b\right)^2$$
(10)

Equating the corresponding parts, one has

$$z = 13a^2 + 3b^2 + 12ab$$
, $v = 26a^2 + 6b^2 + 26ab$

Therefore, in view of (2), the corresponding integer solutions to (1) are given by

$$x=2(39a^2+3b^2+26ab)$$
, $y=2(-13a^2-9b^2-26ab)$

Note : 2

In addition to (9), the integer 1 on the R.H.S. of (7) is written as

$$1 = \frac{\left(2\sqrt{13} + \sqrt{3}\right)\left(2\sqrt{13} - \sqrt{3}\right)}{49} \text{ or}$$
$$1 = \frac{\left(2\sqrt{13} + 3\sqrt{3}\right)\left(2\sqrt{13} - 3\sqrt{3}\right)}{25}$$

Following the above procedure, one may obtain different set of integer solutions to (1).

Set 3:

(3) is written as

$$3v^2 = 13z^2 - u^2 \tag{11}$$

Assume v as

$$v = 13a^2 - b^2$$
(12)

Write the integer 3 on the L.H.S. of (11) as

$$3 = \left(2\sqrt{13} + 7\right)\left(2\sqrt{13} - 7\right) \tag{13}$$

Using (12), (13) in (11) and employing the method of factorisation, consider

$$\sqrt{13}z + u = (2\sqrt{13} + 7)(\sqrt{13}a + b)^2$$
(14)

Equating the rational and irrational parts,

 $z = 26a^2 + 2b^2 + 14ab$

$$u = 91a^2 + 7b^2 + 52ab$$

In view of (2), the corresponding integer solutions to (1) are given by

$$x = 2\left(104a^2 + 6b^2 + 52ab\right)$$

$$y=2(78a^2+8b^2+52ab)$$

Note : 3

In addition to (13), the integer 3 on the L.H.S. of (11) is written as

$$3 = \frac{\left(2\sqrt{13} + 5\right)\left(2\sqrt{13} - 5\right)}{9}$$

Following the above procedure, one may obtain different set of integer solution to (1).

GENERATION OF SOLUTIONS

Different formulas for generating sequence of integer solutions based on the given solutions are presented below:

Let (u_0, v_0, z_0) be any given solutions to (3)

Formula 1:

Let (u_1, v_1, z_1) given by

$$u_1 = h - 2u_0, v_1 = h - 2v_0, z_1 = 2z_0 \tag{15}$$

be the second solution to (1). Using (15) in (1) and simplifying, one obtains

$$h = u_0 + 3v_0$$

In view of (17), the values of u_1 and v_1 are written in the matrix form as

 $(u_1,v_1)^t=M(u_0,v_0)^t$

where

$$\mathbf{M} = \begin{bmatrix} -1 & 3\\ 1 & 1 \end{bmatrix}$$

and t is the transpose.

The repetition of the above process leads to the n^{th} solutions u_n, v_n given by

 $(u_n,v_n)^t = M^n(u_0,v_0)^t$

If α, β are the distinct eigen values of M, then

$$\alpha = 2, \beta = -2$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{\beta - \alpha} (M - \alpha I), I = 2 \times 2 \text{ Identity Matrix}$$

Thus, the general formulas for integer solutions to (1) are given by

$$z_n = 2^n z_0,$$

$$x_{n} = 2(u_{n} + v_{n}) = 2\left[u_{0}\left(\frac{2\alpha^{n} + 2\beta^{n}}{4}\right) + v_{0}\left(\frac{6\alpha^{n} - 2\beta^{n}}{4}\right)\right]$$
$$y_{n} = 2(u_{n} - v_{n}) = 2\left[\beta^{n}u_{0} - \beta^{n}v_{0}\right]$$

Formula 2:

Let (u_1, v_1, z_1) given by

$$u_1 = u_0, v_1 = v_0 + 2h, z_1 = h - z_0$$
(16)

be the second solution to (1). Using (18) in (1) and simplifying, one obtains

h= $12v_0 + 26z_0$

In view of (17), the values of v_1 and z_1 are written in the matrix form as

$$(v_1, z_1)^t = M(v_0, z_0)^t$$

where

 $M = \begin{bmatrix} 25 & 52 \\ 24 & 51 \end{bmatrix}$

and t is the transpose.

