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ABSTRACT 

Classification of generated rules from medical datasets 

is important research problem. However, generating a cost-

sensitive rule is a more critical issue that could help in cost-

efficient aided diagnosis and treatment. Previous research based 

on decision tree induc-tion have been carried out to classify cost 

sensitive rules however, the cost of the root node seems to be the 

loophole with these algorithms. In this research, a Cost-Sensitive 

Prism (CS-PRISM) algorithm is proposed to generate classified 

rules sensitive to cost of test (attributes), and misclassification 

error. Most importantly, the objective of the CS-PRISM is to 

builds rules that eliminates of the redundancy of the root node’s 
cost. This is carried out by incorporating the test cost technique 

of tree induction with the Prism algorithm, initiating a function, 

Probability Cost Function (PCF) which is the basis for classifying 

rule.
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1 INTRODUCTION 
          It is arguably certain that prior to current times, biomedical analysis were theoretically anecdotal, though with 
varying degrees of high accuracy [32]. The inability to find per-manent cures for virulent diseases such as Cancer, 
Anaemia, Down syndrome, Cystic Fibrosis etc has challenged technological advances in clinical and biological 
sciences. In an era of vast amount of data, digital growth has encouraged the collection, storage and organisation of 
diseased patients data. It is believed that trends of knowledge or relationships could be extracted from these data. 
Nevertheless, if patterns could be identified within medical data, certain chronic conditions could be managed 
efficiently with early diagnosis and best treatment procedures[25][50]. 

Limitations to human cognition and perception has propelled the application of De-cision Support Systems 
(DSS) models to effectively identify useful trends from large datasets. Data mining is the acronym for knowledge 
extraction applied in this ex-periment. The goal of this research is to introduce a new cost efficient algorithm for 
generating rules known as Cost Sensitive Prism (CS-PRISM). The proposed model is an evolution of the standard 
prism [9] algorithm, incorporated with a tree induction. CS-PRISM fitness function is the average cost of 
classification. This includes the cost of test(attribute features) as well as the cost of misclassification errors. The new 
algo-rithm when applied on a medical dataset has the ability to analyse medical records and then generate sets of 
rules with strong considerations to test cost of attributes and error of misclassification. 

Assuming machine learning techniques is applied in a medical center to induce a diagnostic tool from patients 
records. It would be logically expected to obtain an extensive model with minimal low test cost and obviously of 
high accuracy. Taking into consideration that here are many cases associated with predictive errors, the task of the 
miner is to produce a model with minimum expected test cost and misclassification cost. 

1.1Cost Concept Learning 
        Cost can be measured in different units such as monetary units (dollars), temporal units (seconds), or abstract 
units of utility (utils)[56]. In medical diagnosis, cost may include things, such as the time or money for medical test 
to be carried or even the quality of life of the patient. In image recognition, cost might be measured in terms of the 
CPU time required for certain computations. However, cost could appear uncertain and in some cases, the 
uncertainty can be represented with a probability distribution over a range of possible costs[55]. This applies to 
misclassification errors and cost of test. 

1.1.1Cost of Misclassification Errors 
        In a confusion matrix with P classes, we may P x P matrix, where the element in row m and column n specifies 
the cost of assigning a case to class m , when it actually belongs in class n. Typically undoubtedly, the cost is zero 
when m equals n. In a minor variation on this approach, we may have a rectangular matrix, where there is an extra 
row for the cost of assigning a case to the unknown class[55]. 
 
 
 

 

 

Figure 1: Confusion Matrix structure[21] 
Misclassification cost could be constant by having same cost value for all cases.If the cost is zero m equals n and 

one otherwise, then our cost measure is the familiar error-rate measure. If the cost is one if m equals n and zero 
otherwise, then our cost measure is the familiar accuracy measure [56] 

However, the cost of certain types of misclassification error may be provisional to some circumstances. Error 
cost may depend on nature of the particular cases. For ex-ample, in detection of fraud, the cost of missing a 
particular case of fraud will depend on the amount of money involved in that particular case [16][17]. Similarly, the 
cost of a certain kind of mistaken medical diagnosis may be conditional on the particular patient who is 
misdiagnosed. For example, the misdiagnosis may be more costly in el-derly patients. It may be possible to 
represent such scenario with a constant error cost by distinguishing sub-classes. For example, instead of two classes, 
sick and healthy, there could be three classes, sick-and-young, sick-and elderly, and healthy[56]. This is an 
imperfect solution when the cost varies continuously, rather than discretely 

In medical dialysis, the cost of a classification error may also be dependant on the timing. Consider a medical 
device intended to signal an alarm during surgery if there are complications or might occur. With the sensor readings 
classified as either alarm or noalarm, the cost of the classification depends on whether the classification is correct as 
well as the timeliness of the classification. The alarm is not useful unless there is sufficient time for an adequate 
response to the alarm [16][17]. 
        In certain circumstances, the cost of making a classification error with one case may depend on the errors made 
with other cases. The well-known Precision and Re-call measures, widely used in the information retrieval literature, 
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may be seen as cost measures of this type [57]. For example, consider an information retrieval task where we are to 
search for a document on a certain topic. Collections of the documents are be to classified as relevant or not-relevant 
for the given topic. The cost of mistakenly assigning a relevant document to the not-relevant class depends on 
whether there are any other relevant documents that we have correctly classified[56].  

1.1.2 Cost of Tests 
        Each test, also referred to as attribute or measurement or feature, may have an associ-ated cost. For example, in 
medical diagnosis, a blood test has a cost. Turney [55] points out that we can only rationally determine whether it is 
worthwhile to pay the cost of a test when we know the cost of misclassification errors. If the cost of 
misclassification errors is much greater than the cost of tests, then it is rational to purchase all tests that seem to have 
some predictive value. If the cost of misclassification errors is much less than the cost of tests, then it is not rational 
to purchase any tests. 

Tasks involving both misclassification and attribute costs are abundant in real-world applications. In medical 
diagnosis, medical tests are referred to as attributes in machine learning whose values may be obtained at a cost, and 
misdiagnoses are like misclassi-fication which may also bear a cost (misclassification cost). When building a 
learning model for medical diagnosis from the training data, we must consider both the attribute costs (medical tests 
such as blood tests) and misclassification costs (errors in the diag-nosis). 

Each test has a different cost but the cost of a given test is the same for all cases[42][52]. Contrary, the cost to 
perform certain test may vary with the circumstances surround-ing the test. Such conditional circumstances could be 
selection of prior test. A given patient’s test cost could be tentative on the previous test that have been selected for 
the patient. For instance, a group of urine test ordered together may be cheaper than the sum of the costs of each test 
considered by itself, since the tests share common costs, such as the cost of collecting urine from the patient[55]. 
Furthermore, the cost of performing certain test may be conditional on the results of previous tests of a pa-tients. For 
example, the cost of a blood test may be conditional on the patient’s age. Thus a blood test must be preceded by a 
patient-age test, which contributes to the cost of the blood test. Also possible side-effects of a particular medical test 
could affect the cost of performing certain test on a given patient. A patient who is allergic to dye used for 
radiological procedures, could have their test cost triggered due allergic complications.[56]. Furthermore, when 
additional medical tests are ordered, at a cost of a patient or an insurance company, diagnosis or prediction of a 
disease of the patient is improved, reducing the misclassification cost. 

