

$(1, 2)^*$ -GENERALIZED η -CLOSED SETS IN BITOPOLOGICAL SPACES

Hamant Kumar

Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

ABSTRACT

In this paper, we introduce $(1, 2)^*$ -generalized η -closed sets and obtain the relationships among some existing closed sets like $(1, 2)^*$ -semi- closed, $(1, 2)^*$ - α - closed and $(1, 2)^*$ - η - closed sets and their generalizations. Also we study some basic properties of $(1, 2)^*$ - $g\eta$ -open sets. Further, we introduce $(1, 2)^*$ - $g\eta$ -neighbourhood and discuss some properties of $(1, 2)^*$ - $g\eta$ -neighbourhood.

1. Introduction

The study of bitopological spaces was first intiated by Kelly [4] in the year 1963. By using the topological notions, namely, semi-open, α -open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2008, Ravi et al. [6] studied the notion of $(1, 2)^*$ -sets in bitopological spaces. In 2004, Ravi and Thivagar [5] studied the concept of stronger from of $(1, 2)^*$ -quatient mapping in bitopological spaces and introduced the concepts of $(1, 2)^*$ -semi-open and $(1, 2)^*$ - α -open sets in bitopological spaces. Recently H. Kumar [3] introduced the concept of $(1, 2)^*$ - η -open sets and discuss their properties.

2. Preliminaries

Throughout the paper (X, \mathfrak{I}_1 , \mathfrak{I}_2), (Y, σ_1 , σ_2) and (Z, \mathfrak{O}_1 , \mathfrak{O}_2) (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1. Let S be a subset of X. Then S is said to be $\mathfrak{T}_{1,2}$ -open [5] if $S = A \cup B$ where $A \in \mathfrak{T}_1$ and $B \in \mathfrak{T}_2$. The complement of a $\mathfrak{T}_{1,2}$ -open set is $\mathfrak{T}_{1,2}$ -closed.

Definition 2.2 [5]. Let S be a subset of X. Then

(i) the $\mathfrak{T}_{1,2}$ -closure of S, denoted by $\mathfrak{T}_{1,2}$ -cl(S), is defined as $\cap \{F : S \subset F \text{ and } F \text{ is } \mathfrak{T}_{1,2}$ -closed}; (ii) the $\mathfrak{T}_{1,2}$ -interior of S, denoted by $\mathfrak{T}_{1,2}$ -int(S), is defined as $\cup \{F : F \subset S \text{ and } F \text{ is } \mathfrak{T}_{1,2}$ -open}.

Note 2.3 [5]. Notice that $\mathfrak{I}_{1,2}$ -open sets need not necessarily form a topology.

Remark 2.4. [6]

(i) $\mathfrak{T}_{1,2}$ -int(S) is $\mathfrak{T}_{1,2}$ -open for each $S \subset X$ and $\mathfrak{T}_{1,2}$ -cl(S) is $\mathfrak{T}_{1,2}$ -closed for each $S \subset X$. (ii) A subset $S \subset X$ is $\mathfrak{T}_{1,2}$ -open iff $S = \mathfrak{T}_{1,2}$ -int(S) and $\mathfrak{T}_{1,2}$ -closed iff $S = \mathfrak{T}_{1,2}$ -cl(S). (iii) $\mathfrak{T}_{1,2}$ -int(S) = \mathfrak{T}_1 -int(S) $\cup \mathfrak{T}_2$ -int(S) and $\mathfrak{T}_{1,2}$ -cl(S) = \mathfrak{T}_1 -cl(S) $\cup \mathfrak{T}_2$ -cl(S) for any $S \subset X$. (iv) for any family { $S_i / i \in I$ } of subsets of X, we have