The repetition of the above process leads to the n^{th} solutions v_n, z_n given by

$$(v_n, z_n)^t = M^n (v_0, z_0)^t$$

If α, β are the distinct eigen values of M, then

$$\alpha = 38 + \sqrt{1417}, \ \beta = 38 - \sqrt{1417}$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{\beta - \alpha} (M - \alpha I), I = 2 \times 2 \text{ Identity Matrix}$$

Thus, the general formulas for integer solutions to (1) are given by

$$u_{n} = u_{0}$$

$$v_{n} = v_{0} \left\{ \frac{\alpha^{n} + \beta^{n}}{2} - \frac{13(\alpha^{n} - \beta^{n})}{2\sqrt{1417}} \right\} + \frac{26}{\sqrt{1417}} (\alpha^{n} - \beta^{n}) z_{0}$$

$$z_{n} = \frac{12}{\sqrt{1417}} (\alpha^{n} - \beta^{n}) v_{0} + \left\{ \frac{\alpha^{n} + \beta^{n}}{2} + \frac{13(\alpha^{n} - \beta^{n})}{2\sqrt{1417}} \right\} z_{0}$$

$$x_n = 2(u_n + v_n)$$
$$y_n = 2(u_n - v_n)$$

Formula 3:

Let (u_1, v_1, z_1) given by

$$u_1 = 4h - 3u_0, v_1 = 3v_0, z_1 = 3z_0 + h \tag{17}$$

be the second solution to (1). Using (19) in (1) and simplifying, one obtains

$$h = 8u_0 + 26z_0$$

In view of (17), the values of u_1 and z_1 are written in the matrix form as

$$(u_1, z_1)^t = M(u_0, z_0)^t$$

where

and t is the transpose.

The repetition of the above process leads to the n^{th} solutions u_n, z_n given by

 $(u_n, z_n)^t = M^n (u_0, z_0)^t$

If α, β are the distinct eigen values of M, then

$$\alpha = 29 + 8\sqrt{13}, \beta = 29 - 8\sqrt{13}$$

We know that

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{\beta - \alpha} (M - \alpha I), I = 2 \times 2 \text{ Identity Matrix}$$

Thus, the general formulas for integer solutions to (1) are given by

$$u_n = u_0 \left(\frac{\alpha^n + \beta^n}{2}\right) + \frac{\sqrt{13}}{2} z_0 \left(\alpha^n - \beta^n\right)$$
$$z_n = \frac{1}{2\sqrt{13}} u_0 \left(\alpha^n - \beta^n\right) + z_0 \left(\frac{\alpha^n + \beta^n}{2}\right)$$

$$x_n = 2(u_n + v_n)$$
$$y_n = 2(u_n - v_n)$$

CONCLUSION

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic Diophantine equation $x^3 + y^3 = 52(x + y)z^2$ representing homogeneous cone. As there are varieties of cones, the readers may search for other forms of cones to obtain integer solutions for the corresponding cones.

REFERENCES

- 1. L.E. Dickson, History of theory of Numbers, Vol. 2, Chelsea publishing Company, Newyork, 1952.
- 2. L.J. Mordel, Diophantine Equations, Academic press, Newyork, 1969.
- 3. Carmichael R.D., "The theory of numbers and Diophantine analysis", Newyork, Dover, 1959.
- 4. Telang S.G., Number Theory, Tata Mcgrow Hill Publishing Company, New Delhi(1997).
- 5. *M.A.* Gopalan, G. Sumathi, S. Vidhyalakshmi, "Integral solutions of non-homogeneous ternary quintic equation in terms of pells sequence $x^3 + y^3 + xy(x + y) = 2z^5$ ", JAMS, Vol 6(1), 56-62, 2013