1.2 Motivation 
       The issue of cost-sensitive learning has been a constant problem not only in med-ical diagnosis[42] but also in 
robotics[53][52], industrial production processes[58], communication network troubleshooting [1], machinery 
diagnosis (where main cost is skilled labour), automated testing of electronic equipment (where the main cost is 
time), and many other areas. Learning models from the past have considered the cost of test, they include EG2 by 
Nunez [42][43], IDX by Norton[41] and CS-ID3 by Tan & Schlimmer [53][52]. There are also other learners that 
consider misclassification cost [6][19][27][23][45][47]. However CS-PRISM considers both the cost of test and 
misclassification cost. 

There are favourable reasons to support the coalition of both costs. An expert can-not logically determine the 
cost of test without knowing the cost of correct or incorrect classification. It is also expected for an expert to balance 
the cost of each test with the contribution of the test to accurate classification. Experts must also consider when fur-
ther testing is not economically justified as it often happens that the benefits of further testing are not worth the costs 
of the tests. This proofs that a cost value must be as-signed to both the tests and the classification errors[55]. 
Another constraint with many existing cost-sensitive model such as EG2[42][53][52] etc, is that they apply greedy 
heuristic search to select whichever step contributes more to accuracy and least to cost. A more sophisticated model 
such as (Inexpensive Classification with Expensive Tests) ICET[55] and Anytime Cost-sensitive Tree learner (ACT) 
were initiated to combine the greedy heuristic search with other algorithms to evaluate the interaction among se-
quences of test. A test may appear useful in isolation, using the greedy heuristic or may appear not useful when 
considered in association with other test. However, one major flaw with this approach and other tree learning models 
is the cost of the root node in cost effective learning. The root node of any tree model [6][49] is inevitable in rules 
generation and class prediction. However, the cost of this node poses a threat of being recycled in every rules 
classified thereby, increasing the average cost of clas-sification. CS-PRISM model eliminates this flaw by producing 
a more compact sets of rules which are cost-sensitive. However, the objectives of this research are to 

1. Develop cost effective model that generate rules sensitive to test cost, 
2. Sensitive to cost of misclassification error and . 
3. Eliminate the redundancy cost of the root node in tree learning. 

 
Section 2 discusses knowledge discovery from medical dataset, previous cost-sensitive algorithm applied and 

their application in medicine and healthcare. Section 3 would describe the dataset applied, the CS-PRISM technique, 



 
EPRA International Journal of Multidisciplinary Research (IJMR)   |   ISSN (Online): 2455 -3662  |   SJIF Impact Factor : 3.967 

 

                     www.eprajournals.com                                                                                                                                           Volume: 3 | Issue: 10 | October 2017 
7 

experimental methodologies, evaluation measures and validation design. The final section would highlight the set-
backs of the algorithm, future work plans and a proposed work flow. 

2. LITERATURE REVIEW 
2.1 Average cost of classification 

      Given a dataset of training and testing set. The typical cost of classification is estimated by the average cost of 
classification for the testing set. The average cost of classifica-tion is computed by dividing the total cost for the 
whole testing set by the number of cases in the testing set. The total cost includes both the costs of tests and the costs 
of classification errors[55]. 

TotalCost = TestCost + Misclassi f icationCost 

 

AverageCost = 

 
TotalCost  

Numbero f TestingSetSample 
 
           Lets consider a simple experiment where we can specify test costs simply by listing each test, paired with its 
corresponding cost and that we can specify the costs of clas-sification errors using a classification cost matrix p * p. 
The element P of class mandn is the cost of guessing that a case belongs in class m, when it actually belongs in class 
n. However, in such scenario, we have restricted our attention to classification cost matrices in which the diagonal 
elements are zero (we assume that correct classification has no cost) and the off-diagonal elements are positive 
numbers. For a cost tree model, to calculate the cost of a particular case, the path down the tree is traced and the cost 
of each test chosen is added up. However, If the same test appears twice, we only charge for the first occurrence of 
the test[55]. For example, one node in a path may say patient age is less than 20 years and another node may say 
patient age is more than 10 years, but we only charge once for the cost of determining the patients age. 

The decision to do a test must be based on both the cost of tests and the cost of classification errors. If a test 
costs $10 and the maximum penalty for a classification error is $5, then there is clearly no point in doing the test. 
Contrary, if the penalty for a classification error is $10,000, the test may be quite worthwhile, even if its information 
content is relatively low. Previous study with algorithms that are sensitive to test costs [42][43][41] has overlooked 
the importance of also considering the cost of classifica-tion errors 

Although, when test cost are reasonable compared to cost of misclassification, it may be logical to do all test that 
seems important. In such situation, it is easier to separate the selection of tests from the process of learning. Firstly, 
choose the set of relevant tests and then focus on the problem of learning a case using the results of these tests. On 
the other hand, if test costs are expensive when compared to the cost of clas-sification errors, it may be irrational to 
separate the selection of tests from the process of learning[55]. In this situation, a much lower costs can be attained 
by interleaving the two. First, choose a test, then examine the test result. The result of the test might give 
information to influence the choice for the next test. In a more rigid (expensive test) situations, the cost of further 
tests may not be justified, therefore stopping testing to make a classification. 

2.2 Knowledge Discovery of Medical Databases 
         Knowledge Discovery from medical Databases (KDD) is a Decision Support System (DSS) that encompasses 
several fields which includes, pattern recognition, statistics, machine learning, database management and 
visualisation tools to support the analysis and discovery of symmetries that are hidden within data [31]. 
           The diagram below describes the complete KDD processes from converting raw medi-cal data into useful 
knowledge [26]. 
 
 

 

 

 

 

 

 

 

 

                Figure 2: The KDD Processes 
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1. Data cleaning and Integration: Experiments done by multiple independent components are bound 

to experience inconsistencies in data representation[61]. Data Cleaning is applied to eliminate 
inconsistencies and noisy data, while integration com-prises of merging or joining multiple data 
sources into one data store. 

2. Data selection and Transformation: Medical database maintain multiples val-ues recorded at 
different format which could be inapplicable to standards of machine learning models [28]. Data 
selection entails retrieving most relevant data from the database for the analysis task. 
Transformation is done to convert data which most likely appear in different formats into 
appropriate standard for the mining process 

3. Data mining: This involves applying intelligent methods such as Support Vec-tor Machine(SVM), 
Artificial Neural Network (ANN), Nearest Neighbour (KNN)etc. to the pre-processed data to 
extract useful patterns or knowledge. 

4. Knowledge Evaluation and presentation: Knowledge evaluation involves identifying the 
interesting facet of the mined pattern and presenting the mined knowl-edge in an understandable 
and meaningful way. 

