Chief Editor

Dr. A. Singaraj, M.A., M.Phil., Ph.D. Editor

Mrs.M.Josephin Immaculate Ruba

EDITORIAL ADVISORS

- 1. Prof. Dr.Said I.Shalaby, MD,Ph.D.
 Professor & Vice President
 Tropical Medicine,
 Hepatology & Gastroenterology, NRC,
 Academy of Scientific Research and Technology,
 Cairo, Egypt.
- 2. Dr. Mussie T. Tessema,
 Associate Professor,
 Department of Business Administration,
 Winona State University, MN,
 United States of America,
- 3. Dr. Mengsteab Tesfayohannes, Associate Professor, Department of Management, Sigmund Weis School of Business, Susquehanna University, Selinsgrove, PENN, United States of America,
- 4. Dr. Ahmed Sebihi
 Associate Professor
 Islamic Culture and Social Sciences (ICSS),
 Department of General Education (DGE),
 Gulf Medical University (GMU),
 UAE.
- 5. Dr. Anne Maduka, Assistant Professor, Department of Economics, Anambra State University, Igbariam Campus, Nigeria.
- 6. Dr. D.K. Awasthi, M.SC., Ph.D. Associate Professor Department of Chemistry, Sri J.N.P.G. College, Charbagh, Lucknow, Uttar Pradesh. India
- 7. Dr. Tirtharaj Bhoi, M.A, Ph.D, Assistant Professor, School of Social Science, University of Jammu, Jammu, Jammu & Kashmir, India.
- 8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,
 Institute for Studies in Industrial Development,
 An ICSSR Research Institute,
 New Delhi- 110070, India.
- Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
 Associate Professor & HOD
 Department of Biochemistry,
 Dolphin (PG) Institute of Biomedical & Natural
 Sciences,
 Dehradun, Uttarakhand, India.
- Denradun, Ottaraknand, India.

 10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838 SJIF Impact Factor (2015): 3.476

EPRA International Journal of

Research & Development

Volume:1, Issue:3, May 2016

CC License

SJIF Impact Factor: 3.476

EPRA International Journal of Research and Development (IJRD)

ISSN: 2455-7838(Online)

Volume: 1 | Issue: 3 | May | 2016

TOTAL AND CONNECTED COMPLEMENTARY TREE DOMINATION NUMBER OF UNICYLIC GRAPHS

S. Muthammai¹

¹Government Arts College for Women (Autonomous), Pudukkottai - 622 001, Tamil Nadu, India

P. Vidhya²

²S.D.N.B. Vaishnav College for Women (Autonomous), Chennai - 600 044, Tamil Nadu, India

ABSTRACT

In this paper, some connected unicyclic graphs for which $\gamma_{tctd}(G) = \gamma_{ctd}(G)$ are found. Further, the connected unicyclic graphs for which $\gamma_{cctd}(G) = \gamma_{ctd}(G)$ and $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$ are characterized.

AMS Subject Classification: 05C69.

KEYWORDS: Complementary tree domination number, total complementary tree domination number and connected complementary tree domination number.

1 INTRODUCTION

Graphs discussed in this paper are undirected and simple. For a graph G(V, E), let V and E denotes its vertex set and edge set respectively. A graph G is unicyclic if it contains exactly one cycle.

L. Volkman has studied graphs having equal domination number and edge independence number [??]. He has also investigated graphs with equal domination number and covering number. J. Paulraj Joseph and S. Arumugam have investigated graphs with equal domination and connected domination numbers [??].

In this paper, connected unicyclic graphs for which $\gamma_{ctd}(G) = \gamma(G)$ and $\gamma_{ctd}(G) = \gamma(G) + 1$ are established.

In this paper, some connected unicyclic graphs for which $\gamma_{tctd}(G) = \gamma_{ctd}(G)$ are found. Further, the connected unicyclic graphs for which $\gamma_{cctd}(G) = \gamma_{ctd}(G)$ and $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$ are characterized.

Notation 1.1.

 $\text{Let } P_m \text{ be a path on } m \text{ (m} \geq 2) \text{ vertices and let } P_1 = K_1 \text{ and } P_m^+ = P_m \circ K_1 \text{ (m} \geq 1) \text{ be the Corona of } P_m \text{ and } K_1.$

- (i) By joining P_m^+ ($m \ge 1$) at a vertex v of C_n , ($n \ge 3$), it is meant that, joining a vertex of degree 2 of P_m^+ to v with an edge.
- (ii) By joining $K_{1,n}$ ($n \ge 1$) at a vertex v of C_n , it is meant that, joining the central vertex of $K_{1,n}$ to v with an edge.
- (iii) By attaching a pendant edge (or a path P_n , $n \ge 3$) at a vertex v of a graph G, it is meant that, merging a vertex of the pendant edge (or a pendant vertex of P_n , $n \ge 3$) with v.
- (iv) By attaching a tree to a vertex v of a graph G, it is meant that, merging a pendant vertex of the tree with v.

Notation 1.2.

The following classes of unicyclic graphs can be defined.

