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----------------------------------------ABSTRACT------------------------------------------- 
This research examines the long-term impact of eco-innovation on global climate risk. Examining the 
potential impact of environmental innovations, this study de- constructs global climate risk into physical 
and transition risks. The study focuses on potential environmental innovations that could aid in 
temperature reduction and global warming mitigation in general as well as its associated risks. We find that 
eco- innovation shocks have a substantial impact on the global climate risk. The impact is highly persistent 
over time and may be adverse due to substantial research and development expenditures. Our evidence 
suggests that all available environmental innovations are fundamentally important for the mitigation of 
global climate risk and its associated risks. Therefore, eco-innovations can lead to reduced temperature 
variability, lower greenhouse gas emissions, lower welfare costs of premature deaths caused by high 
temperatures, and improved environmental policy stringency thanks to increased R&D intensity. 
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1 INTRODUCTION 
Global climate is increasingly becoming volatile over time. This development could be attributed to the 

rising levels of greenhouse gas emissions in the atmosphere and per- haps carbon emissions greatly 

contribute to that (Khan et al., 2020, 2021; Vitenu-Sackey, 2020). Given this, the IPCC Sixth Assessment 

Report emphasises the need to promote climate change mitigation and adaptation strategies to curb 

global warming, see Arias et al. (2021). The literature documents that technological innovation largely 

contribute to the abatement of carbon emissions which eventually result in high environmental quality 

(Cheng et al., 2021). Over the years, numerous researchers have assessed the qualita- tive and 

quantitative impact of eco-innovation and overall technological innovation on carbon emissions, (see for 

example Li and Vitenu-Sackey, 2019; Erdoğan et al., 2020; Wang et al., 2020a,b; Cheng et al., 2021; 

Chien et al., 2021; Khan et al., 2021; Vitenu- Sackey and Acheampong, 2022; Vitenu-Sackey et al., 2022; 

Vitenu-Sackey, 2023, among others). The consensus among these researchers is that environmental 

innovation and technological innovation in general have substantial and negative effects on carbon emis- 

sions. Another study suggests that micro-level eco-innovations indirectly relate to climate change 

mitigation via changes at the macro levels (see Durán-Romero et al., 2020; Byrne and Vitenu-Sackey, 

2024). Nonetheless, since raw materials used in manufacturing pro- cesses based on fossil fuels account 

for 45% of all current GHG emissions, climate change policy should also seek to limit the quantity of raw 

materials used in these processes. This reliably demonstrates the significance of environmental 

innovations at the firm level—and the macro-level at large. 

 

In retrospect, Wang et al. (2020a) analysed the relationship between eco-innovation and carbon emissions 

among G-7 economies and emphasised on its scope and significance. Essentially, they demonstrate that 

eco-innovation may contribute to the reduction of carbon emissions due to the adoption of environmental-

friendly production methods such as renewable energy consumption. In a similar research, Erdoğan et al. 

(2020) and Nguyen et al. (2020) used G-20 countries in a panel study to examine the relationship among 

information communication technologies, technological innovation and carbon emissions. 

 

The outcome of these studies do not differ from Cheng et al. (2021) and Khan et al. (2021) studies which 

highlight the negative impact of technological innovation or eco-innovation on carbon emissions. Cheng 
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et al. (2021) sampled top Asian economies while Khan et al. (2021) studied 19 European countries. These 

studies used various econometric methods such as the Fully modified OLS, fixed effects and quantile panel 

regression (Nguyen et al., 2020; Cheng et al., 2021), cross-sectional ARDL (Wang et al., 2020a; Chien et 

al., 2021), common correlated effect mean group and augmented mean group estimators (Erdoğan et al., 

2020), etc. 

 

Innovation in environmental protection and carbon dioxide emissions abatement while increasing 

production is one of the most commonly discussed topics in contemporary literature (see Erdoğan et al., 

2020; Cheng et al., 2021; Khan et al., 2020, 2021; Vitenu- Sackey and Barfi, 2021; Vitenu-Sackey, 2021; 

Chen et al., 2024, etc). Although innovation aids in the reduction of carbon dioxide emissions, it does not 

always contribute to the mitigation of global warming. Stern (2008) emphasises that climate risk may be 

long-term in its nature and impact. Also, Pindyck (2021) suggests that it may take centuries for the 

average global temperature to change due to global warming. Given that atmospheric carbon 

concentration usually stay in the atmosphere over centuries before it causes global warming which in turn 

lead to climate variability. We assume that the rate of climate change will be faster than currently 

predicted, necessitating immediate adaptation to the current climate volatility. In a review study, Matos et 

al. (2022) highlighted the vast gap in the literature regarding the role of technological innovation as new 

avenues for addressing climate change mitigation and adaptation challenges. To the best of our 

knowledge, no study has considered the long-term impact of environmental-related innovations on global 

climate risk, i.e., temperature volatility. Given that the IPCC (2018) and Paris Accord 2015 primary 

objective is to reduce average global temperature by 1.5°C above the pre- industrial levels by 2050. In 

view of this, the objective of this study is to provide empirical evidence regarding the available 

environmental innovations that could aid in this climate risk adaptation and mitigation goal. 