2.2.1 Data Mining Techniques for Knowledge Discovery 
         As seen in the previous section, data mining being one of steps of the KDD process has an objective to identify 
useful information from databases[2] and converting them into understandable form for further use. This task is 
divided into two major categories: 

Predictive Learning and Descriptive Learning This task involves classifying un-seen data based on model or 
knowledge from a similar dataset[44]. In Medical science, predictive learning is used to generate cost effective rules 
that could learn certain char-acteristics associated with related diseases[42][29][33][35]. However, the goal of this 
task is to investigate models that curtail the error of predictions as well as target vari-ables to be predicted [44]. 

The objective of descriptive learning is to discover hidden trends of knowledge within large datasets. This 
approach is potentially applicable to identify new patterns of knowledge relating to certain diseases. Models such as 
ICET[55] have been de-signed to generate sets of medical rules with minimal test cost and classification cost. 
Additionally, the ACT[14] is aimed at generating rules by trading computational time for lower classification cost. 
EG2, [42] is known widely for implementing an Informa-tion Cost Function (ICF) to select attributes for rule 
generation based on their cost and information gain. 

2.3 Supervised Learning Methods 
       Supervised learning is concerned with the construction of learning systems that, when previously trained, can 
assign the suitable classes among sets of possible variables [20].Supervised classification analysis have two major 
objectives: To accurately pre-dict class for new variables and to extract patterns from past trainings sessions. There 
are a number of supervised techniques, but in this section would only focus on the cost sensitive techniques. 

2.4 Decision Tree Induction: 
        Induction of decision trees generates predictive classifier based on a tree structure as shown in Figure 3. The 
tree consist of a root node, internal nodes and leaf or terminals nodes. The leaf nodes are usually given as the target 
class attribute also known as the predictive class attributes [39]. C4.5 [49] builds a decision tree using the top down 
induction of decision tree (TDIDT) approach to partition the data into smaller subsets. From the root node to every 
leaf node, there is a path which consist of different multiple internal nodes attributes which generates rules for 
classifying unknown data [62]. 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3: The Decision Tree
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            At each step of the decision tree construction, C4.5 selects the attributes with high-est information gain ratio 
and divides the training set into classes of attributes until all records associated with a node is assigned to one class. 
The Induction of tree is consid-ered to be fast in building and generating decision rules. The rules generated are easy 
to interpret, which has made it one of most the applied classifiers [13] as well as very pow-erful algorithms in 
medicine [12]. In fact, lots of the cost sensitive algorithm applied in medical science have been based on decision 
tree induction[55][14][29][33][35]. This section highlights some of cost-sensitive tree induction. 

2.4.1 EG2 
        This is TDIDT algorithm that implements a mathematical function known as Informa-tion Cost Function (ICF) 
for selection of attributes[42]. ICF selects attributes based on two factors, their information gain and attributes cost. 
This technique was achieved by manipulating the C4.5 source code and replacing the information gain ratio with 
ICF. The ICF of an x-th attribute is represented as 

2DI
x 1 

ICFx 
=

 (Cx + 1)w 

 
         In this formulae, DIx is the information gain associated with the x-th attribute at a given stage in the 
construction of the decison tree and Cx is the cost of measuring the x-th attribute. It is also assumed that 0<w<. C4.5 
selects attributes that maximises in-formation gain ratio DIx while the EG2 is a modified version that selects the 
attributes that maximises ICFx. 

The parameter w adjusts the strength of the bias towards lower cost attributes. If w = 0, cost is ignored and 
selection ICFx is equivalent to selection by DIx. However, when w = 1, ICFx is fully biased on cost. In the cost 
sensitive environment, w is set as 1, therefore eliminating w from the equation. 

2.4.2 CS-ID3 
        This is another TDIDT approach that selects attributes that maximises a cost heuristic equation. CS-ID3 
technique is implemented by modifying the C4.5 source code so that it selects attribute that maximizes the CS-ID3 
function. The cost of measuring x-th attribute is represented as 

CS ID3x = DIx2 
 

Cx 

CS-ID3 uses a lazy evaluation approach by only constructing the part of the deci-sion tree that classifies the 
current case[53][52]. 

2.4.3 IDX 
       This one of the oldest cost sensitive TDIDT technique. IDX [41] selects sets of attribute that maximizes the IDX 
heuristic function. Likewise the two previous model, the IDX was implementing by manupulating the C4.5 so that 
attributes that maximises the IDX formulae is selected. The cost of measuring x-th attribute is represented as 

IDX x = DIx 
 

C
x 

 
C4.5 applies a greedy approach at every step that chooses that attributes with the highest information gain ratio 

while IDX uses a lookahead strategy that looks n test ahead, where n is the parameter that is set by the user[41]. The 
shortcoming of these algorithms highlighted above is that they are only sensitive to the cost of test overlook-ing the 
argument of misclassification error. However, one the objectives of the research is to built an efficient algorithm that 
is sensitive to both cost of test and misclassifica-tion cost. Though, There are some tree induction techniques that 
meet these criteria and are discussed below. 

2.4.4 Inexpensive Classification with Expensive Tests (ICET) 
The ICET[55] algorithm is an amalgam of a genetic algorithm known as GENESIS [24] and a TDIDT decision tree 
algorithm. The decision tree induction applied was C4.5[49] but a modified version of an ICF. In other words, the 
tree induction used is the EG2, as described in the subsection above. 

ICET applies a two-level search approach. On the bottom level, EG2 uses the stan-dard TDIDT strategy to 
perform a greedy but cost effective search through pathways of decision tree while on the top level, GENESIS 
performs a genetic search through a space of biases. In the ICET algorithm, EG2 is applied differently. The n costs, 
Ci used in EG2 attribute selection function are considered as bias parameters, not as costs. In other words ICET 
manipulates the bias of EG2 by adjusting the cost Ci parameter. 
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Having GENESIS being initiated with a population of randomly generated individ-ual(bit strings) with measured 

fitness of each, ICET represents a bit string as a bias for EG2. When an EG2 is applied on a data using the bias of a 
given bit string, the bit string is evaluated by calculating its fitness which is the average cost of classification of the 
decision tree that is generated by EG2. This process is repeated on new individuals generated by a mutation and 
crossover scheme and after a fixed number of generations, ICET halts and its output of the decision tree is decided 
by the fittest individual. Es-meir & Markovitch [14] realised that this algorithm can use additional time resources to 
produce more generations and hence to widen its search in the space of costs. They stressed that in building trees, 
EG2 prefers attributes with high information gain (and low test cost). Therefore, when the concept to learn hides 
interdependency between attributes, the greedy measure may underestimate the usefulness of highly relevant at-
tributes, resulting in more expensive trees. Secondly, even if ICET may overcome the above problem by re-
evaluating the attributes, ACT searches the space of parameters globally, regardless of the context. This imposes a 
problem if an attribute is impor-tant in one sub-tree but useless in another. To handle these deficiencies Esmeir & 
Markovitch proposed a model known as Lookahead-by-Stochastic-ID3 (LSID3) com-bined with Anytime Cost-
sensitive Tree learner (ACT) [14]. 