$$\begin{split} &(1) \cup_{i} \mathfrak{J}_{1,2}\text{-}\text{int}(S_{i}) \subset \mathfrak{J}_{1,2}\text{-}\text{int}(\cup_{i} S_{i}). \\ &(2) \cup_{i} \mathfrak{J}_{1,2}\text{-}\text{cl}(S_{i}) \subset \mathfrak{J}_{1,2}\text{-}\text{cl}(\cup_{i} S_{i}). \\ &(3) \mathfrak{J}_{1,2}\text{-}\text{int}(\cup_{i} S_{i}) \subset \cup_{i} S_{i} \mathfrak{J}_{1,2}\text{-}\text{int}(S_{i}). \\ &(4) \mathfrak{J}_{1,2}\text{-}\text{cl}(\cup_{i} S_{i}) \subset \cup_{i} \mathfrak{J}_{1,2}\text{-}\text{cl}(S_{i}). \end{split}$$

Definition 2.5. A subset A of a bitopological space (X, \mathfrak{I}_1 , \mathfrak{I}_2) is called (i) (1, 2)^{*}-semi-open [5] if $A = \mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int(A)), (ii) (1, 2)^{*}- α -open [5] if $A \subset \mathfrak{I}_{1,2}$ -int ($\mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int(A))). (iii) (1, 2)^{*- η}-open [5] if $A \subset \mathfrak{I}_{1,2}$ -int($\mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int)(A)) $\cup \mathfrak{I}_{1,2}$ -cl($\mathfrak{I}_{1,2}$ -int)(A)).

The complement of a $(1, 2)^*$ -semi-open (resp. $(1, 2)^*$ - α -open, $(1, 2)^*$ - η -open) set is called (1, 2)*-semi-closed (resp. (1, 2)*- α -closed, (1, 2)*- η -closed).

The $(1, 2)^*$ -semi-closure (resp. $(1, 2)^*$ - α -closure, $(1, 2)^*$ - η -closure) of a subset A of X is denoted by $(1, 2)^*$ -scl(A) (resp. $(1, 2)^*$ - α -cl(A), $(1, 2)^*$ - η -cl(A)), defined as the intersection of all $(1, 2)^*$ -semi-closed. (resp. $(1, 2)^*$ - α -closed, $(1, 2)^*$ - η -closed) sets containing A.

The family of all $(1, 2)^*$ -semi-open (resp. $(1, 2)^*$ - α -open, $(1, 2)^*$ - η -open, $(1, 2)^*$ -semi-closed, $(1, 2)^*$ - α -closed, $(1, 2)^*$ - η -closed) sets in X is denoted by $(1, 2)^*$ -SO(X) (resp. $(1, 2)^*$ - α O(X), $(1, 2)^*$ - η O(X), $(1, 2)^*$ -SC(X), $(1, 2)^*$ - α C(X), $(1, 2)^*$ - η C(X).

Remark 2.6. It is evident that any $\mathfrak{T}_{1,2}$ -open set of X is an $(1, 2)^*$ - α -open and each $(1, 2)^*$ - α -open set of X is $(1, 2)^*$ -semi-open but the converses are not true.

Remark 2.7. We have the following implications for the properties of subsets [3]:

 $\mathfrak{I}_{1,2}$ -open \Rightarrow $(1,2)^*$ - α -open \Rightarrow $(1,2)^*$ -semi-open \Rightarrow $(1,2)^*$ - η -open

Where none of the implications is reversible.

3. (1, 2)*-generalized η -closed Sets in Bitopological Spaces

Definition 3.1. A subset A of a bitopological space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is called

(i) $(1, 2)^*$ - generalized closed (briefly $(1, 2)^*$ -g-closed) [8] if $\mathfrak{T}_{1,2}$ -cl(A) \subset U whenever A \subset U and U is $\mathfrak{T}_{1,2}$ - open in X.

(ii) $(1, 2)^*$ -weakly closed (briefly $(1, 2)^*$ -w-closed) [**2**] if $\mathfrak{T}_{1,2}$ -cl(A) \subset U whenever A \subset U and U is $(1, 2)^*$ -semiopen in X.

(iii) $(1, 2)^*$ - α -generalized closed (briefly $(1, 2)^*$ - α g-closed) [8] if $(1, 2)^*$ - α -cl(A) \subset U whenever A \subset U and U is $\mathfrak{I}_{1,2}$ -open in X.