 

2 EMPIRICAL METHODS 

2.1 Data 

This research sourced its data from the OECD statistics database, the World Bank’s World Development 

Indicators, and the World Bank’s Climate Change Knowledge Por- tal. We use annual temperature data 

from 1901 to 2020, while data on eco-innovation as a proxy for environmental-related technology patent 

registration is available from 1995 to 2019. For the purpose of capturing the potential transmissions of 

eco-innovation to global climate risk, we employ research and development intensity measured as 

research and development expenditure as a percentage of GDP. Global climate risk is measured by a 

factor stochastic volatility model based on annual temperature changes. Further, we decompose global 

climate risk into physical and transitional risks. Physical risk is mea- sured by the welfare cost of 

premature deaths due to high temperatures as a percentage of GDP and greenhouse gas intensity. 

Transition risk is also measured by environmental policy stringency index. The data available on the 

variables is from 1990 to 2018. 

 

Our sample consists of 33 advanced and emerging countries. Except for global climate risk, which is 

measured using a factor stochastic volatility model by estimating the com- mon factor of temperature 

changes among the countries, we typically use the cumulative averages of the countries’ time series of the 

selected variables in our estimations. An- nual frequency is converted to quarterly frequency for each 

variable to account for more observations in our estimations. We extrapolate our data for eco-innovation 

variables and climate risks by using a linear trace interpolation approach in order to align them with the 

available data on temperature changes from 1901 to 2020. The objective at this junction is to determine 

whether the global climate risk-eco-innovation nexus could be a more recent phenomenon or whether 

a longer data set is required to comprehend the relationship. 

 

Linear interpolation is a straightforward and efficient method for interpolating data. Linear interpolation 

involves calculating the average of two neighbouring data points using the arithmetic mean. Linear 

interpolation is particularly advantageous for handling vast datasets, as it does not require significant 

amounts of time or computational resources for the calculations. Particularly, we use the trace linear 

interpolation command in OriginPro software. Since it interpolates the curve based on the index of a given 

X coordinate rather than adjacent data points in the X coordinate, trace interpolation differs from ordinary 

interpolation. Trace interpolation is a better option than regular interpolation when dealing with cyclic or 

periodic curves. 

https://eprajournals.com/
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2.2 BVAR with Minnesota Prior 

In the Bayesian econometric literature, the Minnesota or Litterman prior is the simplest form of prior 

distributions for VAR models (see Litterman, 1986). In this framework, the VAR residual variance-

covariance matrix is assumed to be known. The only remaining object to estimate is the parameters’ 

vector 𝛽. To obtain the posterior distribution of 𝛽 from equation (1), two elements are required: the 

likelihood function 𝑓(𝑦|𝛽) for the data and a prior distribution 𝜋(𝛽) for 𝛽. 

𝜋(𝜃|𝑦)  ∝  𝑓(𝜃|𝑦)𝜋(𝜃)(1) 

In a standard Bayesian VAR model, 𝜃 will have two components: the residual variance- covariance 

matrix Σ and the VAR coefficients 𝛽 on the one hand.  The 𝑛 ×  1 vec- tor of endogenous 

variables, denoted by 𝑦, can be decomposed into the equation 
[𝑦𝐸𝑡

′ , 𝜎𝐹𝑡
𝑇 , 𝑦𝑅&𝐷𝑡

′ ]and another 𝑛𝑦  ×  1 vector comprises the observed research and development intensity 

(𝑦𝑅&𝐷𝑡 ) and eco-innovation (𝑦𝐸𝑡 ) which is an 𝑛𝑦  ×  1 vector. 

 

In practise, numerous variants of the Minnesota prior have been utilised (Karlsson, 2013). Here, in 

accordance with Koop et al. (2010), we specify the following variant of Litterman (1979, 1980, 1986). 

