(1, 2)*-GENERALIZED η-CLOSED SETS IN BITOPOLOGICAL SPACES

Hamant Kumar
Department of Mathematics, Veerangana Avantibai Government Degree College, Atrauli-Aligarh, U. P. (India)

Abstract

In this paper, we introduce (1, 2)*-generalized η-closed sets and obtain the relationships among some existing closed sets like (1, $2)^{*}$-semi- closed, $(1,2)^{*}$ - α - closed and $(1,2)^{*} * \eta$ - closed sets and their generalizations. Also we study some basic properties of $(1,2)^{*}$ $g \eta$-open sets. Further, we introduce (1, 2)*g η-neighbourhood and discuss some properties of (1, 2)*-g η-neighbourhood.

1. Introduction

The study of bitopological spaces was first intiated by Kelly [4] in the year 1963. By using the topological notions, namely, semi-open, α-open and pre-open sets, many new bitopological sets are defined and studied by many topologists. In 2008, Ravi et al. [6] studied the notion of $(1,2)^{*}$-sets in bitopological spaces. In 2004, Ravi and Thivagar [5] studied the concept of stronger from of (1,2)*-quatient mapping in bitopological spaces and introduced the concepts of $(1,2)^{*}$-semi-open and (1, 2)*- α-open sets in bitopological spaces. Recently H. Kumar [3] introduced the concept of $(1,2)^{*}-\eta$-open sets and discuss their properties.

2. Preliminaries

Throughout the paper (X, $\left.\mathfrak{I}_{1}, \mathfrak{J}_{2}\right),\left(\mathrm{Y}, \sigma_{1}, \sigma_{2}\right)$ and $\left(\mathrm{Z}, \wp_{1}, \wp_{2}\right)$ (or simply X, Y and Z) denote bitopological spaces.

Definition 2.1. Let S be a subset of X. Then S is said to be $\mathfrak{I}_{1,2}$-open [5] if $S=A \cup B$ where $A \in \mathfrak{I}_{1}$ and $B \in$ \mathfrak{I}_{2}. The complement of a $\mathfrak{I}_{1,2}$-open set is $\mathfrak{I}_{1,2 \text {-closed. }}$

Definition 2.2 [5]. Let S be a subset of X. Then
(i) the $\mathfrak{I}_{1,2}$-closure of S, denoted by $\mathfrak{I}_{1,2}$-cl(S), is defined as $\cap\left\{F: S \subset F\right.$ and F is $\mathfrak{I}_{1,2}$-closed $\}$; (ii) the $\mathfrak{I}_{1,2-}$ interior of S, denoted by $\mathfrak{I}_{1,2}-\operatorname{int}(S)$, is defined as $\cup\left\{F: F \subset S\right.$ and F is $\mathfrak{I}_{1,2}$-open $\}$.

Note 2.3 [5]. Notice that $\mathfrak{I}_{1,2}$-open sets need not necessarily form a topology.
Remark 2.4. [6]
(i) $\mathfrak{I}_{1,2}-\operatorname{int}(S)$ is $\mathfrak{I}_{1,2}$-open for each $\mathrm{S} \subset \mathrm{X}$ and $\mathfrak{I}_{1,2}-\mathrm{cl}(\mathrm{S})$ is $\mathfrak{I}_{1,2}$-closed for each $\mathrm{S} \subset \mathrm{X}$.
(ii) A subset $S \subset X$ is $\mathfrak{I}_{1,2}$-open iff $S=\mathfrak{I}_{1,2}$-int(S) and $\mathfrak{I}_{1,2}$-closed iff $S=\mathfrak{I}_{1,2}$-cl(S).
(iii) $\mathfrak{I}_{1,2}-\operatorname{int}(S)=\mathfrak{J}_{1}-\operatorname{int}(S) \cup \mathfrak{J}_{2}-\operatorname{int}(S)$ and $\mathfrak{I}_{1,2}-\operatorname{cl}(S)=\mathfrak{I}_{1}-\mathrm{cl}(\mathrm{S}) \cup \mathfrak{J}_{2}-\mathrm{cl}(\mathrm{S})$ for any $\mathrm{S} \subset \mathrm{X}$.
(iv) for any family $\left\{S_{i} / i \in I\right\}$ of subsets of X, we have
(1) $\cup_{\mathrm{i}} \mathfrak{I}_{1,2-}-\operatorname{int}\left(\mathrm{S}_{\mathrm{i}}\right) \subset \mathfrak{J}_{1,2}-\operatorname{int}\left(\cup_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}\right)$.
(2) $\cup_{i} \mathfrak{I}_{1,2}-\mathrm{cl}\left(\mathrm{S}_{\mathrm{i}}\right) \subset \mathfrak{I}_{1,2}-\mathrm{cl}\left(\cup_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}\right)$.
(3) $\mathfrak{I}_{1,2}-\operatorname{int}\left(\cup_{i} S_{i}\right) \subset \cup_{i} S_{i} \mathfrak{I}_{1,2}-\operatorname{int}\left(S_{i}\right)$.
(4) $\mathfrak{I}_{1,2}-\mathrm{cl}\left(\cup_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}\right) \subset \cup_{\mathrm{i}} \mathfrak{I}_{1,2}-\mathrm{cl}\left(\mathrm{S}_{\mathrm{i}}\right)$.