(iv) $(1, 2)^*$ -generalized semi-closed (briefly $(1, 2)^*$ -gs-closed) [8] if $(1, 2)^*$ -s-cl(A) \subset U whenever A \subset U and U is $\mathfrak{T}_{1,2}$ -open in X.

(v) $(1, 2)^*$ -generalized η -closed (briefly $(1, 2)^*$ -g η -closed) if $(1, 2)^*$ - η -cl(A) \subset U whenever A \subset U and U is $\mathfrak{T}_{1,2}$ -open in X.

320

The complement of a $(1, 2)^*$ -g-closed (resp. $(1, 2)^*$ -w-closed, $(1, 2)^*$ -ag-closed, $(1, 2)^*$ -gs-closed, $(1, 2)^*$ -gq-closed) set is called $(1, 2)^*$ -g-open (resp. $(1, 2)^*$ -w-open, $(1, 2)^*$ -ag-open, $(1, 2)^*$ -gs-open, $(1, 2)^*$ -gq-open). We denote the set of all $(1, 2)^*$ -gq-closed sets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ by $(1, 2)^*$ -gq-C(X).

Theorem 3.2. Every $\mathfrak{T}_{1,2}$ -closed set is $\mathfrak{g}\eta$ -closed.

Proof. Let A be any $\mathfrak{T}_{1,2}$ -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ and $A \subset U$, where U is $\mathfrak{T}_{1,2}$ -open. So $(1, 2)^*$ -cl(A) = A. Since every $\mathfrak{T}_{1,2}$ -closed set is $(1, 2)^*$ - η -closed, so $(1, 2)^*$ - η -cl $(A) \subset (1, 2)^*$ -cl(A) = A. Therefore, $(1, 2)^*$ - η -cl $(A) \subset A \subset U$. Hence A is $(1, 2)^*$ - η -closed set.

Theorem 3.3. Every $(1, 2)^*$ - α -closed set is $(1, 2)^*$ -g η -closed.

Proof. Let A be any $(1, 2)^*$ - α -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ and $A \subset U$, where U is $\mathfrak{T}_{1,2}$ -open. Since every $(1, 2)^*$ - α -closed set is $(1, 2)^*$ - η -closed, so $(1, 2)^*$ - η -cl $(A) \subset (1, 2)^*$ - α -cl(A) = A. Therefore $(1, 2)^*$ - η -cl $(A) \subset A \subset U$. Hence A is $(1, 2)^*$ - η -closed set.

Theorem 3.4. Every $(1, 2)^*$ -semi-closed set is $(1, 2)^*$ -gη-closed.

Proof. Let A be any $(1, 2)^*$ -semi-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ and $A \subset U$, where U is $\mathfrak{I}_{1,2}$ -open. Since every $(1, 2)^*$ -semi-closed set is $(1, 2)^*$ - η -closed, so $(1, 2)^*$ - η -cl $(A) \subset (1, 2)^*$ -s-cl(A) = A. Therefore $(1, 2)^*$ - η -cl $(A) \subset A \subset U$. Hence A is $(1, 2)^*$ -g\eta-closed set.

Theorem 3.5. Every $(1, 2)^*$ - η -closed set is $(1, 2)^*$ - $g\eta$ -closed. **Proof**. Let A be any $(1, 2)^*$ - η -closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ and $A \subset U$, where U is $\mathfrak{T}_{1,2}$ -open. Since A is $(1, 2)^*$ - η -closed. Therefore $(1, 2)^*$ - η -cl(A) = A \subset U. Hence A is $(1, 2)^*$ - $g\eta$ -closed set.

Theorem 3.6. Every $(1, 2)^*$ -g-closed set is $(1, 2)^*$ -g η -closed. **Proof.** Let A be any $(1, 2)^*$ -g-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ then $(1, 2)^*$ -cl(A) \subset U whenever A \subset U, where U is $\mathfrak{I}_{1,2}$ -open. So $(1, 2)^*$ - η -cl(A) \subset $(1, 2)^*$ -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -g η -closed set.