2.4.5 LDID3 & ACT 
          In this particular work[14], LSID3 was developed on and ACT learner to exploit ad-ditional time to produce 
trees of lower costs. The LSID3 [15] is cost-insensitive algo-rithm, which can produce more accurate trees when 
given more time. The algorithm uses stochastic sampling techniques to evaluate candidate splits. However, it is not 
de-signed to minimize test and misclassification costs. This is when the ACT algorithm comes into play. The 
primary goal of this combined model is to trade the learning time for reduced test and misclassification costs. 

LSID3 adopts the general TDIDT scheme starting from the entire set of training examples, partitions it into 
subsets by testing the value of an attribute. Subsequently, it recursively builds sub-trees. Unlike greedy inducers, 
LSID3 invests more time re-sources for making better split decisions. For every candidate split, LSID3 attempts to 
estimate the size of the resulting sub-tree were the split to take place and by Occams ra-zor it favours the one with 
the most minimal expected size [4]. The estimation is based on a biased sample of the space of trees rooted at the 
evaluated attribute. In Stochastic EG2 (SEG2), attributes are split semi-randomly, proportionally to their ICF. Due to 
this stochastic nature we expect to be able to escape local minima for at least some of the trees in the sample. To 
obtain a sample of size S, ACT uses EG2 once and SEG2 S1 times. Contrary to ICET, EG2 and SEG2 are given 
direct access to context-based costs. In other words, if an attribute has already been tested its cost would be zero and 
if another attribute that belongs to the same group has been tested, a group discount is applied. 
   The sub-trees generated from this model is evaluated using an estimator. For a leaf with v training examples, of 
which w are misclassified the expected error is defined as the upper limit on the probability for error, i.e., EE(v; w; c 
f ) = U c f (w; u) where c f is the confidence level and U is the confidence interval for binomial distribution. The 
expected error of a tree is the sum of the expected errors in its leafs. In ACT model, the expected error is used to 
approximate the misclassification cost. Assume a problem with jCj classes and a misclassification cost matrix M. 
Let c be the class label in a leaf l. Let m be the total number of examples in l and mi be the number of examples in l 
that belong to class i. The expected misclassification cost in l is 
 

mc  cost(l) = EE(m; mmc; c f ) 
 1  

å Mc; i = EE(m; m  mc; c f )mc C 
j  

1 
j  1!=c 

         As mentioned earlier, one problem with the cost-sensitive tree algorithms discussed above is the cost of the 
root node in classification of rules. The root node happens to initiates every decision tree learning process thereby, 
the threat of incurring its cost on every instance classified is unavoidable. This problem could is eliminated by in-
tegrating a tree induction technique on the prism [10] algorithm to produce a model that eradicates the recycled cost 
of the root node. This new model is refereed to as the Cost-Sensitive Prism (CS-PRISM). 

2.5 Cost-Sensitive Analysis in Medical and Health Care 
           With developments of Information Technology, data mining techniques has proven to be successful in 
assisting Health care practitioners with decision making procedures. Extracted knowledge from a medical database 
could improve disease diagnosis, treat-ments, prognosis and the overall management of patients. As illustrated in 
earlier Sec-tions, diverse problem from different aspects of life have been addressed implementing cost-sensitive 
techniques but this subsection focuses on some various applications of these techniques in medical analysis. 

A huge percentage of the population in the United states, approximately 300,000 people suffer from epilepsy. 
The most challenging aspect of this neurological disease is the unpredictable nature of seizures. Many epileptics live 
in constant worry that a seizure could strike impromptu resulting in humiliation, social stigma, or injury. This led to 
an investigative study to develop a patient-specific classification model to cat-egorize between preictal and interictal 



 
EPRA International Journal of Multidisciplinary Research (IJMR)   |   ISSN (Online): 2455 -3662  |   SJIF Impact Factor : 3.967 

 

                     www.eprajournals.com                                                                                                                                           Volume: 3 | Issue: 10 | October 2017 
11 

features extracted from EEG dataset[40]. The classifier built was a Cost-Sensitive Support Vector Machine 
(CSVM). Support Vector Machine (SVM) was chosen to be modified because of its robustness for estimating 
predictive models from noisy, sparse and high-dimensional data. The CSVM was op-timized for each patient using 
the misclassification cost and the relative weights of in-terictal to preictal windows. Five-fold cross validation was 
performed with the training set. Each classification model is built with the learning set to minimize the following 
cost function: 

1 
kwk

2
 +C

+
   å  xi +C    å  x j 

 

2 

 i2+class j2 class 

 
Once optimized through the above process, the classifier was applied on the test set, generating (predicting) the 

label for the unknown dataset. The proposed algorithm was applied to EEG recordings of 9 patients in the Freiburg 
EEG database, totalling 45 seizures and 219-hour-long interictal, and it produced sensitivity of 77.8% (35 of 45 
seizures) and the zero false positive rate using 5-minute-long window of preictal via double-cross validation. This 
approach can help an embedded device for seizure prediction, consume less power by real-time analysis. 

The cost function above was modified applied an Computer aided detection (CAD) to aid radiologists detect 
nodule in the early stages of lung cancer diagnosis[7]. Peng et al noted that the radiologist needed a CAD system to 
eliminate or reduce the false positives while retaining high sensitivity from an unbalanced dataset. Imbalanced data 
however, initiated unequal misclassification costs, making common classification methods inappropriate. In order to 
solve this problem, a novel Cost learner (CS-SVM) was designed and Particle Swarm Optimization (PSO) is 
employed as the optimization strategy due to its fast and effective solution space exploration. This algorithm 
basically used a wrapper approach to perform the search for the potentially optimal misclassifica-tion cost, intrinsic 
parameters and feature subset of CS-SVM. When evaluated on a 3D Lung nodule dataset, the technique outperforms 
many other exiting standard methods, as well as specific imbalanced data learning methods. This indicated the 
effectiveness of the SC-SVM mdoel on imbalanced and unequal misclassification cost data. 