Definition 2.5. A subset A of a bitopological space ($\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}$) is called
(i) $(\mathbf{1 , 2})^{*}$-semi-open [5] if $\mathrm{A}=\mathfrak{J}_{1,2}-\mathrm{cl}\left(\mathfrak{J}_{1,2}-\operatorname{int}(\mathrm{A})\right)$,
(ii) $(\mathbf{1 , 2})^{*}$ - α-open [5] if $\mathrm{A} \subset \mathfrak{J}_{1,2}-\operatorname{int}\left(\mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{I}_{1,2}-\operatorname{int}(\mathrm{A})\right)\right)$.
(iii) $(\mathbf{1 , 2})^{*}-\eta-$ open [5] if $\left.\mathrm{A} \subset \mathfrak{I}_{1,2}-\operatorname{int}\left(\mathfrak{I}_{1,2}-\operatorname{cl}\left(\mathfrak{J}_{1,2}-\mathrm{int}\right)(\mathrm{A})\right) \cup \mathfrak{J}_{1,2}-\mathrm{cl}\left(\mathfrak{J}_{1,2}-\mathrm{int}\right)(\mathrm{A})\right)$.

The complement of a (1, 2)*-semi-open (resp. (1, 2)*- α-open, (1,2$)^{*}-\eta$-open) set is called (1, 2)*-semi-closed (resp. (1, 2)*- α-closed, (1, 2)*- η-closed).

The (1, 2)*-semi-closure (resp. (1, 2)*- α-closure, (1, 2)*- η-closure) of a subset A of X is denoted by $(\mathbf{1 , 2})^{*}$-s$\operatorname{cl}(\mathrm{A})\left(\right.$ resp. (1, 2)*- $\alpha-\operatorname{cl}(\mathrm{A}),(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A})$), defined as the intersection of all (1, 2)*-semi-closed. (resp. (1, $2)^{*}-\alpha$-closed, (1, 2)*- η-closed) sets containing A.

The family of all (1, 2)*-semi-open (resp. (1, 2)*- α-open, (1, 2)*- η-open, (1, 2)*-semi-closed, (1, 2)*- α-closed, $(1,2)^{*}-\eta$-closed) sets in X is denoted by $(1,2)^{*}-\mathrm{SO}(\mathrm{X})$ (resp. $(1,2)^{*}-\alpha 0(\mathrm{X}),(1,2)^{*}-\eta O(\mathrm{X}),(1,2)^{*}-\mathrm{SC}(\mathrm{X}),(1$, $2)^{*}-\alpha \mathrm{C}(\mathrm{X}),(1,2)^{*}-\eta \mathrm{C}(\mathrm{X})$.

Remark 2.6. It is evident that any $\mathfrak{I}_{1,2}$-open set of X is an $(1,2)^{*}$ - α-open and each $(1,2)^{*}$ - α-open set of X is $(1$, $2)^{*}$-semi-open but the converses are not true.

Remark 2.7. We have the following implications for the properties of subsets [3]:
$\mathfrak{I}_{1,2}$-open $\Rightarrow(1,2)^{*}$ - α-open $\Rightarrow(1,2)^{*}$-semi-open $\Rightarrow(1,2)^{*}-\eta$-open
Where none of the implications is reversible.