Let $H_1^{(t)}$ be the graph obtained from C_n ($n \ge 5$) by attaching a pendant edge at each of the t vertices of C_n such that (n-t) consecutive vertices of C_n have degree 2 ($t \le n$).

- (i) Let $G_1^{(t)}$ be the class of unicyclic graphs $H_1^{(t)}$.
- (ii) Let $\mathcal{G}_2^{(t)}$ be the class of unicyclic graphs obtained from $H_1^{(t)}$ by joining at least one P_m^+ ($m \ge 1$) at at least one vertex of t consecutive vertices (t $\le n$) mentioned above.
- (iii) Let $\mathcal{G}_3^{(t)}$ be the class of unicyclic graphs obtained from $H_1^{(t)}$ by joining at least one P_m^+ ($m \ge 1$) at at least one of the two end vertices of above t consecutive vertices of C_n .

Theorem 1.1.

Let G be a connected unicyclic graph with the cycle C_n , $n \ge 5$. Let T be the collection of trees T in G such that each vertex of T is adjacent to a vertex of degree atleast 2 in G and V(G) - V(T) has no isolated vertices. If t = max{ |T| : T \in T}, then $\gamma_{tctd}(G) = p - t$.

Proof.

Let T be the collection of trees T in G such that each vertex of T is adjacent to a vertex of degree atleast 2 in G such that |T| is maximum.

Let D = V(G) - V(T) and V(G) - D = V(T) and each vertex in V(G) - D is adjacent to a vertex in D and since V(G) - D is a tree, D is a ctd-set of G. Also $V(G) - V(T) \cong D$ contains no isolated vertices and hence, D is a total ctd-set of G.

Therefore, $\gamma_{tctd}(G) \le |D| = |V(G) - V(T)| = p - t$. Also $\gamma_{tctd}(G) \ge p - t$ and hence, $\gamma_{tctd}(G) = p - t$.

In the following, $\gamma_{totd}(G) = \gamma_{ctd}(G)$ are found for the connected unicyclic graphs.

- 1. Let G be a connected unicyclic graph with C_3 as the unique cycle. If G is one of the following graphs, then $\gamma_{tetd}(G) = \gamma_{ctd}(G)$.
 - G is a graph obtained from C₃ by
 - (i) attaching pendant edges at a vertex of C₃
 - (ii) attaching paths of length atleast 3 at a vertex of C₃ and pendant edges at another vertex of C₃
 - (iii) attaching paths of length atleast 3 at all the vertices of C₃
 - (iv) attaching pendant edges at a vertex of C_3 and attaching paths of length atleast 3 at another vertex such that vertices of the paths at distance atleast two from the vertex of C_3 is a support.
- 2. Let G be a connected unicyclic graph with C_4 as the unique cycle. If G is one of the following graphs, then $\gamma_{tetd}(G) = \gamma_{ctd}(G)$.
 - G is a graph obtained from C₄ by
 - (i) attaching paths of length at least 3 at n vertices of C_4 , where n = 1, 2, 4.
 - (ii) attaching paths of length atleast 3 at two adjacent vertices of C₄ and pendant edges at atleast one of the remaining vertices of C₄.
 - (iii) attaching a path of length atleast one at a vertex v of C_4 and then paths of length atleast 2 at the vertex at distance two from v.
 - (iv) attaching pendant edges at a vertex v of C_4 and attaching paths of length atleast 3 at the vertex w at distance two from v such that the vertices of the paths at distance atleast two from w are supports.
 - (v) $G \cong C_4$
- 3. Let G be a connected unicyclic graph with the cycle C_5 . If G is one of the following graphs, then $\gamma_{tetd}(G) = \gamma_{ctd}(G)$.
 - G is obtained from C₅ by
 - (i) attaching a path of length 2 either at a vertex of C_5 (or) each at two vertices $u,\,v$ of C_5 such that $d_{C_5}(u,v)=2$
 - (ii) attaching paths of length at least 3 at n vertices of C_5 , n = 1, 2, 3, 5.
 - (iii) joining stars either at a vertex of C_5 or at two vertices u, v of C_5 such that $d_{C_5}(u, v) = 2$.
- 4. Let G be a connected unicyclic graph with the cycle C_n , $n \ge 6$.
 - If G is one of the following graphs, then $\gamma_{tctd}(G) = \gamma_{ctd}(G)$.
 - (i) attaching paths of length at least 3 at k vertices of C_n , where k = 1, 2, ..., n 2, n
 - (ii) joining stars at k vertices of C_n , where $1 \le k \le n-4$.
 - (iii) attaching a path of length 2 at at least k adjacent vertices of C_n , where $1 \le k \le n-4$.

Theorem 1.2.

Given an integer $a \ge 1$, there exists a connected graph G such that $\gamma_{tetd}(G) = \gamma_{ctd}(G) + a$.

Proof.