In an event to improve the identification of malignant cases of breast cancer Schae-fer & Nakashima [51] 
employed a cost-sensitive fuzzy classification approach for breast cancer diagnosis. In particular, the fuzzy 
classification system incorporates the concept of misclassification costs of training patterns for an improved 
classification performance. The cost term allows more emphasis on the correct classification for a certain class 
which is particularly useful for breast cancer diagnosis. The classification system consist of N fuzzy if-then rules 
each of which has a form as in Equation below 
 
Rule R j : I f x1 is A j1 and::::and xn is A jn 
 
T hen Class Cj with CFj; j = 1; 2; :::; N; 
 

Two steps are involved here specification of antecedent part and determination of consequent class Cj and the 
grade of certainty CF j. The fuzzy rule is then re-formulated as a cost minimisation function which is introduced for 
each training pattern in order to handle the cost of its misclassification. The fuzzy rule is equation is then modified 
to 

b
Class  h

(
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 å 

m 
j
(x

p
) wp 

xp2Class  h 

 
where p is the cost associated with training pattern p. When applied on the Wiscon-sin breast cancer dataset, results 
revealed good classification results, confirming that through appropriate definition of costs, improving of 
classification sensitivity is ob-tained. 
        To effectively identify the characterization of gait abnormalities in Parkinson’s Disease (PD), a cost sensitive 
SVM learner is applied to improve the classification model[54]. Data were collected from 23 subjects with a clinical 
diagnosis of PD at-tending the UCSF Parkinson’s Disease Clinic and Research Center, San Francisco. Of the 
subjects diagnosed with PD, 11 had a clinically significant disturbance of gait, and 12 had no such disturbance. Data 
was collected through wireless inertial sensors that were attached to subjects’ feet and transmitted via blue tooth. 
After preprocessing, SVM is then used for classification by optimally separating classes and maximizing the margin 
between classes therefore, minimizing the classification error. A non-linear radial basis function (RBF) kernel used 
in the SVM process to maps the data into a new space, where a k-dimensional hyperplane is used to separate the 



 
EPRA International Journal of Multidisciplinary Research (IJMR)   |   ISSN (Online): 2455 -3662  |   SJIF Impact Factor : 3.967 

 

                     www.eprajournals.com                                                                                                                                           Volume: 3 | Issue: 10 | October 2017 
12 

classes. A cost-sensitive SVM classification model is built for the binary classification task by solving the 
optimization equation 

 
1 
  

n
PD 

n
control 

min  w 
2
 +CPD å xi +CControl å  x j 

2 k w;b;x k i=1 j=1 

subject to   yi(w
T

 x + b)  1  xi; xi    0 

 
where w; b; x are optimization parameters; CPD and CControl are the costs for mis-classifying PD and control 

subjects, respectively; y 2 [1; 1]n is the vector of labels, i.e. 1 for PD and -1 for control, for nPD and ncontrol PD and 
control data points, respectively; and x is the feature value for the data point to be classified. Points are classified 
based on the sign of wT x + b, i.e. on which side of the hyperplane the data point falls on. After K-fold cross-
validation results was compared to the common SVM and results revealed the cost sensitive learner reflected a 
performance of 100% speci-ficity and precision, while maintaining sensitivity of close to 89%. 

The cost sensitive approach was focused on SVM to improve the prediction of dif-ferent surgical complications 
within the American College of Surgeons National Sur-gical Quality Improvement Program registry[11]. The 
technique is targeted improving the performance relative to both supervised (binary or 2-class SVM) and 
unsupervised (1-class SVM) methods, as well as the use of cost-sensitive weighting techniques, for cost-efficient 
predictions. Given the training set, 2-class SVM classification is applied for finding a maximum margin boundary. A 
transfer learning formulation transfers the 2-class boundary to the 1-class SVM task by an optimization problem. 
This model reg-ularizes the 1-class SVM solution towards the model parameter Formula obtained from the 2-class 
SVM classification task. When this model is evaluated on data from over 30,000 patients undergoing inpatient 
surgical procedures, the transfer SVM algorithm generally achieved better discrimination of patients at high risk of 
different morbidity outcomes than both 2-class and 1-class SVM models. In addition, this approach con-sistently 
outperformed 2-class SVM models where cost-sensitive weighting is used to overcome class imbalance, as well as 
logistic regression. 

A different approach was applied to improve classification of unbalanced medical data[59]. to overcome the 
problem of unbalanced dataset a cost-sensitive extension of the Regularized Least Square) RLS algorithm that 
penalizes errors of different samples with different weights was implemented. In the experiments, the unbalance 
levels of the data set was changed by gradually taking out samples from one class. According to the unbalance level 
of the data set, weights were chosen automatically for each class. Then the weighted RLS classifiers were adjusted 
by those weights and were compared with the original RLS classifiers and Support Vector Machine classifiers. The 
experi-mental results showed that the accuracy performance of weighted RLS after balancing was significantly 
improved. 

A cost sensitive tree induction together with Genetic programming (GP) to build decision tree to minimize not 
only the expected number of errors, but also the expected misclassification costs through a novel constraint fitness 
function[34]. In this approach, a GP-based classifier with a simple fitness function, the Rate of Correctness (RC) 
was first developed. This function is to achieve a high classification accuracy (equivalent to a low classification 
error), as much as possible. To initiated this error-based GP classifier to cost-sensitive classification, the training 
data was manipulated either the rebalancing or reweighing method. This was easily achieved by taking the weights 
of instances into the fitness function. Afterwards, a novel constrained fitness function is proposed and incorporated 
into the error-based GP-based classifier, which is able to guide GP to search for promising solutions. Ideally, the 
solutions are to trade off be-tween high cost errors and low cost errors so that the overall cost is minimised. After a 
9-fold cross validation on a heart disease dataset of 270 samples result showed that the modified GP model achieved 
a mean cost of 0.472. 

To determine the most appropriate medical test during disease diagnosis, a cost-sensitive machine learning 
algorithms is designed to learning diagnosis process of heart diseased patients[36]. Firstly, a lazy decision tree 
learning algorithm that minimizes the sum of attribute costs and misclassification costs is proposed. After which, the 
expected total misclassification cost when selecting attributes for splitting is used to produce trees with a smaller 
total cost. This step is done to produced more accurate split with total cost for test examples (new patients). A case 
studied carried out on a heart diseased dataset, revealed that the model is cost-effective and outperforms previ-ous 
methods 

A study by Krawczyk et al [30] presented a Cost-Sensitive Ensemble Classification (ECSE) model to handle to 
problem imbalance distribution of malignant and benign cases. Basically, a pool of base classifiers were selected. 
Each of them makes a deci-sion with respect to a class. The combined classifier then makes a decision according to 
a weighted voting rule. The base classifier chosen is the EG2 algorithm whose deci-sion tree is based on 
misclassification cost rate. A local sequential search at each node is performed to boost the recognition rate of the 
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minority class and assigning a greater cost to a case when a minority object is misclassified. This method was 
applied to two medical datasets, the Wisconsin dataset and breast thermogram dataset and com-pared with other 
ensemble learners. Nevertheless, this approach performed the best, and gives statistically significantly better 
sensitivity (81.02%) compared to all other tested ensembles and in terms of specificity ECSE gives statistically the 
best results. 