Note that the diagonal elements of the prior variance matrix can be expressed as: 

 

(𝑣1, … , 𝑣𝑘𝛽) = 𝑣𝑒𝑐((𝑣1, … , 𝑣𝑝)′)                                        (2) 

 

The variance of the (𝑖, 𝑗)𝑡ℎ element of the VAR coefficient matrix Br, 𝑟 =  1, . . . , 𝑝 

is specifically denoted by the (𝑖, 𝑗)𝑡ℎ element of 𝑉𝑟 , 𝑉𝑟
𝑖𝑗

formulated as: 

                                                                                                    

 

𝑉𝑟
𝑖𝑗 =

{

𝜋1
2

𝑟2                                    𝑓𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑛 𝑜𝑤𝑛 𝑙𝑎𝑔 𝑟 𝑓𝑜𝑟 𝑟 = 1, … , 𝑝,

𝜋1
2𝜋2𝜎𝑗

𝑟2𝜎𝑖
 𝑓𝑜𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑙𝑎𝑔 𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗 ≠ 𝑖, 𝑓𝑜𝑟 𝑟 = 1, … , 𝑝,

      (3) 

 

where 𝜎𝑙 is the standard deviation for the variable 𝑙, 𝑙 =  1, . . . , 𝑛, and 𝜋1 and 𝜋2 are 

the hyperparameters. The marginal distributions’ overall tightness around zero is 

controlled by the hyperparameter 𝜋1. It also determines how important the prior is in 

relation to the data’s information. As a result, the selection of this hyperparameter has 

a significant impact on the overall magnitude of parameter shrinkage (see Chan et al., 

2019). Similarly, 𝜋2 determines the significance of different cross-lag coefficients. 

If 𝜋2 =  1, both types of lags are equally significant. Perhaps, setting 𝜋2  <  1 

suggests that own-lags are more significant than cross-lags, and vice versa. 1/r2 

represents the rate at which prior variance decreases with lag length. This reflects the 

notion that recent lags are more significant than those in the past. 

https://eprajournals.com/


 EPRA International Journal of Economic Growth and Environmental Issues- Peer Reviewed Journal 

                                                                                                                           ISSN: 2321-6247 
 Volume: 12 | Issue: 4 | April 2024 | Journal DOI: 10.36713/epra0713 | SJIF Impact Factor (2024): 8.619 

 

 

 

---- 2024 EPRA EGEI     |     https://eprajournals.com/    |    Journal DOI URL: https://doi.org/10.36713/epra0713 ---------28 

 

Ft 

Ft 

As an alternative to selecting values for the hyperparameters, we provide two hyper- 

priors. More specifically, we construct uniform priors of the form 𝜋1  ∼  𝑆 (1/𝑘𝛽, 1) 

and 𝜋1  ∼  𝘚 (0.5, 1) in the spirit of Cross et al. (2020). The distribution ensures that we 

are uninformed which option is the best, and the boundaries are chosen to encompass 

commonly used parameter ranges in the literature. As a trade-off for this added 

flexibility, the posterior distributions for 𝜋1 and 𝜋2 are non-standard. Therefore, we 

use a random walk Metropolis-Hastings approach to sample each of them. 

 

2.2.1 Identification Strategy 

In our identification strategy, we use the recursive identification which takes into ac- 

count the block (cholesky) triangular factorisation of the variance-covariance matrix of 

the reduced form errors. In light of this, we assume that eco-innovations (yEt) have con- 

temporaneous impact on global climate risk (σT ). Therefore, in our VAR model, we 

however, order eco-innovation (yEt) variables first followed by global climate risk (σT ) 

variables except when we include research and development intensity (yR&Dt) that it is 

ordered last. To put it differently, we assume that R&D intensity (yR&Dt) shocks 

could 

https://eprajournals.com/
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Figure 1: DESCRIPTIVE STATISTICS 

 

 

 

Notes: This graph depicts the average time series of temperature changes, global climate risk, 

environmental-related innovations, and R&D intensity for countries from 1901 to 2020 and 1995 to 2020, 

respectively. These are the unweighted averages of all 33 countries sampled. Changes in Global Climate 

Risk and Temperature are measured in degrees Celsius. Eco-innovation is measured by the number of 

environmental-related patent registrations, whereas R&D intensity is measured by the proportion of R&D 

expenditures to GDP. 
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potentially increase environmentally-friendly innovations but only with a lag. However, 

eco-innovation (yEt) shock could affect global climate risk (σT ) at time 0. More impor- 

tantly, in our benchmark specification, we unidentified global climate risk (σT ) of 

any 

potential shock. 