3. (1, 2)*-generalized $\boldsymbol{\eta}$-closed Sets in Bitopological Spaces

Definition 3.1. A subset A of a bitopological space ($\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}$) is called
(i) $(1,2)^{*}$ - generalized closed (briefly $(1,2)^{*}$-g-closed) [8] if $\mathfrak{I}_{1,2}$-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{J}_{1,2}$ open in X .
(ii) $(1,2)^{*}$-weakly closed (briefly $(1,2)^{*}$-w-closed) [2] if $\mathfrak{I}_{1,2-\mathrm{cl}}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $(1,2)^{*}$-semiopen in X .
(iii) $(1,2)^{*}$ - α-generalized closed (briefly $(1,2)^{*}$ - α-closed) $[8]$ if $(1,2)^{*}-\alpha-c l(\mathrm{~A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{J}_{1,2 \text {-open in } \mathrm{X} \text {. }}$
(iv) $(1,2)^{*}$-generalized semi-closed (briefly $(1,2)^{*}$-gs-closed) [8] if $(1,2)^{*}$-s-cl(A) $\subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1,2}$-open in X .
(v) $(1,2)^{*}$-generalized η-closed (briefly $(1,2)^{*}$-g η-closed) if $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$ and U is $\mathfrak{I}_{1,2^{-}}$ open in X .

The complement of a (1, 2) ${ }^{*}$-g-closed (resp. (1, 2) ${ }^{*}$-w-closed, (1, 2) ${ }^{*}$ - $\alpha \mathrm{g}$-closed, (1,2$)^{*}$-gs-closed, (1, 2) ${ }^{*}$-g η closed) set is called (1,2$)^{*}$-g-open (resp. (1,2$)^{*}$-w-open, $(1,2)^{*}$ - α g-open, $(1,2)^{*}$-gs-open, $(1,2)^{*}$-g η-open). We denote the set of all $(1,2)^{*}$-g η-closed sets in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ by $(1,2)^{*}$-g $\eta-\mathrm{C}(\mathrm{X})$.

Theorem 3.2. Every $\mathfrak{I}_{1,2}$-closed set is $g \eta$-closed.
Proof. Let A be any $\mathfrak{I}_{1,2}$-closed set in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1,2}$-open. $\operatorname{So}(1,2)^{*}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$. Since every $\mathfrak{I}_{1,2}$-closed set is $(1,2)^{*}-\eta$-closed, so $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset(1,2)^{*}-\operatorname{cl}(\mathrm{A})=\mathrm{A}$. Therefore, $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset \mathrm{A} \subset$ U. Hence A is (1, 2) ${ }^{*}$-g η-closed set.

Theorem 3.3. Every $(1,2)^{*}$ - α-closed set is $(1,2)^{*}$-g η-closed.
Proof. Let A be any $(1,2)^{*}$ - α-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $A \subset U$, where U is $\mathfrak{I}_{1,2}$-open. Since every $(1,2)^{*}-\alpha-$ closed set is $(1,2)^{*}-\eta$-closed, so $(1,2)^{*}-\eta-\operatorname{cl}(A) \subset(1,2)^{*}-\alpha-\operatorname{cl}(A)=A$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{A} \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-g η-closed set.

Theorem 3.4. Every $(1,2)^{*}$-semi-closed set is $(1,2)^{*}$-g η-closed.
Proof. Let A be any (1, 2)*-semi-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ and $A \subset U$, where U is $\mathfrak{I}_{1,2}$-open. Since every (1,2$)^{*}$ -semi-closed set is $(1,2)^{*}-\eta$-closed, so $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$. Therefore $(1,2)^{*}-\eta$-cl(A) $\subset \mathrm{A} \subset \mathrm{U}$. Hence A is (1, 2) ${ }^{*}$-g η-closed set.

Theorem 3.5. Every $(1,2)^{*}-\eta$-closed set is $(1,2)^{*}$-g η-closed.
Proof. Let A be any $(1,2)^{*}-\eta$-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ and $A \subset U$, where U is $\mathfrak{J}_{1,2}$-open. Since A is $(1,2)^{*}-\eta$ closed. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})=\mathrm{A} \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-g η-closed set.

Theorem 3.6. Every $(1,2)^{*}$-g-closed set is $(1,2)^{*}$-g η-closed.
Proof. Let A be any $(1,2)^{*}$-g-closed set in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ then $(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1,2^{-}}$ open. So $(1,2)^{*}-\eta-\operatorname{cl}(A) \subset(1,2)^{*}-\operatorname{cl}(A) \subset U$. Therefore $(1,2)^{*}-\eta-c l(A) \subset U$. Hence A is $(1,2)^{*}-g \eta$-closed set.