2.6 Rule-Based Learners 
      These are types of classification technique used to predict group membership for data instances. These are 
algorithms that are programmed to efficiently learn rules from sample training data and builds a model. The model is 
applied to new objects to clas-sify new rules. Rule-based algorithm provide mechanism that generate rule by 

1. Concentrating on a specific class at a time 

2. Maximising the probability of the desired classification 
Rule generated suggests that strong relationships exist between items and their clas-sified outcomes. However, 

Bramer (2013) illustrated that some of the generated associ-ation rules tend to have little or no significant value[5]. 
Therefore it is of added interest to provide further information to express how reliable the rules are . For example: 
IF Age > 50 AND Sex = male AND Alcohol = yes T HEN Disease = Diabetes(Probability = 0:7) 

The probability value also considered as the rule confidence level, shows how often male who are 50 years and 
above, consumes alcohol and tend to have diabetes. How-ever, if the confidence level tends to go lower, the 
generated rule would be considered unfit. There are several models FOR generating rules of relationship between 
item sets but for this research experiential, the focus is on the prism modular algorithm 

2.6.1 Prism 
    Prism [9] is a ruled based learner developed by Cendrowska. It is designed to generate rules for each class by 
looking at the training data and adding rules that completely describe all tuples in that class. Prism generate rules by 
using the IF to initiate a rule, AND to separate related item sets and T HEN which finally proposes classification 
class. An example of a prism is represented as 
IF a == 1 AND b == 2 AND c == 3 T HENClass == X 

Rules generated are considered correct or perfect. That is, the accuracy of the prism generated rules is 100%[48]. 
successes of the rule is measured by a formulae repre-sented as P=T , where P is the number of positive instance and 
T is the total number of instance covered by the rule. 

Prism takes a training set as input with each attribute and attribute value entered as a file of ordered, each set 
being terminated by a classification class. Information about the attributes and classifications are input and the 
individual rules are output for each of the classifications listed in terms of the described attributes[9]. Basically, 
prism uses the ’take the first rule that fires’ conflict resolution approach resulting to the most important rule first[5]. 
Prism generates the rules by concluding each of the possible classes in turn. Each of these rules are generated term 
by term represented as ’attribute = value’[5]. However, the attribute-value chosen at each step is that with the 
highest probability of the target outcome class, and for each new class. A training set with instances of more that one 
classification class, therefore for each class x: 

1. Calculate the probability of occurrence of class = x for each attribute-value pair 
2. select the pair with maximum probability and create a subset of the training set comprising all the instances 

which contain the selected attribute/value combination. 
3. Repeat Steps 1 and 2 for this subset until it contains only instances of class = x. The induced rule is a 

conjunction of all the attribute/value pairs selected in creating the homogeneous subset 
4. Remove all instances covered by this rule from the training set, 
5. Repeat Steps 1-4 until all instances of class = x have been removed. 

When the rules for one classification have been exhausted, the training set is re-stored to its original state and the 
algorithm process is applied again to induce set of rules covering the next classification class. The Prism pseudo-
code is represented as 
For each class C 
Initialize E to the instance set 
W hile E contains instances in class C 
Create a rule R with an empty le f t hand side that predicts class C U ntil R is per f ect (or there are no more 
attributes to use) do 
For each attribute A not mentioned in R; and each value v; Consider adding the condition A = v to the le f t hand 
side o f R Select A and v to maximize the accuracy p=t 
(break ties by choosing the condition with the largest p) 
Add A = v to R 
Remove the instances covered by R f rom E 
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For example, consider a dataset of cancer patients in Figure 4, the following steps below is be applied to generate 
induced rules 
Stage One: A class (Malignant) is chosen at random and the probability condition of attribute/value pair for the 

class is computed 
For Class = Malignant Age [young] = 1/2[0.5] 
Age [Old] = 2/4[0.5 
Blood Group [AB]= 2/3[0.6] 
Blood Group [O]= 1/3[0.3] 
Organ [Pancreas] = 3/3[1] 
 
 
 
 
 
 
 
 
 

Figure 4: Cancer Dataset 
Organ [Breast] = 0/2[0] 
 

The attribute/value pair with the highest probability function is used to generate the first rule which is 
 
IFOrgan = [Pancreas]T HENClass = Malignant 
 
Stage Two: This Introduces the AND command by selecting all pancreatic organ pa-tients and stage one is repeated 
excluding the organ attribute 
 
Age [young] = 1/1[1] 
 
Age [Old] = 2/3[0.6 
Blood Group [AB]= 2/2[1] 
 
Blood Group [O]= 1/2[0.5] 
 
In such situation either attribute/value pairs with the highest probability function is used to generate the next rule 
IF Organ = [Pancreas] AND BloodGroup = [AB] T HEN Class = Malignant 
Stage Three:The next course of action is to select all pancreatic cancer patients with blood group AB repeat the stage 
two process until all the samples of malignant class are exhausted. Afterwards, we return to the original dataset and 
redo the whole process for the next class (Benign) until the whole dataset is learned. 

This approach initiates a divide and conquer techniques that produces compact accurate rules that completely 
exterminates the redundancy of the root node, which posses a risk of increasing the average cost of classification. 
The next Section (3) would explain how the Prism modular is manipulated to generate cost-sensitive rules. 

3. METHODOLOGY 
          This section explains the details of the experimental project so far. The datasets ap-plied, preprocessing 
technique, CS-PRISM rule inducer and evaluation method would all be illustrated. At the end of this section, 
examiners should be able to interpret the experimental method and its relevance to the research objectives. 

WEKA software environment[3] and Netbeans are the platforms applied to run the experimental analysis. The 
WEKA mining environment is the podium used to test the CS-PRISM algorithm on medical dataset and Netbeans is 
used to manipulate the algo-rithm code using Java programming language. 

3.1 Datasets 
        The dataset applied for this study is different from the typical format of machine learn-ing datasets of attributes, 
attributes value and class. As illustration from the previous sections, cost sensitive learning is dependant on cost of 
test which also represent the cost values of each attributes. However, the dataset used is the Hepatitis Prognosis 
Dataset granted by Gail Gong et al[22] which has test values assigned to every at-tribute. This dataset deals with the 

Patient ID Age Blood Group Organ Class 

Patient001 Old AB Pancreas Malignant 

Patient002 Young AB Breast Benign 

Patient003 Old O pancreas Benign 

Patient004 Old O Breast Benign 

Patient005 Old O Pancreas Malignant 

Patient006 Young AB Pancreas Malignant 
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prognosis of known diagnosis with the problem of determining the outcome of the disease represented in the class 
attribute. The test value assigned a nominal cost generated by either by asking a question to the patient or by 
performing a basic physical examination on the patient. For a example, a his-tological examination of the liver costs 
$81.64, asking the patient whether a histology was performed only costs $1.00. Henceforth, the prognosis can 
exploit the information conveyed by a decision to perform a histological examination made during the diagno-sis. 

There are two class variables, to Die and to Live. The dataset originally contains 20 attributes (inclusive of the 
class attribute) and 155 cases with missing values. However, data prepossessing techniques is done to accommodate 
the CS-PRISM algorithm. The table in Figure 5 the test cost of Hepatitis patients plied in the experiment. 