 
2.3 Descriptive Statistics 

We present the descriptive statistics such as the mean, mean plus standard deviation 

as well as mean minus standard deviation of temperature changes (Tt), eco-innovation 

(yEt), global climate risk (σT ) and R&D intensity (yR&Dt) in Figure 1. Other variables 

such as climate mitigation innovations (yCMt), climate adaptation innovations (yCAt), 

environmental innovations (yEMt), greenhouse gas emissions per unit of GDP (yGHGt), 

welfare cost of premature deaths due to high temperature (yWECt), and environmental 

policy stringency (yEPSt) are presented in Figures A4 and A3, respectively. 

In particular, Figure 1 demonstrates that the temperature change (Tt) has become 

more volatile over time, specifically from 1901 to 2020. The average temperature varia- 

tion over the period is 0.005°C, with a potential standard deviation of 0.18°C. Clearly, 

the temperature has been steadily rising over time, and there may be global risks that 

could affect climate predictability. As we have observed, the average global climate risk 

(σT ) and its potential standard deviation was 0.14°C, which is slightly comparable to 

the temperature changes (Tt) in our sample of 33 advanced and emerging economies. 

Despite the fact that the global climate risk (σT ) has decreased by -0.004°C on the 

average from 1901 to 2020, there have been more spikes than decreases, indicating a 

higher increase in temperature variations and possibly global warming. On the other 

hand, we observed that eco-innovation, which is a measure of environmental-related 

innovations, has pro- gressed steadily since 2010, particularly in relation to 

environmental-related technologies’ patents. Similarly, the intensity of R&D has 

increased since the year 2000. From 2000 to 2020, the average number of eco-

https://eprajournals.com/


 EPRA International Journal of Economic Growth and Environmental Issues- Peer Reviewed Journal 

                                                                                                                           ISSN: 2321-6247 
 Volume: 12 | Issue: 4 | April 2024 | Journal DOI: 10.36713/epra0713 | SJIF Impact Factor (2024): 8.619 

 

 

 

---- 2024 EPRA EGEI     |     https://eprajournals.com/    |    Journal DOI URL: https://doi.org/10.36713/epra0713 ---------31 

 

Ft 

Ft 

Ft 

Ft 

innovations was 783, while the R&D intensity was 1.72% of GDP. This suggests that 

countries have focused heavily upon developing and deploying cleaner technologies to 

combat climate change relatively through research and 

development expenditures. 

To shed light on the other variables shown in Figures A4 and A3, we discovered 

that since 2010, climate mitigation innovations (yCMt) have received more attention than 

environmental management (yEMt) and climate adaptation (yCAt) innovations. Whereas, 

on average, greenhouse gas emissions (yGHGt) have been reduced by 0.36 per unit of GDP 

averagely since 1990, and the welfare cost of premature deaths due to high temperatures 

(yWECt) has been reduced by 0.12% of GDP on average. This revelation is likely to 

highlight the stringency of environmental policies (yEPSt) enacted since 1990, which has 

become even more stringent since 2005. 

3 EMPIRICAL RESULTS 

3.1 Benchmark Results 

We begin our empirical analyses by first looking at the endogenous relationship between eco-

innovation (yEt) and global climate risk (𝜎𝐹𝑡
𝑇 ) in a bivariate VAR, 𝑦t =  [yEt, 𝜎𝐹𝑡

𝑇 ]. 

At this stage, we ignore the possible transmission channel that is likely to control the 

relationship between eco-innovation (yEt) and global climate risk (σT ). We investigate 

the endogenous relationship with an impulse response function using the recursive iden- 

tification scheme with a 68% credibility band. The outcome of our findings is presented 

in Figure 2. The light blue shaded area represents the critical band and the solid 

blue line denotes the posterior median. On a 20-year horizon, we plot our response to 

global 

climate risk (σT ) with a one standard deviation shock to eco-innovation (yEt). To com- 

pute the posterior estimates, we used M = 10000 samples after discarding 1000 samples. 

Our analysis revealed the existence of a robust and important relationship between eco- 

innovation (yEt) and global climate risk (σT ). Moreover, eco-innovation (yEt) is likely 

to exacerbate the global climate risk (σT ), or global temperature variability which is 

https://eprajournals.com/
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relatively large. To put it differently, positive shock to eco-innovation could likely cause 

a reduction in global temperature variability. 

Our evidence suggests that an initial shock to eco-innovation (yEt) has an immediate 
 

 

Figure 2: yEt IMPACT UPON σT 
 

 

 
Notes: This Figure presents evidence of the impact of eco-innovation shock on global climate risk (σT 

). The shock is a one standard deviation increase in eco-innovation (yEt). We include the posterior 

median of the shock (blue) and 68% critical band or posterior coverage band (light blue shaded area). 