Theorem 3.7. Every (1, 2) ${ }^{*}$-w-closed set is $(1,2)^{*}$-g η-closed.
Proof. Let A be any $(1,2)^{*}$-w-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ then $(1,2)^{*}$-cl $(A) \subset U$ whenever $A \subset U$, where U is $\mathfrak{I}_{1,2^{-}}$ open, since every $\mathfrak{J}_{1,2}$-open set is $(1,2)^{*}$-semi-open. So $(1,2)^{*}-\eta-\operatorname{cl}(A) \subset(1,2)^{*}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-$ $\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}$-g η-closed set.

Theorem 3.8. Every (1, 2) ${ }^{*}$ - α g-closed set is (1, 2) ${ }^{*}$-g η-closed.
Proof. Let A be any $(1,2)^{*}$ - α g-closed set in $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ then $(1,2)^{*}-\alpha-c l(A) \subset U$ whenever $A \subset U$, where U is $\mathfrak{I}_{1,2}$-open. Given that A is $(1,2)^{*}$ - $\alpha \mathrm{g}$-closed set such that $(1,2)^{*}-\alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $(1,2)^{*}-\eta-\operatorname{cl}(\mathrm{A}) \subset(1$, $2^{*}{ }^{*}-\alpha-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}-$ g η-closed set.

Theorem 3.9. Every (1, 2) ${ }^{*}$-gs-closed set is $(1,2)^{*}$-g η-closed.
Proof. Let A be any $(1,2)^{*}$-gs-closed set in $\left(X, \Im_{1}, \mathfrak{J}_{2}\right)$ then $(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$ whenever $\mathrm{A} \subset \mathrm{U}$, where U is $\mathfrak{I}_{1,2}$-open. Given that A is $(1,2)^{*}$-gs-closed set such that $(1,2)^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. But we have $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset(1$, 2) ${ }^{*}-\mathrm{s}-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Therefore $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Hence A is $(1,2)^{*}-\mathrm{g} \eta$-closed set.

Remark 3.10. We have the following implications for the properties of subsets:

Where none of the implications is reversible as can be seen from the following examples:

Example 3.11. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\}$ and $\mathfrak{J}_{2}=\{\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii) $(1,2)^{*}-\alpha$-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(iii) $(1,2)^{*}$-semi-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}$.
(iv) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}$, d\}.
(v) $(1,2)^{*}$-g-closed sets : $\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(vi) $(1,2)^{*}$-w-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(vii) $(1,2)^{*}$-ag-closed sets : $\phi, X,\{a\},\{b\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}$.
(ix) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}$, d\}.

Example 3.12. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{b}\}\}$ and $\mathfrak{I}_{2}=\{\phi, \mathrm{X},\{\mathrm{c}\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(ii) $(1,2)^{*}$ - α-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(iii) $(1,2)^{*}$-semi-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(iv) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}$.
(v) $(1,2)^{*}$-g-closed sets : $\phi, X,\{a\},\{a, b\},\{a, c\}$.
(vi) $(1,2)^{*}$-w-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(vii) $(1,2)^{*}$ - $\alpha \mathrm{g}$-closed sets : $\phi, \mathrm{X},\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}$.
(ix) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{a, b\},\{a, c\}$.

Example 3.13. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{a}\}\}$ and $\mathfrak{I}_{2}=\{\phi, \mathrm{X},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, \mathrm{X},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii) $(1,2)^{*}-\alpha$-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(iii) $(1,2)^{*}$-semi-closed sets: $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c$, d\}.
(iv) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(v) $(1,2)^{*}$-g-closed sets : $\phi, X,\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(vi) $(1,2)^{*}$-w-closed sets : $\phi, X,\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(vii) $(1,2)^{*}$-ag-closed sets : $\phi, X,\{c\},\{d\},\{a, d\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\},\{b, c, d\}$.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c$, d\}, $\{b, c, d\}$.
(ix) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, d\},\{a, c, d\}$, $\{b, c, d\}$.