- 6. S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, "On the ternary cubic Diophantine equation $4(x^2 + x) + 5(y^2 + 2y) = -6 + 14z^3$ ", International Journal of Innovative Research and Review (JIRR), Vol 2(3), 34-39, July-Sep 2014
- 7. *M.A.* Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, "On ternary cubic diophantine equation $3(x^2 + y^2) 5xy + x + y + 1 = 12z^3$ ", International Journal of Applied Research, Vol 1(8), 209-212, 2015
- 8. *M.A.* Gopalan, S. Vidhyalakshmi, J. Shanthi, "On the cubic equation with four unknowns $x^3 + 4z^3 = y^3 + 4w^3 + 6(x y)^3$ ", International Journal of Mathematics Trends and Technology, Vol 20, No.1, 75-84, April 2015
- 9. R. Anbuselvi, K. Kannaki, "On ternary cubic diophantine equation $3(x^2 + y^2) 5xy + x + y + 1 = 15z^3$ ", IJSR, Vol.5, Issue-9, 369-375, Sep 2016
- 10. G. Janaki, C. Saranya, "Integral solutions of the ternary cubic equation $3(x^2 + y^2) 4xy + 2(x + y + 1) = 972z^3$ ", IRJET, Vol.04, Issue 3, 665-669, March 2017
- 11. Dr. R. Anbuselvi, K.S. Araththi, "On the cubic equation with four unknowns $x^3 + y^3 = 24zw^2$ ", IJERA, Vol 7, Issue 11 (Part-I), 01-06, Nov-2017
- 12. E.Premalatha, M.A.Gopalan, "On Homogeneous Cubic Equation with Four Unknowns $x^3 + y^3 = 13zw^2$ ", International Journal of Advances in Engineering and Management (IJAEM), Vol 2, Issue 2, 31-41, 2020
- 13. Gopalan M.A., Vidhyalakshmi S., Mallika S, On the ternary non-homogeneous cubic equation $x^3 + y^3 3(x + y) = 2(3k^2 2)z^3$, Impact Journal of Science and Technology, vol.7, no.1, 41-45, (2013).
- 14. Gopalan M.A., Vidhyalakshmi S., Mallika S., Non-Homogeneous cubic equation with three unknowns, 3($x^2 + y^2$) $-5xy + 2(x + y) + 4 = 27z^3$, International Journal of Engineering Science and Research Technology, vol.3., no.12., Dec. 2014., 138-141.
- 15. Gopalan M.A., Vidhyalakshmi S., Mallika S., Integral solutions of $x^3 + y^3 + z^3 = 3xyz + 14(x + y)w^3$, International Journal of Innovative Research and Review, vol.2, no.4, 18-22, (Oct-Dec 2014).
- 16. Anbuselvi R, Kannan K., On Ternary Cubic Diophantine Equation $3(x^2 + y^2) 5xy + x + y + 1 = 15z^3$, International Journal of Scientific Research, Vol.5., Issue .9., Sep. 369-375, (2016).
- 17. Vijayasankar A, Gopalan M.A., Krithika V., On the ternary Cubic Diophantine equation $2(x^2 + y^2) 3xy = 56z^3$., Worldwide Journal of Multidisciplinary Research and Development, vol.3., issue 11,6-9., (2017).
- 18. Gopalan M.A., Sharadha Kumar, On the non-homogeneous ternary cubic equation $3(x^2 + y^2) 5xy + x + y + 1 = 111z^3$, International Journal of Engineering and Technology, Vol.4., issue .5., 105-107(Sep-Oct)2018.
- 19. Gopalan M.A., Sharadha Kumar, On the non-homogeneous ternary cubic equation $3(x + y)^2 3xy = 12z^3$, IJCESR, VOL.5., Issue.1., 68-70, (2018).
- 20. Dr. R.Anbuselvi, R.Nandhini., Observations on the ternary cubic Diophantine equation $x^2 + y^2 xy = 52z^3$, International Journal of Scientific Development and Research., vol.3., issue .8., august, 223-225., (2018).
- 21. T.Priyadharshini, Mallika S., Observations on the cubic equation with four unknowns $x^3 + y^3 + (x + y)(x + y + 1) = zw^2$, Journal of Mathematics and Informatics., vol. 10., page 57-65(2017).
- 22. Dr.V.Prabha, Dr.S.Mallika., Integral solution of the homogeneous ternary cubic equation $x^3 + y^3 = 52(x + y)z^2$, Acta Ciencia Indica., vol.XLVII-M., No.1 to 4,49, (2021).

273