Our sample of 33 advanced and emerging countries is between 1901 and 2020 in a quarterly 

frequency. Our evidence suggests that eco-innovation (yEt) plays a crucial role in the mitigation of 

global climate risks (σT ). Given that eco-innovation (yEt) has an immediate and advantageous 

(adverse) impact on the global climate risk (σT ) that is relatively large but transient. 
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effect on global climate risk (σT ), and is quite long-lasting, although this important effect 

diminishes after 12 quarters. Given that the critical band touches the zero axis after 12 

quarters, this indicates that the impact is only important for 12 quarters. Due to the fact 

that we disregard potential transmission channels, it is difficult to draw conclusions from 

this result, but it could serve as a benchmark. 

 

3.2 Decomposition of Eco-innovation 

Next, we decompose eco-innovation (yEt) into climate mitigation (yCMt), climate adap- 

tation (yCAt), and environmental management (yEMt) innovations to assess their impact upon 

global climate risk (σT ) from an exogenous perspective. Therefore, we substitute eco-

innovation (yEt) with climate change adaptation innovations (yCAt), climate change 

mitigation innovations (yCMt), or environmental management innovations (yEMt) in sep- 

arate VARs, but in a bivariate VAR with global climate risk (σT ). We assume that 

the impact of various eco-innovations on global climate risk may be heterogeneous. In the 

eco-innovation block, we identify three shocks, that is, climate change mitigation 

innovations (yCMt) shock, climate change adaptation innovations (yCAt) shock, and envi- 

ronmental management innovations (yEMt) shock. Based on our findings, it is clear that 

eco-innovation (yCMt) for the purpose of mitigating climate change is crucial for global 

climate risk (σT ). On the other hand, the impact of environmental management innova- 

tions (yEMt) on global climate risk (σT ) is relatively minimal and negligible. Although a 

negative impact is evident, it is short-lived and unimportant because the critical band is so 

close to the zero axis. This demonstrates that innovations in climate change mitigation 

(yCMt) have a greater impact on global climate risk (σT ) than environmental management 

innovations (yEMt). We also found that, in contrast to climate change mitigation (yCMt) and 

environmental management innovations (yEMt), climate change adaptation innova- tions 

(yCAt) are relatively unimportant in terms of global climate risk (σT ) reduction. 

We present the outcome of these findings in Figure 3. 

In an effort to combat climate change variability, our findings indicate that innova- 

tions in climate change mitigation are extremely important and widely prevalent. Clearly, 

https://eprajournals.com/
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Figure 3: DECOMPOSITION OF yEt 

RESPONSE OF σT 

(i) Shock to yCMt 
 

 

(ii) Shock to yCAt 
 

(iii) Shock to yEMt 
 

 
Note: In this figure, we present the results of our decomposed eco-innovation variables’ impacts on global climate 

risk (σT ). Specifically, we assess the separate exogenous impact of shock to Climate Mitiga- tion 

Innovations (yCMt), shock to Climate Adaptation Innovations (yCAt), and shock to Environmental 

Management Innovations (yEMt) on global climate risks. The shock is a one standard deviation increase 

in Climate Mitigation Innovations (yCMt), Climate Adaptation Innovations (yCAt), and Environmental 

Management Innovations (yEMt). We include the posterior median of the shock (blue) and 68% critical 

band or posterior coverage band (light blue shaded area). Our sample of 33 advanced and emerging coun- 

tries is between 1901 and 2020 in a quarterly frequency. We find that Climate Mitigation Innovations 

(yCMt) shock has an important impact on global climate risk as compared to the others. 
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our findings highlight that it is important to ensure the development and implementation of 

more innovations for climate change mitigation. Innovations in climate change mit- igation 

are essential for managing global climate risk, as they provide means to reduce greenhouse 

gas emissions and slow the rate of global average temperature rise. Extreme weather 

events, rising sea levels, ocean acidification, and other climate-related dangers are on the 

rise due to the accumulation of greenhouse gases such as carbon dioxide in the 

atmosphere (IPCC, 2018; Arias et al., 2021). By implementing climate change miti- gation 

innovations, such as renewable energy technologies, energy-efficient buildings, and low-

carbon transportation, it is possible to reduce greenhouse gas emissions (see Frondel et al., 

2007; Newell, 2009; Erdoğan et al., 2020; Wang et al., 2020a; Chang et al., 2021; Chien et 

al., 2021, among many others) and slow the rate of temperature increase. 