Example 3.14. Let $X=\{a, b, c, d\}$ with $\mathfrak{I}_{1}=\{\phi, X,\{a\},\{b\},\{a, b\},\{a, b, c\}\}$ and $\mathfrak{I}_{2}=\{\phi, X,\{a, b, d\}\}$. Then
(i) $\mathfrak{I}_{1,2}$-closed sets : $\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(ii) $(1,2)^{*}-\alpha$-closed sets: $\phi, \mathrm{X},\{\mathrm{c}\},\{\mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
(iii) $(1,2)^{*}$-semi-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c$, d\}.
(iv) $(1,2)^{*}-\eta$-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b$, $\mathrm{c}, \mathrm{d}\}$.
(v) $(1,2)^{*}$-g-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(vi) $(1,2)^{*}-$ w-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(vii) $(1,2)^{*}$ - α-closed sets : $\phi, X,\{c\},\{d\},\{c, d\},\{a, c, d\},\{b, c, d\}$.
(viii) $(1,2)^{*}$-gs-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\},\{b, c$, d\}.
(ix) $(1,2)^{*}$-g η-closed sets : $\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, c, d\}$, $\{b, c, d\}$.

4. Some Properties of (1, 2)*-generalized η-closed Sets

Theorem 4.1. The union of any two (1,2$)^{*}$-g η-closed subsets of ($\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}$) is need not be $(1,2)^{*}$-g η-closed subset of $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$ as per the following example.

Example 4.2. Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with $\mathfrak{I}_{1}=\{\phi, \mathrm{X},\{\mathrm{a}\}\}$ and $\mathfrak{I}_{2}=\{\phi, \mathrm{X},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$. Here $\mathrm{A}=\{\mathrm{a}\}$ and $\mathrm{B}=$ $\{\mathrm{b}\}$ are $(1,2)^{*}$-g η-closed subsets in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Then $\mathrm{A} \cup \mathrm{B}=\{\mathrm{a}, \mathrm{b}\}$ is not $(1,2)^{*}$-g η-closed subsets in $\left(\mathrm{X}, \mathfrak{I}_{1}\right.$, \mathfrak{I}_{2}).

Remark 4.3. The intersection of two $(1,2)^{*}$-g η-closed-sets in $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ is also a $(1,2)^{*}$-g η-closed set in (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$).
Proof. Easy to verify.

Theorem 4.4. If a subset A is $(1,2)^{*}$-g η-closed of X, then $(1,2)^{*}-\eta$ - $\mathrm{cl}(\mathrm{A})$ - A does not contain any non-empty $\mathfrak{J}_{1,2}$-closed set.
Proof. Let F be a $\mathfrak{I}_{1,2}$-closed subset of $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})-\mathrm{A}$. Then $\mathrm{F} \subset(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$ and $\mathrm{F} \cap \mathrm{S}=\phi$. Therefore $X-F$ is $\mathfrak{I}_{1,2}$-open and hence $X-F$ is $\mathfrak{I}_{1,2}$-open. Since $F \cap A=\phi, A \subset X-F$. But A is $(1,2)^{*}$-g η-closed, then $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{X}-\mathrm{F}$ and consequently $\mathrm{F} \subset \mathrm{X}-(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$. Therefore $\mathrm{F} \subset\left((1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})\right) \cap(\mathrm{X}-(1$, 2) ${ }^{*}-\eta-\mathrm{cl}(\mathrm{A})$) and hence F is empty.

Remark 4.5. The converse of Theorem 4.4 is not true as per the following example.
Example 4.6. Let $X=\{a, b, c, d, e\}$ with $\mathfrak{I}_{1}=\{\phi, X,\{a, b\},\{a, b, c, d\}\}$ and $\mathfrak{I}_{2}=\{\phi, X,\{c, d\},\{a, b, c, d\}\}$. If we consider $A=\{a, c\}$, then $(1,2)^{*}-\eta-c l(A)-A=X-\{a, c\}=\{b, c\}$ does not contain any non-empty $\mathfrak{I}_{1,2^{-}}$ closed set. However A is not $(1,2)^{*}-\mathrm{g} \eta$-closed.

Theorem 4.7. Let A be a $(1,2)^{*}$ - $\mathrm{g} \eta$-closed subset of X . If $\mathrm{A} \subset \mathrm{B} \subset(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A})$, then B is also $(1,2)^{*}$-g $\eta-$ closed in X.
Proof. Let $U \in(1,2)^{*}-g \eta O(X)$ with $B \subset U$. Then $A \subset U$. Since A is $(1,2)^{*}-g \eta$-closed, $(1,2)^{*}-\eta-c l(A) \subset U$. Also, since $B \subset(1,2)^{*}-\eta-\mathrm{cl}(A),(1,2)^{*}-\eta-\mathrm{cl}(B) \subset(1,2)^{*}-\eta-\mathrm{cl}(A) \subset U$. Hence B is also $(1,2)^{*}$-g η-closed subset of X .