Theorem 3.7. Every $(1, 2)^*$ -w-closed set is $(1, 2)^*$ -gη-closed.

Proof. Let A be any $(1, 2)^*$ -w-closed set in $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ then $(1, 2)^*$ -cl(A) \subset U whenever A \subset U, where U is $\mathfrak{T}_{1,2}$ -open, since every $\mathfrak{T}_{1,2}$ -open set is $(1, 2)^*$ -semi-open. So $(1, 2)^*$ - η -cl(A) \subset $(1, 2)^*$ -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ - η -closed set.

Theorem 3.8. Every $(1, 2)^*$ - α g-closed set is $(1, 2)^*$ - β g-closed.

Proof. Let A be any $(1, 2)^*$ - α g-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ then $(1, 2)^*$ - α -cl(A) \subset U whenever A \subset U, where U is $\mathfrak{I}_{1,2}$ -open. Given that A is $(1, 2)^*$ - α g-closed set such that $(1, 2)^*$ - α -cl(A) \subset U. But we have $(1, 2)^*$ - η -cl(A) \subset (1, 2)*- α -cl(A) \subset U. Therefore $(1, 2)^*$ - η -cl(A) \subset U. Hence A is $(1, 2)^*$ -g\eta-closed set.

Theorem 3.9. Every $(1, 2)^*$ -gs-closed set is $(1, 2)^*$ -gη-closed.

Proof. Let A be any $(1, 2)^*$ -gs-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ then $(1, 2)^*$ -s-cl $(A) \subset U$ whenever $A \subset U$, where U is $\mathfrak{I}_{1,2}$ -open. Given that A is $(1, 2)^*$ -gs-closed set such that $(1, 2)^*$ -s-cl $(A) \subset U$. But we have $(1, 2)^*$ - η -cl $(A) \subset (1, 2)^*$ -s-cl $(A) \subset U$. Therefore $(1, 2)^*$ - η -cl $(A) \subset U$. Hence A is $(1, 2)^*$ -g\eta-closed set.

Remark 3.10. We have the following implications for the properties of subsets:

Where none of the implications is reversible as can be seen from the following examples:

Example 3.11. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c\}, \{a, c, d\}\}$. Then

- (i) $\Im_{1,2}$ -closed sets : ϕ , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (ii) $(1, 2)^*$ - α -closed sets : ϕ , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (iii) $(1, 2)^*$ -semi-closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (iv) $(1, 2)^*$ - η -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (v) $(1, 2)^*$ -g-closed sets : ϕ , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- $(vi) (1, 2)^*$ -w-closed sets : ϕ , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (vii) $(1, 2)^*$ - α g-closed sets : ϕ , X, {a}, {b}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (ix) $(1, 2)^*$ -g η -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.

Example 3.12. Let $X = \{a, b, c\}$ with $\Im_1 = \{\phi, X, \{b\}\}$ and $\Im_2 = \{\phi, X, \{c\}\}$. Then

- (i) $\Im_{1,2}$ -closed sets : ϕ , X, {a}, {a, b}, {a, c}.
- (ii) $(1, 2)^*$ - α -closed sets : ϕ , X, {a}, {a, b}, {a, c}.
- (iii) $(1, 2)^*$ -semi-closed sets : ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}.
- (iv) $(1, 2)^*$ - η -closed sets : ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}.
- (v) $(1, 2)^*$ -g-closed sets : ϕ , X, {a}, {a, b}, {a, c}.
- (vi) $(1, 2)^*$ -w-closed sets : ϕ , X, {a}, {a, b}, {a, c}.
- (vii) $(1, 2)^*$ - α g-closed sets : ϕ , X, {a}, {a, b}, {a, c}.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}.
- (ix) $(1, 2)^*$ -g η -closed sets : ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}.

