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1 INTRODUCTION

Throughout this paper we consider only
finite, simple, undirected graphs. For notations and
terminology, we follow [2]. Let G(V,E) be a graph
of order n. For any vertex v € V, the open
neighbourhood N(v) of v is the set of all vertices
adjacent to v. That is, N(v) = {u € V/uv € E}.
The closed neighbourhood of v is defined by N[v]
=N(v) U {v}. A fill vertex is a vertex in G which
is adjacent to all other vertices of G. A / — factor is
a 1 — regular spanning subgraph of G and it is
denoted by F.

The distance d(u,v) between two vertices u
and v is the length of a shortest path between them.
The eccentricity e(u) of a vertex u is the distance of
a farthest vertex from u. The radius rad(G) of G is
the minimum eccentricity and the diameter
diam(G) of G is the maximum eccentricity in G. A
vertex v is called an eccentric vertex of a vertex u if
d(u,v) = e(u). A vertex u with e(u) = rad(G) is
called a central vertex. The set of all central
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ABSTRACT

Let G(V,E) be a connected graph. For a vertex v
in V, the set of all neighbours of v is called an open
neighbourhood of v and is denoted by N(v). The closed
neighbourhood of v is defined by N[v] = N(v) v {v}. The
co — neighbour graph CN(G) of a graph is defined as a
graph with the same vertex set as that of G and two
vertices in CN(G) are adjacent if and only if Nfu] v N[v]
< V(G). In this paper, we introduce this concept and study
some properties of co — neighbour graph of a graph.
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vertices is denoted by cen(G). A graph G for which
rad(G) = diam(G) is called a self — centered graph
of radius rad(G). Or equivalently a graph is se/f —
centered if all of its vertices are central vertices.

A subset S of V is called a dominating set
of G if every vertex in V — S is adjacent to at least
one vertex in S. The domination number y(G) is
the minimum cardinality taken over all dominating
sets in G. One can refer [3] for further reading on
domination in graphs.

For any two distinct vertices u and v in G,
u is said to be copairable with v if N(u) = N(v)¢ in
G. A vertex in G is called a copairable vertex{1] if
it is copairable with a vertex in G.  For example,
a graph with copairable vertices u and v is shown in
Figure 1. A connected graph G of order at least 2 is
said to be a copairable graph if every vertex of G is
copairable. For example, Knm is a copairable graph
of order n, for any n, m> 1.
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Figure 1

In this paper, we introduce a new type of
graphs called co — neighbour graph which is
defined as follows:

The co — neighbour graph CN(G) of a
graph G is a graph with the same vertex set as that
of G and two vertices u and v are adjacent in

CN(Q) if and only if there exists a vertex w in G
such that w ¢ N[u] U N[v] in G. In other words, u
and v are adjacent in CN(G) if and only if N[u] U
N[v] < V(G). For example, a graph G and its co —
neighbour graph CN(G) are shown in Figure 2.

0 @

G

CN(G)

Figure 2

We study some properties of co — neighbour graphs in this paper.

2 MAIN RESULTS

The following facts can be easily verified for a co — neighbour graph.
Fact 2.1 A full vertex in G is an isolated vertex in CN(G).
Fact 2.2 Copairable vertices are independent in CN(G).

Fact 2.3 CN(K,) = K.
Fact 2.4 CN(K, ) = Kju K,.

K UK, ifmnZ>2
Fact 2.5 CN(Ki, n) = K: if mn=2
K., if mn < 2

Fact 2.6 CN(P,) = CN(C,)) =K, if n > 6.

Fact 2.7 CN(P,) = K& ifn < 4; CN(P4) = 2 K»; CN(Ps) = K v Py; CN(Ps) = K¢ —e.
Fact 2.8 CN(C,) = K& ifn=3 or 4; CN(Cs) = Cs; CN(Cs) = K — F.

There exist some graphs G such that CN(G) = G.
For example consider Cs. CN(Cs) = Cs. The
following theorem discusses the conditions under
which CN(G) = G.

Theorem 2.9 Let G be a disconnected graph.
Then CN(G) = G if and only if G is a disjoint
union of two complete graphs.
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Proof Let G be any disconnected graph with
components Gj, Gz, .., Gp Assume that
CN(G) = G. That implies, for anyu € Gijand v €
Gj, (i#]), uv ¢ E(CN(Q)) and so we conclude that
N[u] U N[v] = V(G). This is possible only when G
contains exactly two components with u and v as
full vertices in their respective components. Since u

Volume: 2 Issue: 3 March 2016

et



EPRA International Journal of Multidisciplinary Research (IJMR) | ISSN (Online): 2455 -3662 | SJIF Impact Factor : 3.395 ( Morocco)

and v are arbitrary, we have G = K, U K. Also any
two vertices in the same component of G have all
vertices in the other component as common non
neighbour and hence adjacent in CN(G) too.

And the converse is obvious.

(]
Theorem 2.10 A connected graph G is
isomorphic to its co — neighbour graph CN(G) if
and only if G is a triangle free self centered graph

of radius two.