3.1.1 Data Preprocessing 
          In order for the Hepatitis dataset to accommodate the CS-PRISM, various preprocess-ing tasks are applied. 
These procedures include data cleaning, data reduction to elimi-nate irrelevant instances and data transformation to 
convert instances into formats un-derstandable by the algorithm. 
Data Cleaning and Reduction 
      The is the first step applied to visually detect any discrepancy, since technical errors are inevitable with medical 
data. The algorithm happens to be sensitive to missing values making it logical to ignore such instances. Also, cases 
with incomplete and inconsis-tent values were also avoided as well as samples without class values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Hepatitis patients Test Cost 
Data Transformation 
In the Hepatitis dataset, all the attribute values are represented as numeric values, de-spite the fact that most of the 
attributes were originally in nominal format. With the sensitive nature of the proposed algorithm on numeric data, 
the data values are man-ually transformed back to nominal forms. Although, few attributes were originally numeric 
and a categorical pattern was applied to covert them to nominal standards. Some of such attributes include Age, 
Bilirubin, Albumin etc. For Age, it was easy to categorise patients between 0 40 as youth and 40 above as adult. 
With spe-cialised medical terms such as Bilirubin, Albumin etc, medical libraries [46][8] aided the grouping of the 
attributes as either normal or abnormal. For instance, Case-Lo & Krucik [8] revealed 0:4 1:9mg=dL as normal levels 
of Bilirubin in the blood and any values otherwise is represented as abnormal. A more specialised medical term 
(sgot) is left out of the experiment due to insufficient knowledge to correctly categorise its instances, hereby 
reducing the attribute to 19, including the class. 
        The entire preprocessing procedure illustrated above was done manually, thereby, 20 instances that meet the 
required criteria is selected at random to test the algorithm. Figure 5 shows a list of the attribute selected for the 
experiment and their test cost. 

Attribute(Test) Description Cost 

Age years lived $1 

Sex gender $1 

Steroid patient on steroids $1 

Antiviral patient on antiviral $1 

fatigue patient reports fatigue $1 

Malaise patient reports malaise $1 

Anorexia patient anorexic $1 

Liver big liver big on physical exam $1 

Liver firm liver firm on physical exam $1 

Spleen palpable spleen palpable on physical $1 

Spiders spider veins visible $1 

Ascites ascites visible $1 

Varices varices visible $1 

Bilirubin levels in blood $727 

Alk phosphate alkaline phosphotase $727 

Albumin albumin blood test $727 

Protime protime blood test $830 

Histology was histology performed? $1 

class prognosis of hepatitis prognostic class: live or die 
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3.1.2 Dataset Preparation 
          Data preparation methods was applied in the experiment to boost model accuracy. This entails dividing the 
datasets into two sections; One of the section is used to train the model and the other to test the model. The Hepatitis 
samples were split into two halves, training and test data by applying the percentage split option in WEKA. This is 
also known as hold out sampling. 60% of the dataset is used to build the model and 40% for testing the model. 
Although the algorithm is trained against the trained data but the accuracy is calculated on the whole data set. 

3.2 CS-PRISM 
        As mentioned before, a major purpose in this experiment is to propose a solution that enables the generation of 
cost-sensitive rules, eliminating the cost of the root node of induce tree learners. This resolution makes CS-PRISM a 
better cost efficient algorithm than the tree induced algorithms. CS-PRISM is a hybrid of the standard prisms[9] 
learner and a tree induction algorithm. The decision tree induction algorithm is the modified C4.5[49] of an 
Information Cost Function (ICF). In other words, the EG2[42]. 

As illustrated on Section 2.6.2, Prism generate compact rules based on attribute-value probability to a class, but 
with CS-PRISM, the concept of EG2 tree learner is integrated for cost sensitive rules. The cost of test (attribute) 
approach from the EG2 is used to select attributes and the prism scheme of generating rule covers the classi-fication 
error. Therefore, initiating a model sensitive to test cost as well as classifi-cation error. Information Cost Function 
(ICF) of EG2 used to select attributes based on their information gain DIx and their test cost Cx is modified to a 
Probability Cost Function (PCF). PCF eliminates the information gain DIx function and replaces it with 
attribute/value probability to class DPx, though retaining the test cost function. How-ever, the PCF for the AGE 
attribute with respect to a selected class (DIE) is defined below as: 

2DP
Age 1 

PCFAge 
=

 (CAge + 1)w 

 
        In this modified equation, DPAge is the attribute-value probability associated with the Age attribute of the given 
class DIE. CAge is the cost of measuring the Age attribute. The parameter w adjusts the strength of a lower cost 
attributes. When w is zero, cost is ignored and selection of PCFAge is equivalent to selection by DPAge . On the other 
hand, When w = 1 is hugely bias by cost. The bias nature of w is the major reason EG2 was selected for 
modification instead of other cost functions[53][41]. Nez[42] does not propose an ethical way of setting w. 
Therefore, with CS-PRISM, w is set to 1 and the selection measure applied is: 

2DP
Age 1  

CAge + 1 
 
        EG2 selects attributes that maximizes the ICF. Likewise, the CS-PRISM selects gener-ated rules from an 
attribute-value that maximizes PCF. When applied on the Hepatitis training sets, CS-PRISM applies a three-phase 
rule generating strategy 

3.2.1 Rule-Base Construction 
         In the first phase, a first line rule is generated. To achieve this, all the attribute-value probability DPx 
associated with a given class (DIE) is calculated. Using the attribute test cost, their respective Probability Cost 
Functions (PCF) is computed. The pair with the highest PCF value is then selected and used to generate the first rule 
of the class. 

In the next phase, all instances covered by the rule are separated out. Basically, a subset of the training dataset is 
generated comprising of all instances of the selected pair. Afterwards, stage one and two is repeated until the 
remaining instances are con-quered with respect to the class. CS-PRISM eliminates all the instances covered by the 
generated rule until the class (DIE) is exhausted. These mechanism are then repeated on the next class until all 
instances of the training set are covered. 

The rules generated on the training test are tested on the test dataset to boost model accuracy. Subset covered by 
a rule doesn’t need to be explored any further therefore giving no room for an additional cost. The block diagram of 
the proposed algorithm is represented in Figure below. 
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Figure 6: The Block Diagram: CS-PRISM 
 

3.3 Experimental Phase 
       This phase is divided into two stages. The first stage is the predictive analysis, which is concerned with the 
application of the algorithm on the Hepatitis dataset, classification performance of the generated rules. The tasks of 
algorithms testing and performance evaluations are illustrated at phase one. The second phase, descriptive analysis, 
is concerned with the certification of the rules generated. It also discuses techniques on how the rules are verified 
with medical ontology so as to avoid rules of bad examples. 

3.3.1 Predictive Analysis 
         The proposed cost-sensitive classifier is tested on the Hepatitis data sets from granted by Gail Gong et al[22] 
of random sampling with 60% training and 40% to test the model. A brief description about the data set tested is 
presented in Figure 5 and Sec-tion 3.1. Unfortunately, the model’s result so far is unconvincing in terms of 
percentage of correctly classified rule as well as no visual rule. This requires further modification of the CS-PRISM 
source code. 

However, in a situation where CS-PRISM is fully implemented and produces re-sults, assessment methods are 
applied to reveal how well the algorithm performed in classifying rules with respect to their actual class. However, 
there are evaluation met-rics to monitored in assessing the classified rules. 