Example 3.13. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Then

- (i) $\Im_{1,2}$ -closed sets : ϕ , X, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (ii) $(1, 2)^*$ - α -closed sets : ϕ , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (iii) $(1, 2)^*$ -semi-closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
- (iv) $(1, 2)^* \eta$ -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
- (v) $(1, 2)^*$ -g-closed sets : ϕ , X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (vi) $(1, 2)^*$ -w-closed sets : ϕ , X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (vii) $(1, 2)^*$ - α g-closed sets : ϕ , X, {c}, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.
- (ix) $(1, 2)^*$ -g η -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}.

Example 3.14. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{a, b, d\}\}$. Then

- (i) $\Im_{1,2}$ -closed sets : ϕ , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (ii) $(1, 2)^*$ - α -closed sets : ϕ , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (iii) $(1, 2)^*$ -semi-closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
- (iv) $(1, 2)^*$ - η -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
- (v) $(1, 2)^*$ -g-closed sets : ϕ , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (vi) $(1, 2)^*$ -w-closed sets : ϕ , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (vii) $(1, 2)^*$ - α g-closed sets : ϕ , X, {c}, {d}, {c, d}, {a, c, d}, {b, c, d}.
- (viii) $(1, 2)^*$ -gs-closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.
- (ix) $(1, 2)^*$ -g η -closed sets : ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, c, d}, {b, c, d}.

4. Some Properties of $(1, 2)^*$ -generalized η -closed Sets

Theorem 4.1. The union of any two $(1, 2)^*$ -g η -closed subsets of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is need not be $(1, 2)^*$ -g η -closed subset of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ as per the following example.

Example 4.2. Let $X = \{a, b, c, d\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{b\}, \{a, b, c\}\}$. Here $A = \{a\}$ and $B = \{b\}$ are $(1, 2)^*$ -g η -closed subsets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. Then $A \cup B = \{a, b\}$ is not $(1, 2)^*$ -g η -closed subsets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. \mathfrak{I}_2 .

Remark 4.3. The intersection of two $(1, 2)^*$ -g η -closed-sets in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is also a $(1, 2)^*$ -g η -closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Proof. Easy to verify.

Theorem 4.4. If a subset A is $(1, 2)^*$ -g η -closed of X, then $(1, 2)^*$ - η -cl(A) – A does not contain any non-empty $\Im_{1,2}$ -closed set.

Proof. Let F be a $\mathfrak{T}_{1,2}$ -closed subset of $(1, 2)^* - \eta$ -cl(A) – A. Then $F \subset (1, 2)^* - \eta$ -cl(A) and $F \cap S = \phi$. Therefore X - F is $\mathfrak{T}_{1,2}$ -open and hence X - F is $\mathfrak{T}_{1,2}$ -open. Since $F \cap A = \phi$, $A \subset X - F$. But A is $(1, 2)^* - \eta$ -closed, then $(1, 2)^* - \eta$ -cl(A) $\subset X - F$ and consequently $F \subset X - (1, 2)^* - \eta$ -cl(A). Therefore $F \subset ((1, 2)^* - \eta$ -cl(A)) $\cap (X - (1, 2)^* - \eta$ -cl(A)) and hence F is empty.

Remark 4.5. The converse of **Theorem 4.4** is not true as per the following example.

Example 4.6. Let $X = \{a, b, c, d, e\}$ with $\mathfrak{I}_1 = \{\phi, X, \{a, b\}, \{a, b, c, d\}\}$ and $\mathfrak{I}_2 = \{\phi, X, \{c, d\}, \{a, b, c, d\}\}$. If we consider $A = \{a, c\}$, then $(1, 2)^* -\eta$ -cl(A) – A = X – $\{a, c\} = \{b, c\}$ does not contain any non-empty $\mathfrak{I}_{1,2}$ -closed set. However A is not $(1, 2)^* -\eta$ -closed.