Theorem 4.8. For an element $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$, the set $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{\mathrm{x}\}$ is $(1,2)^{*}$-g η-closed or $\mathfrak{I}_{1,2}$-open.
Proof. Suppose $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{\mathrm{x}\}$ is not $\mathfrak{I}_{1,2}$-open set. Then $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is the only $\mathfrak{I}_{1,2}$-open set containing (X, $\left.\mathfrak{J}_{1}, \mathfrak{J}_{2}\right)-\{\mathrm{x}\}$. This implies $(1,2)^{*}-\eta-\operatorname{cl}\left(\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)-\{\mathrm{x}\}\right) \subset\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Hence $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)-\{\mathrm{x}\}$ is $(1,2)^{*}$-g $\eta-$ closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.

Theorem 4.9. If A is an open and S is $(1,2)^{*}-\eta$-open in bitopological space $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$, then $A \cap S$ is $(1,2)^{*}$ -η-open in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$.

Theorem 4.10. If A is both open and $(1,2)^{*}$-g-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$, then it is $(1,2)^{*}$-g η-closed set in $\left(X, \mathfrak{J}_{1}\right.$, \mathfrak{I}_{2}).
Proof. Let A be an open and $(1,2)^{*}$ - g-closed set in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Let $A \subset U$ and let U be a $\mathfrak{I}_{1,2}$-open set in (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$). Now $\mathrm{A} \subset \mathrm{A}$. By hypothesis $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{A}$. That is $(1,2)^{*}-\eta-\mathrm{cl}(\mathrm{A}) \subset \mathrm{U}$. Thus A is $(1,2)^{*}-\mathrm{g} \eta-$ closed in $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$.

5. (1, 2) ${ }^{*}$-g η-open sets and (1,2)*-g -neighborhood

In this section, we study $(1,2)^{*}$-g η-open sets in bitopological spaces and obtain some of their properties. Also, we introduce $(1,2)^{*}$-g η-neighborhood (shortly $(1,2)^{*}$-g η-nbhd in bitopological spaces by using the notion of (1, $2)^{*}$-g η-open sets. We prove that every nbhd of x in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is $(1,2)^{*}$-g η-nbhd of x but not conversely.

Definition 5.1. A subset A in (X, $\mathfrak{I}_{1}, \mathfrak{I}_{2}$) is called (1, 2)*-generalized η-open (briefly, (1,2$)^{*}$-g η-open) in (X, $\left.\mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ if A^{c} is $(1,2)^{*}$-g η-closed in $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$. We denote the family of all $(1,2)^{*}$-g η-open sets in X by $(1,2)^{*}$ $\mathrm{g} \mathrm{\eta O}(\mathrm{X})$.

Definition 5.2. Let $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ be a bitopological space and let $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$. A subset N of $\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ is said to be a $(\mathbf{1 , 2})^{*}$-g η-nbhd of x iff there exists a $(1,2)^{*}$-g η-open set G such that $x \in G \subset N$.

Definition 5.3. A subset N of a bitopological space $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$, is called a (1, 2)* ${ }^{*}$-g η-nbhd of $A \subset\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ iff there exists a $(1,2)^{*}$-g η-open set G such that $A \subset G \subset N$.

Remark 5.4. The $(1,2)^{*}-\eta$-nbhd N of $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$ need not be a $(1,2)^{*}-\eta$-open in $\left(X, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$.
Example 5.5. Let $X=\{a, b, c, d, e\}$ and $\mathfrak{I}_{1}=\{\phi,\{a, b\},\{a, b, c, d\}, X\}$ and $\mathfrak{I}_{2}=\{\phi,\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$. Then $(1,2)^{*}-g \eta O(X)=\{\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, b, e\},\{a$, $c, d\},\{b, c, d\},\{c, d, e\},\{a, b, c, d\},\{a, b, c, e\},\{a, b, d, e\},\{a, c, d, e\},\{b, c, d, e\}\}$. Note that $\{a, e\}$ is not a $(1,2)^{*}$-g η-open set, but it is a $(1,2)^{*}-\eta$-nbhd of a, since $\{a\}$ is $a(1,2)^{*}$-g η-open set such that $a \in\{a\} \subset\{a, e\}$.