Proof Let G be any connected graph. And
suppose that G = CN(G). Therefore by Fact 2.1, G
does not contain a full vertex. Then any two
adjacent vertices in G are also adjacent in CN(G).
This implies that for any two vertices u, v € V(Q),
if uv € E(G), then there exists a vertex w in G such
that w ¢ N[u] U N[v]. Hence d(u,v) = 2 in G for
any two adjacent vertices u and v in G. Therefore
diam(G) = 2. Since G is connected, G does not

contain a full vertex and so rad(G) = 2. Hence G is
a self centered graph of radius 2.

In addition, for any two non adjacent
vertices u and v in G, N[u] U N[v] = V(G). Hence
there is no common neighbour for any two adjacent
vertices in G . Therefore G is triangle free.

Conversely, if Gis triangle free, then no

two non adjacent vertices in G has a common non
neighbour and hence not adjacent in CN(G) also.

Since G is self centered of radius two, every two

non adjacent vertices in G has a common

neighbour and thereby uv € G implies that uv €
CN(G) also. Therefore G = CN(G).
[

Theorem 2.11 For a disconnected graph G of
order n, CN(G) % K, if and only if G has exactly
two components each having a full vertex in it.
Proof Let G be any disconnected graph of order n.
Assume that CN(G) # K,. If G has more than two
components then obviously every two vertices has
a common non neighbour which is a contradiction
since CN(G) # K, So G has exactly two
components. Clearly every two vertices in the same
component of G are adjacent in CN(G).

In particular, if any one of the two
components, say Gi, does not contain a full vertex,
then every vertex v in G; has a non neighbour in it
which becomes the common non neighbour for v
and all other vertices in Go. Hence CN(G) = K,
which is a contradiction. Hence each of the two
components in G has a full vertex in it.

Conversely let G be a disconnected graph
containing exactly two components each with a full
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vertex, say u and v. Clearly uv ¢ E(CN(G)) and so
CN(G) # K.. [

Theorem 2.12 The co — neighbour graph CN(G)
of a graph G of order n > 3, is isomorphic to its
complement G if and only if G = K, or Kf] or Ky m,
wheren, m>1andn#2 #m.

Proof Let G be any graph with at least three
vertices. Assume that CN(G) = G . Then for every

two adjacent vertices u and v in G, uv ¢ E(CN(Q))
and so N[u] U N[v] = V(G). Hence the vertices u

and v have no common neighbour in G . Therefore

d(u,v) >2in G for every two non adjacent vertices
in it.

Since CN(G) = G, uv ¢ E(G) implies
that uv € E(CN(G)). In addition u and v have a
common non neighbour inG . Thus every edge in

G lies in a triangle. In addition we can note that

G does not contain P; as an induced subgraph,
otherwise there exist two non adjacent vertices at a
distance 2 in G which is a contradiction. Hence we
conclude that every two vertices in each component
of G are adjacent. Also since every edge if exists
lies in a triangle, each component contains at least
three vertices or every component is an isolated
vertex.

The graphs satisfying above conditions are
K., or K; or Kom, wheren, m>1 and n # 2 # m.

And the converse is obvious.

[
Theorem 2.13 The co — neighbour graph CN(G)
of a graph G is isomorphic to K, if and only if y(G)
>2.
Proof Let G be a graph for which the co —
neighbour graph CN(G) = K,. If possible let y(G)
< 2. Suppose y(G) = 1, then G contains a full vertex
and hence CN(G) contains an isolated vertex which
is a contradiction. If y(G) = 2, let {u,v} be a
minimal dominating set of G. Then u and v have no
common non neighbour in G and hence uv ¢
E(CN(G)) which is also a contradiction. Hence we
can conclude that y(G) > 2.

Conversely suppose G is a graph with
v(G) > 2. If possible let CN(G) 2 K,. Then CN(G)
contains at least two vertices u and v such that uv ¢
E(CN(G)). Now consider u and v in G. They have
no common non neighbour in G. In other words,
every vertex of G is either a neighbour of u or v or
both. Then clearly {u,v} is a minimal dominating
set of G which is a contradiction. Hence the
theorem.

[

Corollary 2.14 If diam(G) > 4, then CN(G) = K,.
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Proof Let G be a graph with diam(G) > 4. Then G
does not contain a full vertex and so y(G) # 1.
Suppose y(G) = 2. Then there exist two vertices u
and v such that N[u] U N[v] = V(G). Let x and y be
any two vertices in G. If both are neighbours of
u,(or v) then d(x,y) < 2. If not, d(x,y) < 4. That
implies diam(G) < 4, which is a contradiction.

= K.
|
The converse of the above corollary need
not be true. For example, for the graph shown in
Figure 3, CN(G) = K, but diam(G) = 4. But for
graphs with diameter less than 3, domination
number is less than or equal to 2 that implies

Hence y(G) > 2 and by the above theorem, CN(G) CN(G) # K. u
o— @ ®
Figure 3
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