 
3.3 Decomposition of Global Climate Risk 

In the spirit of Mountford and Uhlig (2009) and Ciccarelli and Marotta (2024), we extend 

our benchmark model by substituting global climate risk (σT ) with physical and transition 

risks consisting of three variables. Here, we aim to assess these shocks under different 

scenarios. In three different VARs, we ordered welfare cost of premature deaths due 

to high temperature (yWECt), greenhouse gas emissions per unit of GDP (yGHGt), and 

environmental policy stringency (yEPSt) last and eco-innovation (yEt) first. We report the 

impulse response functions of a one standard deviation shock in Figure 4. 

The results suggest that the exogenous shock to eco-innovation (yEt) is only important 

and relatively pronounced for environmental policy stringency (yEPSt) but unimportant 

for both welfare cost of premature deaths due to high temperature (yWECt) and greenhouse 

gas emissions per unit of GDP (yGHGt). We also found that a shock to eco-innovation is 

likely to increase the stringency of environmental policy, and the effect may be relatively 

large and quite long-lasting. Before returning to zero, the initial shock could potentially 

linger for approximately 14 quarters. This suggests that environmental innovation has a 

substantial relationship with environmental policies. Given that environmental innovation 

can generate a positive feedback loop that supports the implementation of more stringent 
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Ft Figure 4: DECOMPOSITION OF σT 

SHOCK TO yEt 

(i) Response of yEP St 
 

(ii) Response of yGHGt 

 

(iii) Response of yW ECt 
 

Note: In this figure, we present the results of our decomposed global climate risk variables’ responses of 

an impact of shock to eco-innovation (yEt). Specifically, we assess the separate exogenous responses of 

welfare cost of premature deaths due to high temperature (yW ECt), greenhouse gas emissions per unit of 

GDP (yGHGt), and environmental policy stringency (yEP St) of shock to eco-innovation (yEt). The shock 

is a one standard deviation increase in eco-innovation (yEt). We include the posterior median of the 
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Ft 

Ft 

Ft 

Ft 

shock (blue) and 68% critical band or posterior coverage band (light blue shaded area). Our sample of 
33 advanced and emerging countries is between 1901 and 2020 in a quarterly frequency. 

 

environmental policies (Dinda, 2004). As innovation leads to more effective and efficient 

environmental solutions, policymakers are able to set more ambitious goals, which in turn 

can spur additional innovation (Kammerer, 2009; Vitenu-Sackey, 2022). 

 
3.4 Transmission Channel: R&D Intensity 

Interestingly, our benchmark results reveal an unexpected outcome, implying that eco- 

innovations have no effect on greenhouse gas emissions or the welfare cost of premature 

death due to high temperatures. However, we believe that a possible transmission channel 

that could support this relationship exists. As a result, in this section, we investigate the 

mechanism of R&D intensity transmission. This extension may allow us to consider not 

only the potential channel through which shock to eco-innovation could be considerably 

responded by global climate risk, but also the decomposed variables of global climate risk 

(σT ) and eco-innovations (yEt), as well as the transmissions of R&D intensity (yR&Dt). 

The outcome of our investigation is presented in Figure 5. 

In the left column panels, we present the exogenous shock to eco-innovation (yEt) 

and responses of global climate risk (σT ) and R&D intensity (yR&Dt) in the bottom and 

middle panels, respectively. Our findings suggest that R&D intensity (yR&Dt) is a powerful 

and important transmitter of eco-innovation (yEt) with the potential to impact global climate 

risk (σT ). Notably, we discovered that a positive shock to eco-innovation has the potential 

to lower global climate risk. This impact is relatively large and persistent over our response 

horizon. Specifically, it is likely to occur in the sixth quarter following a long- lasting shock. 

We further decompose eco-innovation (yEt) as climate change mitigation innovations (yCMt), 

climate change adaptation innovations (yCAt), and environmental management innovations 

(yEMt) in order to assess their heterogeneous impact on global climate risk (σT ) considering 

the possible transmissions of R&D intensity (yR&Dt). Our evidence suggests that shocks to 

climate change mitigation innovations (yCMt), climate change adaptation innovations (yCAt), 

and environmental management innovations (yEMt) and the response of global climate risk 
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Ft 

(σT ) do not differ from the shock to overall eco- innovation (yEt) considering the 

transmission mechanism of R&D intensity (yR&Dt), in 

 

Figure 5: SHOCK TO yEt IMPACT UPON σT 

TRANSMISSION OF yR&Dt 
 

 
 

 
Notes: This graph presents evidence of the impact of eco-innovation (yEt) shock on global climate risk 

(σT ) transmitted through R&D intensity (yR&Dt). The shock is a one standard deviation increase in 

eco-innovation (yEt). We include the posterior median of the shock (blue) and 68% critical band or 

posterior coverage band (light blue shaded area). Our sample of 33 advanced and emerging countries 
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Ft 

Ft 

Ft 

Ft 

is between 1901 and 2020 in a quarterly frequency. The left column of panels are the impact of eco- 

innovation (yEt) shock on global climate risk (σT ) transmitted through R&D intensity (yR&Dt). The shock 

is a one standard deviation increase in eco-innovation (yEt) in a trivariate VAR, yt = [yEt, σT , yR&Dt]. 