Theorem 5.6. Every nbhd N of $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is a $(1,2)^{*}$-g η-nbhd of $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$.
Proof. Let N be a nbhd of point $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. To prove that N is a $(1,2)^{*}$-g η-nbhd of x . By definition of nbhd, there exists an open set G such that $x \in G \subset N$. As every open set is $(1,2)^{*}$-g η-open set G such that $x \in$ $G \subset N$. Hence N is $(1,2)^{*}$-g η-nbhd of x.

Remark 5.7. In general, a $(1,2)^{*}$-g η-nbhd N of $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ need not be a nbhd of x in $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$, as seen from the following example.

Example 5.8. Let $X=\{a, b, c, d\}$ with topology $\mathfrak{I}_{1}=\{\phi,\{a\},\{b\},\{a, b\},\{a, b, c\}, X\}$ and $\mathfrak{I}_{2}=\{\phi,\{a, b, d\}$, $X\}$ Then $(1,2)^{*}-g \eta O(X)=\{X, \phi,\{a\},\{b\},\{a, b\},\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c$, $d\},\{b, c, d\}\}$. The set $\{b, c\}$ is $(1,2)^{*}$-g η-nbhd of the point b, there exists an $(1,2)^{*}$-g η-open set $\{b\}$ is such that $b \in\{b\} \subset\{b, c\}$. However, the set $\{b, c\}$ is not a nbhd of the point b, since no open set G exists such that $b \in$ $\mathrm{G} \subset\{\mathrm{a}, \mathrm{c}\}$.

Theorem 5.9. If a subset N of a space $\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is $(1,2)^{*}$-g η-open, then N is a $(1,2)^{*}$-g η-nbhd of each of its points.
Proof. Suppose N is $(1,2)^{*}$-g η-open. Let $x \in N$. We claim that N is $(1,2)^{*}-\mathrm{g} \eta$-nbhd of x . For N is a $(1,2)^{*}-\mathrm{g} \eta-$ open set such that $x \in N \subset N$. Since x is an arbitrary point of N, it follows that N is a $(1,2)^{*}$-g η-nbhd of each of its points.

Remark 5.10. The converse of the above theorem is not true in general as seen from the following example.
Example 5.11. Let $X=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ with topology $\mathfrak{I}_{1}=\{\phi,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\mathfrak{J}_{2}=\{\phi,\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}$, $d\}, X\}$. Then $(1,2)^{*}-g \eta O(X)=\{\phi, X,\{a\},\{b\},\{c\},\{d\},\{a, b\},\{a, d\},\{b, c\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b$, $d\},\{a, b, e\},\{a, c, d\},\{b, c, d\},\{c, d, e\},\{a, b, c, d\},\{a, b, c, e\},\{a, b, d, e\},\{a, c, d, e\},\{b, c, d, e\}\}$. The set $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ is $\mathrm{a}(1,2)^{*}-\mathrm{g} \eta$-nbhd of the points a, b and c since the $(1,2)^{*}$-g η-open sets $\{a\},\{b\}$ and $\{c\}$ for the points a, b and c respectively, such that $\mathrm{a} \in\{\mathrm{a}\} \subset\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} ; \mathrm{b} \in\{\mathrm{b}\} \subset\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{c} \in\{\mathrm{c}\} \subset\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ respectively. That is $\{a, b, c\}$ is $a(1,2)^{*}-\mathrm{g} \eta$-nbhd of each of its points. However the set $\{a, b, c\}$ is not $a(1,2)^{*}-$ g η-open set in X.

Definition 5.12. Let x be a point in a space $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. The set of all $(1,2)^{*}$ - $g \eta$-nbhd of x is called the (1, 2) ${ }^{*}$ $\mathbf{g} \eta$-nbhd system at x, and is denoted by $(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x})$.

Theorem 5.13. Let $\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$ be a bitopological space and for each $x \in\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$. Let $(1,2)^{*}-g \eta-N(x)$ be the collection of all $(1,2)^{*}$-g η-nbhds of x. Then we have the following results.
(i) $\vee \mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right),(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x}) \neq \phi$.
(ii) $\mathrm{N} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x}) \Rightarrow \mathrm{x} \in \mathrm{N}$.
(iii) $N \in(1,2)^{*}-g \eta-N(x), M \supset N \Rightarrow M \in(1,2)^{*}-g \eta-N(x)$.
(iv) $\mathrm{N} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x}), \mathrm{M} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x}) \Rightarrow \mathrm{N} \cap \mathrm{M} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x})$.
(v) $\mathrm{N} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x}) \Rightarrow$ there exists $\mathrm{M} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x})$ such that $\mathrm{M} \subset \mathrm{N}$ and $\mathrm{M} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{y})$ for every $y \in M$.

