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ABSTARCT 

Quasi-stationary electronic states in a spherically symmetric semiconductor potential well are determined in the semiclassical approximation 

based on the calculation of matrix elements of the transfer matrix. In this case, three regions of the potential well were taken into account, 

which differ from each other in geometric dimensions. The calculation was carried out by solving the Schrödenger equation in a spherical 

coordinate system. 
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INTRODUCTION 
The progress of modern microelectronics is largely determined by the study of the properties of systems with nonuniformly 

distributed parameters, the development of methods for the effective theoretical analysis of such systems, the development and 

provision of objective methods for controlling technological processes that allow creating semiconductor layers with desired 

properties [1–4]. 

The study of the electronic properties of both symmetric and asymmetric with respect to the geometric dimensions of the layers of 

a semiconductor structure is relevant in connection with the use of these structures in micro- or nanoelectronics and in other areas 

of solid state physics [1–6]. In works [7–17] were calculated the dynamic conductivity σ(ω) or the density of current j(ω) of the 

response of the system to an external action in a semiconductor multilayer structure. The theory was created in different models 

using different mathematical methods for solving the complete Schrödinger equation for a system of electrons interacting with an 

electromagnetic field in a structure with a  − shaped potential barrier. In the above-mentioned works, the problem was solved 

without taking into account the Bastard condition [5], i.e., the difference between the effective masses of current carriers in 

neighboring layers of the structure is not taken into account. Also, they did not study quasi-stationary electronic states in a spherically 

symmetric well in the semiclassical approximation. This work is devoted to this case. 
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where 
2 2 2r x y z= + +  is the radial coordinate variable, R-  is the quantum dot radius. We shall consider only spherically 

symmetric solutions and calculate the spectrum of states of a particle in a three-dimensional barrier ( )NU r . Then the solution of 

the stationary Schrödinger equation with a spherically symmetric potential 
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where ( ),LMY    are spherical functions [18], L- is the orbital angular momentum, M   is the projection of the angular momentum 

onto the z axis. The radial function ( )N r is a solution to the Schrödinger equation with effective potential 

 

( )
( )( )

( )
( )2

2

22

12
0

N N
N

d r
U r

L Lm
E

d
r

r r




+ 
+ − − = 
 

.    (4) 

Then, after notations ,A Ak r =   B Bk r = ,  
2

2
,A

A

m
k E=  where ( )2

2 B
B

m
k U E= − we modify 

(4) as 

( ) ( )
( )

2

12 2

1
1 0, 0

A

A

A A

L L
at r r

 
 

 

 + 
+ − =   

  
   (5) 

( ) ( )
( )

2

12 2

1
1 0,

B

B

B B

L L
at r r

 
 

 

 + 
+ − =  

  
 (6) 

 

If the solutions of equations (5) and (6) are represented as ( ) ( )1/2x x F x =  , then ( )AF  and ( )BF  are the solution of the 

following Bessel equations 
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Under condition ( ), 0 0A BF  → → , solution (7) is a Bessel function with a half-integer index, i.e. : 

( ) ( )1/2A A l AF С J +=  . When the function ( )BF  is bounded at B → , solution (8) is the MacDonald function [19] with 

a half-integer index, i.e., : ( ) ( )1/2B B l BF С K +=   

Thus, the radial part ( )
1

( )N N rf
r

r = of the wave function (2) is represented in the form 
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To simplify the solution of this problem, we further assume that 0L= , i.e., consider s-states. Then we rewrite (4) as 
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whose solution we represent in the form 
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where 1N = corresponds to region 1r r , 2N = corresponds to region 1 2r r r  , 3N = corresponds to region 2r r 1r r

, ( )2

2
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m
k UE= − , Nm - is the effective mass of current carriers in the region (if these regions are the same in terms of 

physical and chemical properties, then the effective masses will take the same values). The unknown quantities NA and NB , as 

usual, are determined from the Bastard condition [5] at the points 1r r=  and 2r r= . 

Note that the difference between the solution of the Schrödenger equation in the Cartesian and spherical coordinate 

systems is that the existence of an additional boundary at 0r =  must be replaced by the condition ( )0 0N r = = . As indicated 

in [20], to determine the energy spectrum of localized states, we will use the criterion for the existence of such states, which is 

determined by the equality of the diagonal matrix element of the transfer matrix to zero (see, for example, [20]). In this case, we 

take into account that the localized state of the particle in the potential well corresponds to such a distribution of the wave function, 

in which the solutions of the Schrödinger equation for this case are increasing. Therefore, in solutions (for a certain case) it is 

necessary to exclude terms of the form Nik r

NB e . Then the criterion for the existence of localized states is determined by the relation 

1 3

1 0
ˆ

A
T

A

A

−   
=   

  
,                                    (14) 

where the matrix elements of matrix T̂ are defined as 
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N N Nk k m=  1,2,3,...N = , the sign * means complex conjugation. 

Following [20], in cases 1 3U U=  and 2E U , we have expressions for matrix elements, i.e., for sub-barrier ( )
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be noted that during the transition from one region to another, a phase shift must occur in electron waves, associated with a mismatch 

in the phases of the waves propagating in different, but in neighboring, regions. To simplify further calculations, we assume that 

1 3k k k= = , 2k i=  . Then the matrix elements of the transfer matrix for this case can be written as 
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Having carried out the appropriate transformations, we obtain the condition for the existence of localized states as 
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From the last relation at 1d  it is easy to obtain the energy spectrum of stationary states in a spherical potential well 

with finite height as 

0
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where ( )0 0k  is the wave vector of electrons corresponding to their sub-barrier (above-barrier) passage through the potential 

barrier. 

 

CONCLUSION 
Taking into account the Bastard condition [5], from (10) it is easy to obtain the following equations 
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откуда немедленно получаем соотношение для энергетического спектра  

whence we immediately obtain the relation for the energy spectrum of electrons in a spherical quantum dot: 
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Корни En,l уравнения (22) при заданном l можно пронумеровать числом n = 0 ,1 ,2 ,... , равным числу узлов 

радиальной функции ( )Nf r .Число l определяет поведение радиальной функции вблизи начала координат:  

The roots En,l  of equation (22) for a given l can be numbered by the number n = 0,1,2,... , equal to the number of nodes of 

the radial function ( )Nf r . The number l determines the behavior of the radial function near the origin: 
( )( ) ( ) ll

N Nf r rf r=  . 

In conclusion, we only note that as the radius of a size-quantized filament with a finite potential barrier height 0U

increases, the number of size-quantized levels in it increases. However, it should be noted that the level with the minimum energy 

corresponding to n=0, l=0, does not disappear even in the limit c 0r → . Then for 1x using the following relations of the Bessel 
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and MacDonald functions ( )0 1,J x  ( )0 0.116 lnK x x − ,  
( )0
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J x
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 [21] it is easy to obtain an 

expression for the minimum value of the energy spectrum of a semiconductors filament with a finite potential barrier height 0U  
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It can be seen from the latter, that in the semiconductor filament, where condition 1 1, 1A Bk r k r   is satisfied, there is at 

least one size-quantized level, the value of which is exponentially small relative to the height of the potential barrier. 
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