Theorem 4.7. Let A be a $(1, 2)^*$ -g η -closed subset of X. If $A \subset B \subset (1, 2)^*$ - η -cl(A), then B is also $(1, 2)^*$ -g η -closed in X.

Proof. Let $U \in (1, 2)^*$ -g $\eta O(X)$ with $B \subset U$. Then $A \subset U$. Since A is $(1, 2)^*$ -g η -closed, $(1, 2)^*$ - η -cl $(A) \subset U$. Also, since $B \subset (1, 2)^*$ - η -cl(A), $(1, 2)^*$ - η -cl $(B) \subset (1, 2)^*$ - η -cl $(A) \subset U$. Hence B is also $(1, 2)^*$ -g η -closed subset of X.

Theorem 4.8. For an element $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$, the set $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$ is $(1, 2)^*$ -gn-closed or $\mathfrak{I}_{1,2}$ -open. **Proof.** Suppose $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$ is not $\mathfrak{I}_{1,2}$ -open set. Then $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is the only $\mathfrak{I}_{1,2}$ -open set containing $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$. This implies $(1, 2)^*$ - \mathfrak{n} -cl $((X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}) \subset (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Hence $(X, \mathfrak{I}_1, \mathfrak{I}_2) - \{x\}$ is $(1, 2)^*$ -gn-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Theorem 4.9. If A is an open and S is $(1, 2)^*$ - η -open in bitopological space (X, $\mathfrak{I}_1, \mathfrak{I}_2$), then A \cap S is $(1, 2)^*$ - η -open in (X, $\mathfrak{I}_1, \mathfrak{I}_2$).

Theorem 4.10. If A is both open and $(1, 2)^*$ -g-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, then it is $(1, 2)^*$ -g η -closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Proof. Let A be an open and $(1, 2)^*$ -g-closed set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. Let $A \subset U$ and let U be a $\mathfrak{I}_{1,2}$ -open set in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. Now $A \subset A$. By hypothesis $(1, 2)^*$ - η -cl $(A) \subset A$. That is $(1, 2)^*$ - η -cl $(A) \subset U$. Thus A is $(1, 2)^*$ -g\eta-closed in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

5. $(1, 2)^*$ -g η -open sets and $(1, 2)^*$ -g η -neighborhood

In this section, we study $(1, 2)^*$ -g η -open sets in bitopological spaces and obtain some of their properties. Also, we introduce $(1, 2)^*$ -g η -neighborhood (shortly $(1, 2)^*$ -g η -nbhd in bitopological spaces by using the notion of $(1, 2)^*$ -g η -open sets. We prove that every nbhd of x in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is $(1, 2)^*$ -g η -nbhd of x but not conversely.

Definition 5.1. A subset A in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is called $(1, 2)^*$ -generalized η -open (briefly, $(1, 2)^*$ -g η -open) in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ if A^c is $(1, 2)^*$ -g η -closed in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. We denote the family of all $(1, 2)^*$ -g η -open sets in X by $(1, 2)^*$ -g η O(X).

Definition 5.2. Let $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ be a bitopological space and let $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. A subset N of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is said to be a $(1, 2)^*$ -gn-nbhd of x iff there exists a $(1, 2)^*$ -gn-open set G such that $x \in G \subset N$.

Definition 5.3. A subset N of a bitopological space (X, \mathfrak{I}_1 , \mathfrak{I}_2), is called a (**1**, **2**)^{*}-**g** η -**nbhd** of A \subset (X, \mathfrak{I}_1 , \mathfrak{I}_2) iff there exists a (1, 2)*-g η -open set G such that A \subset G \subset N.

Remark 5.4. The $(1, 2)^*$ - η -nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ need not be a $(1, 2)^*$ - η -open in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Example 5.5. Let $X = \{a, b, c, d, e\}$ and $\mathfrak{I}_1 = \{\phi, \{a, b\}, \{a, b, c, d\}, X\}$ and $\mathfrak{I}_2 = \{\phi, \{c, d\}, \{a, c, d\}, X\}$. Then $(1, 2)^*$ -g $\eta O(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, e\}, \{a, c, d\}, \{b, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}$. Note that $\{a, e\}$ is not a $(1, 2)^*$ -g η -open set, but it is a $(1, 2)^*$ - η -nbhd of a, since $\{a\}$ is a $(1, 2)^*$ -g η -open set such that $a \in \{a\} \subset \{a, e\}$.