Our findings suggest that R&D intensity (yR&Dt) is a powerful and important transmitter of eco-

innovation (yEt) with the potential to impact global climate risk (σT ). 
 

Subsequently, we also decompose global climate risk (σT ) as welfare cost of prema- ture 

deaths due to high temperature (yWECt), greenhouse gas emissions per unit of GDP (yGHGt), 

and environmental policy stringency (yEPSt) which represent physical and transi- tion risks, 

respectively. Here, we assess the exogenous shock to eco-innovation and the re- sponses of 

welfare cost of premature deaths due to high temperature (yWECt), greenhouse gas emissions 

per unit of GDP (yGHGt), and environmental policy stringency (yEPSt) with a one standard 

deviation shock and the possible transmissions of R&D intensity (yR&Dt). Figure A2 

presents the findings. We find that transmissions of R&D intensity (yR&Dt) is relatively 

large and important for the relationship between welfare cost of premature deaths due to 

high temperature (yWECt), greenhouse gas emissions per unit of GDP (yGHGt), 

environmental policy stringency (yEPSt) and eco-innovation (yEt) shock. Essen- tially, a 

positive shock to eco-innovation (yEt) could reduce the welfare cost of premature deaths 

due to high temperature (yWECt) and greenhouse gas emissions per unit of GDP (yGHGt) on a 

long-term period. The effects are likely to be felt in the eighth and twelfth quarters 

following the initial shock, respectively. This revelation resonates with Porter’s win-win 

hypothesis which suggests that stricter environmental policies or regulations may coerce 

firms to invest heavily in environmental-friendly process through research and de- 

velopment to come up with innovations for compliance sake (see Porter, 1991, 1995; Porter 

and Linde, 1995). On the other hand, by complying with the environmental policies, they 

are likely to reduce their production and its associated costs. 

In contrast to our earlier findings in Figure 3 for environmental policy stringency (yEPSt), 

we found in our extended model with R&D intensity (yR&Dt) transmissions that shock to 

eco-innovation (yEt) has a permanent impact on environmental policy stringency (yEPSt). In 

contrast, a positive shock to eco-innovation (yEt) is met with a positive re- sponse from 

environmental policy stringency (yEPSt) beginning at time 0 and persisting thereafter, which 
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is relatively large and important and is facilitated by R&D intensity (yR&Dt) transmissions. 

Rennings et al. (2006) found that strengthening of environmental management systems 

could positively impact environmental process innovations possibly through the further 

investment in R&D. Also, assessing the drivers of eco-innovation, Kesidou and Demirel 

(2012) emphasised on stricter environmental policies as the signifi- cant driver for 

increased investment in R&D in eco-innovations at the firm level. 

Consistently, we have demonstrated that eco-innovations can lead to lower greenhouse 

gas emissions, lower welfare costs of premature deaths caused by high temperatures, and 

improved environmental policy stringency as a result of increased R&D intensity. As we 

have demonstrated, higher R&D intensity is frequently associated with more innovative 

outcomes, such as innovations in climate change mitigation, climate change adaptation, 

and environmental management. Consequently, eco-innovation can spread more rapidly 

across countries and regions (see Frondel et al., 2007), resulting in a greater reduction 

in global climate risk. As a result, firms and governments are more likely to allocate 

resources to research and development activities, this would eventually lead to higher R&D 

intensity. As eco-innovation can help reduce greenhouse gas emissions (see for example 

Arora and Cason, 1996; Dinda, 2004; Churchill et al., 2019; Lin and Zhu, 2019) and 

mitigate the effects of climate change, this investment may result in a more significant 

reduction in global climate risk. 

4 Conclusion 

Regardless of the success of efforts to reduce or eliminate carbon emissions, excess green- 

house gases will remain in the atmosphere for centuries to come, continuing to influence 

global climate (see Pindyck, 2021; Leon et al., 2023). Therefore, we have to explore 

negative emissions technologies that could assist in removing greenhouse gases from the 

atmosphere or oceans, or from their sources before they are released into the atmosphere. 

We explored the impact of available environmental-related technologies or innovation, also 

known as eco-innovation, on global climate risk. The objective of this study is to find out 

the dimension(s) of eco-innovations which is/are likely help in combating global climate 

risk. 