Proof. (i) Since $\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$ is a $(1,2)^{*}$-g η-open set, it is a $(1,2)^{*}$-g η-nbhd of every $x \in\left(X, \mathfrak{I}_{1}, \mathfrak{I}_{2}\right)$. Hence there exists at least one $(1,2)^{*}$-g η-nbhd (namely $-\left(X, \mathfrak{J}_{1}, \mathfrak{J}_{2}\right)$) for each $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{J}_{1}, \mathfrak{I}_{2}\right)$. Hence $(1,2)^{*}$-g $\eta-\mathrm{N}(\mathrm{x})=\phi$ for every $\mathrm{x} \in\left(\mathrm{X}, \mathfrak{I}_{1}, \mathfrak{J}_{2}\right)$.
(ii) If $N \in(1,2)^{*}-g \eta-N(x)$, then N is a $(1,2)^{*}-g \eta$-nbhd of x. So by definition of $(1,2)^{*}$-g $\eta-n b h d, x \in N$.
(iii) Let $\mathrm{N} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x})$ and $\mathrm{M} \supset \mathrm{N}$. Then there is a $(1,2)^{*}$-g η-open set G such that $\mathrm{x} \in \mathrm{G} \subset \mathrm{N}$. Since $\mathrm{N} \subset$ $M, x \in G \subset M$ and so M is $(1,2)^{*}$ - $g \eta$-nbhd of x. Hence $M \in(1,2)^{*}-g \eta-N(x)$.
(iv) Let $\mathrm{N} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x})$ and $\mathrm{M} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{x})$. Then by definition of $(1,2)^{*}-\mathrm{g} \eta$-nbhd. Hence $\mathrm{x} \in \mathrm{G}_{1} \cap$ $\mathrm{G}_{2} \subset \mathrm{~N} \cap \mathrm{M} \Rightarrow(1)$. Since $\mathrm{G}_{1} \cap \mathrm{G}_{2}$ is a (1,2)${ }^{*}$-g η-open set, (being the intersection of two (1,2$)^{*}$-g η-open sets), it follows from (1) that $N \cap M$ is a (1, 2) ${ }^{*}$ - $g \eta$-nbhd of x. Hence $N \cap M \in(1,2)^{*}-g \eta-N(x)$.
(v) If $N \in(1,2)^{*}-g \eta-N(x)$, then there exists a $(1,2)^{*}$-g η-open set M such that $x \in M \subset N$. Since M is a $(1,2)^{*}$ $\mathrm{g} \eta$-open set, it is $(1,2)^{*}-\mathrm{g} \eta$-nbhd of each of its points. Therefore $\mathrm{M} \in(1,2)^{*}-\mathrm{g} \eta-\mathrm{N}(\mathrm{y})$ for every $\mathrm{y} \in \mathrm{M}$.

REFERENCES

1. M. Datta, Projective Bitopological Spaces, J. Austral. Math. Soc., 13(1972), 327-334.
2. Z. Duszynski, M. Jeyaraman, M. S. Joseph. O. Ravi and M. L. Thivagar, A new generalization of closed sets in bitopology, South Asian Jour. of Mathematics, Vol. 4, Issue 5, (2014), 215-224.
3. H. Kumar, On (1, 2)*- η-open sets in bitopological spaces, Jour. of Emerging Tech. and Innov. Res., Vol. 9, Issue 8, (2022), c194-c198.
4. J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13(1963), 71-89.
5. O. Ravi, M. L. Thivagar, On stronger forms of (1, 2)*-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492.
6. O. Ravi, M. Lellis Thivagar and Erdal Ekici, On (1,2)*-sets and decompositions of bitopological (1, 2)*-continous mappings, Kochi J. Math. 3 (2008), 181-189
7. O. Ravi, M. L. Thivagar, Remarks on λ-irresolute functions via (1, 2)*-sets, (submitted).
8. O. Ravi, M. L. Thivagar and Jinjinli, Remarks on extensions of (1, 2)*-g-closed mappings in bitopology, (submitted).