Theorem 5.6. Every nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ is a $(1, 2)^*$ -g η -nbhd of $(X, \mathfrak{I}_1, \mathfrak{I}_2)$.

Proof. Let N be a nbhd of point $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. To prove that N is a $(1, 2)^*$ -g η -nbhd of x. By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1, 2)^*$ -g η -open set G such that $x \in G \subset N$. Hence N is $(1, 2)^*$ -g η -nbhd of x.

Remark 5.7. In general, a $(1, 2)^*$ -g η -nbhd N of $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$ need not be a nbhd of x in $(X, \mathfrak{I}_1, \mathfrak{I}_2)$, as seen from the following example.

Example 5.8. Let $X = \{a, b, c, d\}$ with topology $\mathfrak{I}_1 = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$ and $\mathfrak{I}_2 = \{\phi, \{a, b, d\}, X\}$ Then $(1, 2)^* - \mathfrak{g}\eta O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. The set $\{b, c\}$ is $(1, 2)^* - \mathfrak{g}\eta$ -nbhd of the point b, there exists an $(1, 2)^* - \mathfrak{g}\eta$ -open set $\{b\}$ is such that $b \in \{b\} \subset \{b, c\}$. However, the set $\{b, c\}$ is not a nbhd of the point b, since no open set G exists such that $b \in G \subset \{a, c\}$.

Theorem 5.9. If a subset N of a space $(X, \mathfrak{T}_1, \mathfrak{T}_2)$ is $(1, 2)^*$ -g η -open, then N is a $(1, 2)^*$ -g η -nbhd of each of its points.

Proof. Suppose N is $(1, 2)^*$ -g η -open. Let $x \in N$. We claim that N is $(1, 2)^*$ -g η -nbhd of x. For N is a $(1, 2)^*$ -g η -open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1, 2)^*$ -g η -nbhd of each of its points.

Remark 5.10. The converse of the above theorem is not true in general as seen from the following example.

Example 5.11. Let $X = \{a, b, c, d, e\}$ with topology $\mathfrak{T}_1 = \{\phi, \{a, b\}, \{a, b, c, d\}, X\}$ and $\mathfrak{T}_2 = \{\phi, \{c, d\}, \{a, b, d\}, X\}$. Then $(1, 2)^* - \mathfrak{gn}O(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, d, e\}, \{a, c, d, e\}, \{b, c, d, e\}\}$. The set $\{a, b, c\}$ is a $(1, 2)^*$ -gn-nbhd of the points a, b and c since the $(1, 2)^*$ -gn-open sets $\{a\}, \{b\}$ and $\{c\}$ for the points a, b and c respectively, such that $a \in \{a\} \subset \{a, b, c\}$; $b \in \{b\} \subset \{a, b, c\}$ and $c \in \{c\} \subset \{a, b, c\}$ respectively. That is $\{a, b, c\}$ is a $(1, 2)^*$ -gn-nbhd of each of its points. However the set $\{a, b, c\}$ is not a $(1, 2)^*$ -gn-open set in X.

Definition 5.12. Let x be a point in a space $(X, \mathfrak{I}_1, \mathfrak{I}_2)$. The set of all $(1, 2)^*$ -g η -nbhd of x is called the $(1, 2)^*$ -g η -nbhd system at x, and is denoted by $(1, 2)^*$ -g η -N(x).