In view of our findings, higher R&D intensity has been shown to be frequently asso- 

ciated with more innovative outcomes, such as innovations in climate change mitigation, 
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adaptation, and environmental management. As a result, eco-innovation can spread faster 

across countries and regions, leading to a greater reduction in global climate risk. Given 

that environmental innovation can create a positive feedback loop that encourages the im- 

plementation of stricter environmental policies. Therefore, shocks to eco-innovation are 

relatively large and adversely important for global climate risk in a persistent manner, 

which is aided by research and development intensity. Apparently, all environmental- 

related innovations are considerably important for global climate risk mitigation. We have 

shown that eco-innovations can result in minimised temperature variability, reduced 

greenhouse gas emissions, lower welfare costs associated with premature deaths brought 

on by high temperatures, and stricter environmental policy as a result of increased R&D 

intensity. 

We acknowledge the potential limitations of our study owing to the inability to take 

into account, within the same observation, qualitative values that can change future values 

stemming from our backward extrapolation of the data from 1990 to 1901. Since it is not 

always accurate, especially when there are discrepancies within the available data. 

Notably, we have demonstrated that the nature and impact of global climate risk can only 

be evaluated over a longer time period, as our most recent sample does not provide 

conclusive findings in comparison to the entire sample. This is consistent with the 

argument made by Stern (2008) which stipulates that climate change risk could only 

become apparent over a long period of time based on empirical analyses. 
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Appendix A: Supplementary Results 

 
Figure A1: DECOMPOSITION OF yEt: yR&Dt TRANSMISSIONS 

RESPONSE OF σT 

(i) Shock to yCMt 
 

(ii) Shock to yCAt 
 

(iii) Shock to yEMt 
 

Note: In this figure, we present the results of our decomposed eco-innovation variables’ impacts on global climate 

risk (σT ) considering the transmission channel of R&D intensity (yR&Dt). Specifically, we assess the 

separate exogenous impact of shock to Climate Mitigation Innovations (yCMt), shock to Climate 
Adaptation Innovations (yCAt), and shock to Environmental Management Innovations (yEMt) on global 

climate risks (σT ). The shock is a one standard deviation increase in Climate Mitigation Innovations 
(yCMt), Climate Adaptation Innovations (yCAt), and Environmental Management Innovations (yEMt). 

We include the posterior median of the shock (blue) and 68% critical band or posterior coverage band (light 

blue shaded area). Our sample of 33 advanced and emerging countries is between 1901 and 2020 in a 

quarterly frequency. We find that higher R&D intensity is frequently associated with more innovative 

outcomes, such as innovations in climate change mitigation, climate change adaptation, and environmen- tal 

management. Apparently, this is likely to reduce global climate risks. 
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Ft 
Figure A2: DECOMPOSITION OF σT : yR&Dt TRANSMISSIONS 

SHOCK TO yEt 

(i) Response of yEP St 
 

(ii) Response of yGHGt 
 

(iii) Response of yW ECt 
 

Note: In this figure, we present the results of our decomposed global climate risk variables’ responses 

of an impact of shock to eco-innovation (yEt) considering the transmission channel of R&D intensity 

(yR&Dt). Specifically, we assess the separate exogenous responses of welfare cost of premature deaths due 
to high temperature (yW ECt), greenhouse gas emissions per unit of GDP (yGHGt), and environmental 

policy stringency (yEP St) of shock to eco-innovation (yEt). The shock is a one standard deviation increase 

in eco-innovation (yEt). We include the posterior median of the shock (blue) and 68% critical band or 

posterior coverage band (light blue shaded area). Our sample of 33 advanced and emerging countries is 

between 1901 and 2020 in a quarterly frequency. We find that eco-innovations can lead to lower 

greenhouse gas emissions, lower welfare costs of premature deaths caused by high temperatures, and 

improved environmental policy stringency as a result of increased R&D intensity
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Figure A3: DESCRIPTIVE STATISTICS - CONTINUED 
 

 

 

 

 

Notes: This graph depicts the average time series of environmental policy stringency index, welfare cost of 

premature deaths due to high temperature, and greenhouse gas emissions for countries from 1990 to 2020, 

respectively. These are the unweighted averages of all 33 countries sampled. 
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Figure A4: DESCRIPTIVE STATISTICS - CONTINUED 
 

 

 

 

 

Notes: This graph depicts the average time series of environmental management innovations, climate 

mitigation innovations, and climate adaptation innovations for countries from 1990 to 2020, respectively. 

These are the unweighted averages of all 33 countries sampled. 
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