Confusion metrics are the building blocks for computing the evaluation measures. They are tables that analysis 
how well proposed classifiers can recognise rules of differ-ent classes. They consist of four terms, True 
Positives(TP), True Negatives(TN), False Positives(FP) and False Negatives(FN). TP and TN would acknowledge 
CS-PRISM is getting rules right while FP and FN would indicate its getting rules wrong. 
 
 
 
 
 

Figure 7: Confusion Matrix structure[21] 
 

The evaluation metrics to asses the performance of the algorithm are accuracy level, sensitivity, precision, F-
measure and confusion matrix. 

The accuracy would measures the percentage of the generated rules that are cor-rectly classified as LIV E or 
DIE. This is represented as 
 

Accuracy = T P+T N 

P+N 
P = total LIV E and  
N = total DIE 
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Sensitivity: Also referred to as recall measures the ability of the algorithm to pre-dict rules of a certain class. In 

other words, Recall measures completeness of classified rules. This is represented as 
T P 

Sensitivity =  
T P + FN 

Precision This measures the fraction of the rules generated correctly classified out all correctly classified 
instances. and is also referred to as the true malignant rate or specificity. Precision is computed as  

T P 
Precision =  

T P + FP 
 

An alternative to monitor precision and recall is to combine them into a single mea-sure. This approach is the F-
measure and it measures the harmonic mean of precision and recall and is computed as 

F measure = 2  Precision  Recall 
 

Precision + Recall 
 

The nature of the experiment advocates clinical and therapeutic importance of cor-rectly classified metastasis. 
For this reason, FP and FN measures need to be critically monitored. FP indicates the rule generated are classified as 
DIE when their actual classification is LIV E. Cases like this could initiate unnecessary novel treatments. However, 
it gets worst with False Negatives (FN), which indicates rules classified as positive (LIV E) while their true 
classification is negative (DIE). Such rules could mislead doctors and medical practitioners from appropriate 
treatments that could con-sequently lead to death. 

An ideal measure for a classification model is a high F-measure of DIE class, and a recall of higher than 0.5 
(when FN is less than T P). However, for the proposed research experiment, this would be unsatisfactory since any 
number of FN measured would result to high cost of patients loosing their lives. Thus, it would be logical to give 
more weight to the cost FN errors than FP. To achieve this, heuristic search of classification parameters would be 
adjusted to seek for different weights for prediction errors to voluntarily produce unbalanced rules of minimal FN 

3.3.2 Descriptive Analysis 
         One major problem with CS-PRISM is that classified rules with high precision or other evaluation measure 
may defile medical ontology. For instance, lets Assume the medical information for 3 patients of the hepatitis 
dataset shown in Figure 8. For each patient, a decision is taken whether it is medically logical or not. 

Applying the PCF to generate a rule with respect to class DIE, The first line of rule would be 
IF Bilirubin = Normal T HEN Class = DIE 
 
  
 
 
 

Figure 8: Subset: Hepatitis dataset 
 

On the other hand, this rule contradicts the medical sense. A physician would ques-tion why patient with normal 
levels of Bilirubin in the blood still die. This could be as result of an abnormal level of Alk phosphate or any other 
factors which is not repre-sented in the rule. The easiest and fastest way to evaluate such rules is through visual 
validation by health or medical practitioner, to detect any inapplicable classified rules. 

In lack of medical practitioner, another way to verify rules of relatively high pre-cision and recall would be to 
apply text mining tools to on-line health and medical databases such Pubmed [18], EMBASE [60] etc, to affirm the 
generated rules compli-ments medical ontology. However, only known rules would be verified but unknown rules 
would be considered for more verification process. 

3.4 Optimized CS-PRISM 
         The CS-PRISM is inescapable of improvements. This subsection highlights the dif-ferent setbacks of the 
algorithm and how to contain it. One major problem with cover rule-based classifiers as well as CS-PRISM are the 
stopping criterion measure. This is expected to repulse the algorithm from generating bad rules. If the stopping 
criterion is not met, generated rules might cover negative examples from other classes. In other words, iteratively 
adding unnecessary conditions to the rules. This condition is met by finding the best condition with comparing 
candidate conditions for each attribute and evaluating them with respect to a chosen measure[37]. 

Bilirubin Alk phosphate Class 

Normal abnormal DIE 

Normal Normal DIE 

Abnormal Abnormal LIVE 
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CS-PRISM does not have natural ability to avoid over-fitting. Nevertheless to im-prove computational efficiency 

of the rules generated, pruning methods are applied to eliminate whole rules or single rule terms from a CS-PRISM 
rule set. Bramer’s [?] introduces a J-pruning measure which has the ability to assess the information content of rule, 
in order to ignore rules with very low information content. This approach im-proves the algorithm by initiating the 
criteria that stops generating needless rules of very low support. Another optimization of the model is to 
accommodate datasets of missing and numeric values. Data transformation from numeric to nominal forms is 
impossible or tedious to accomplish due to the large nature of datasets. However, it would be worthwhile to 
medicine and data miners to improve the CS-PRISM model to incorporate numeric instances as well as missing and 
noisy values. These instances are inevitable in large datasets and may posses some hidden knowledge. To fully 
explore learning intelligence, CS-PRISM would be upgraded to accommodate these highlighted optimizations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Project Flow Chart 
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4. CONCLUSION AND FUTURE WORKS 
          Classification of generated rules from medical datasets is an important research prob-lem. However, 
generating a cost-sensitive rule is a more critical issue that could help in cost-efficient aided diagnosis and treatment. 
Although, previous research based on decision tree induction have been carried out to classify cost sensitive rules 
but the cost of the root node seems to be the loophole with these algorithms. In this research, the CS-PRISM is 
proposed for generating classification rules from the data set without the redundancy cost of the root node. 

Subsequently, modifications to the CS-PRISM source code would be continued to yield convincing results. This 
would entail, correctly assigning the test costs values to their appropriate attributes. Thereafter, other real medical 
datasets would be ex-plored to evaluate CS-PRISM performance. A period of one month should be viable for this 
task. After which, the issue of stopping criteria would be addressed to pre-vent rules of bad examples. This is 
achieved by implementing an argument technique initiated by [37]. This procedure finds the best condition of a rule 
by comparing can-didate conditions for each attribute and assuring the coherence with arguments and also, 
evaluating them with respect to a chosen measure. This practice should feasible in couple of months to implement. 
In events of over-fitting, pruning approaches to measure information contents of generated rules would be explored 
to eliminate rule with minimal support. The CS-PRISM would be considered incompetent if it does not 
accommodate numeric and missing data instances. The model is then compared with other cost-sensitive algorithms 
such as ICET[55] and other standard rules-based clas-sifiers in terms of classification accuracy. Finally, the 
classified rules are verified on medical ontology database[18]etc. to asses the relevance of the classified rules. The 
work-flow plan is represented in Figure 9. 
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