Theorem 5.13. Let $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ be a bitopological space and for each $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Let $(1, 2)^*$ - $\mathfrak{g}\eta$ -N(x) be the collection of all $(1, 2)^*$ - $\mathfrak{g}\eta$ -nbhds of x. Then we have the following results. (i) $\forall x \in (X, \mathfrak{I}_1, \mathfrak{I}_2), (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x) $\neq \phi$. (ii) $N \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x) $\Rightarrow x \in N$. (iii) $N \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x), $M \supset N \Rightarrow M \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x). (iv) $N \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x), $M \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x) $\Rightarrow N \cap M \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x). (v) $N \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x) \Rightarrow there exists $M \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(x) such that $M \subset N$ and $M \in (1, 2)^*$ - $\mathfrak{g}\eta$ -N(y) for every $y \in M$.

Proof. (i) Since $(X, \mathfrak{I}_1, \mathfrak{I}_2)$ is a $(1, 2)^*$ -g η -open set, it is a $(1, 2)^*$ -g η -nbhd of every $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Hence there exists at least one $(1, 2)^*$ -g η -nbhd (namely - $(X, \mathfrak{I}_1, \mathfrak{I}_2)$) for each $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$. Hence $(1, 2)^*$ -g η -N $(x) = \phi$ for every $x \in (X, \mathfrak{I}_1, \mathfrak{I}_2)$.

(ii) If $N \in (1, 2)^*$ - $g\eta$ -N(x), then N is a $(1, 2)^*$ - $g\eta$ -nbhd of x. So by definition of $(1, 2)^*$ - $g\eta$ -nbhd, $x \in N$.

(iii) Let $N \in (1, 2)^*$ - $g\eta$ -N(x) and $M \supset N$. Then there is a $(1, 2)^*$ - $g\eta$ -open set G such that $x \in G \subset N$. Since $N \subset M$, $x \in G \subset M$ and so M is $(1, 2)^*$ - $g\eta$ -nbhd of x. Hence $M \in (1, 2)^*$ - $g\eta$ -N (x).

(iv) Let $N \in (1, 2)^*$ - $g\eta$ -N(x) and $M \in (1, 2)^*$ - $g\eta$ -N(x). Then by definition of $(1, 2)^*$ - $g\eta$ -nbhd. Hence $x \in G_1 \cap G_2 \subset N \cap M \Rightarrow (1)$. Since $G_1 \cap G_2$ is a $(1, 2)^*$ - $g\eta$ -open set, (being the intersection of two $(1, 2)^*$ - $g\eta$ -open sets), it follows from (1) that $N \cap M$ is a $(1, 2)^*$ - $g\eta$ -nbhd of x. Hence $N \cap M \in (1, 2)^*$ - $g\eta$ -N(x).

(v) If $N \in (1, 2)^*$ -g η -N(x), then there exists a $(1, 2)^*$ -g η -open set M such that $x \in M \subset N$. Since M is a $(1, 2)^*$ -g η -open set, it is $(1, 2)^*$ -g η -nbhd of each of its points. Therefore $M \in (1, 2)^*$ -g η -N(y) for every $y \in M$.

REFERENCES

- 1. M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., 13(1972), 327-334.
- 2. Z. Duszynski, M. Jeyaraman, M. S. Joseph. O. Ravi and M. L. Thivagar, A new generalization of closed sets in bitopology, South Asian Jour. of Mathematics, Vol. 4, Issue 5, (2014), 215-224.
- 3. H. Kumar, On (1, 2)^{*}-η-open sets in bitopological spaces, Jour. of Emerging Tech. and Innov. Res., Vol. 9, Issue 8, (2022), c194-c198.
- 4. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
- 5. O. Ravi, M. L. Thivagar, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492.
- 6. O. Ravi, M. Lellis Thivagar and Erdal Ekici, On (1, 2)^{*}-sets and decompositions of bitopological (1, 2)^{*}-continous mappings, Kochi J. Math. 3 (2008), 181-189
- 7. O. Ravi, M. L. Thivagar, Remarks on λ -irresolute functions via $(1, 2)^*$ -sets, (submitted).
- 8. O. Ravi, M. L. Thivagar and Jinjinli, Remarks on extensions of (1, 2)*-g-closed mappings in bitopology, (submitted).