Let G be the graph obtained by attaching (a+1) paths of length 2 at a vertex of C_n , $n \ge 5$. Then, the set having (n-2) adjacent vertices of C_n and (a+1) pendant vertices form a minimum ctd-set and hence

$$\gamma_{ctd}(G) = n - 2 + a + 1$$

= n + a - 1

The set having (n-3) adjacent vertices of C_n , (a+1) pendant vertices and (a+1) supports form a minimum tctd-set of G and hence

$$\gamma_{\text{tctd}}(G) = n - 3 + 2(a + 1)$$

= n + 2a - 1

П

П

Therefore, $\gamma_{tctd}(G) = \gamma_{ctd}(G) + a$, $a \ge 1$.

Theorem 1.3.

Let G be a connected unicyclic graph having p vertices with the cycle C_n , $n \ge 3$. Then, $\gamma_{cctd}(G) \ge p-2$, $p \ge 4$.

Proof.

Let G be a connected unicyclic graph with the cycle C_n , $n \geq 3$ having p vertices.

Let D be a connected ctd-set of G. Then, $|D| \le p-1$ and < V-D> is a tree. Since D is a ctd-set, D contains all the pendant vertices of G. Also, since < D> is connected, D contains all the cut vertices of G. Therefore, V-D contains vertices of C_n , having degree 2 in G.

If $\langle V - D \rangle$ has P_3 as a subgraph, then the central vertex of P_3 is not adjacent to any vertex in D.

Hence, $\langle V - D \rangle \cong K_2$ or K_1 and $|D| \ge p - 2$.

Therefore, $\gamma_{cctd}(G) \ge p - 2$.

In the following, connected unicyclic graphs for which $\gamma_{cctd}(G) = p - 2$ and p - 1 are characterized.

Theorem 1.4.

Let G be a connected unicyclic graph having p (p \geq 4) vertices with the cycle C_n , n \geq 3. Then, $\gamma_{cctd}(G)$ = p - 2 if and only if there exists atleast two adjacent vertices of C_n which are of degree 2 in G.

Proof.

Assume there exists two adjacent vertices say u, v of C_n , having degree 2 in G. Let $D = V - \{u, v\}$ is a cctd-set of G. Therefore, $|D| \le p - 2$ and hence, $\gamma_{cctd}(G) \le p - 2$.

Using Theorem ??, $\gamma_{cctd}(G) = p - 2$.

Theorem 1.5.

Let G be a connected unicyclic graph having p (p \geq 4) vertices with the cycle C_n , $n \geq 3$. Then, $\gamma_{cctd}(G) = p-1$ if and only if either

- (i) the vertices of C_n having degree 2 in G are independent in G (or)
- (ii) each vertex of C_n has degree at least 3 in G.

Proof.

Assume one of the conditions (i) and (ii) holds.

By Theorem 1.3, $\gamma_{cctd}(G) \ge p-2$. By (i) or (ii), there exists no edge in C_n such that each of its vertices is of degree 2 in G.

Hence, $\gamma_{\text{cctd}}(G) \neq p-2$ and therefore, $\gamma_{\text{cctd}}(G) = p-1$.

Conversely, assume $\gamma_{cctd}(G) = p - 1$.

Let D be a $\gamma_{cctd}\text{-set}$ of G. Then ${<\!V-D\!>}\,\cong K_1.$

If condition (i) and (ii) are not true in G, then $\gamma_{cctd}(G) = p - 2$.

Theorem 1.6.

Let G be a connected unicyclic graph with the cycle C_n , $n \ge 3$. Then, $\gamma_{cctd}(G) = \gamma_{ctd}(G)$ if and only if G is C_n ($n \ge 3$) or G is a graph obtained from C_3 by attaching atleast one pendant edge at exactly one vertex of C_3 .

Proof.

Let G be a connected unicyclic graph having p (p \geq 4) vertices with the cycle C_n, n \geq 3.

Assume $\gamma_{\text{cctd}}(G) = \gamma_{\text{ctd}}(G)$.

For the unicyclic graphs, $\gamma_{cctd}(G) = p - 1$ or p - 2.

Therefore, $\gamma_{ctd}(G) = p - 1$ or p - 2.

Let $\gamma_{\text{ctd}}(G) = p - 1$.

Then, G is a star on p vertices. But, G contains a cycle.

Therefore, $\gamma_{ctd}(G) = p - 2$.

Since G contains a cycle by Theorem ??, G is one of the following graphs.

 C_p , K_p (or) G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph.

But G is unicyclic. Therefore, G is the graph obtained from C_3 by attaching pendant edges at atleast one of the vertices of the cycle C_3 .

If G is the graph obtained from C_3 by attaching pendant edges at atleast two vertices of C_3 , then $\gamma_{cctd}(G) = p - 1$. Hence, G is one of the graphs given in the theorem.

Conversely, if G is C_n ($n \ge 3$) or G is a graph obtained from C_3 by attaching at least one pendant edge at exactly one vertex of C_3 , then $\gamma_{cctd}(G) = \gamma_{ctd}(G)$.

In the following, $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$ are found for the unicyclic graphs.

Theorem 1.7.

Let G be a connected unicyclic graph having p (p \geq 4) vertices with the unique cycle C₃. Then, $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$ if and only if G is one of the following graphs.

- (i) G is obtained from C₃ by attaching pendant edges at atleast 2 vertices of C₃.
- (ii) G is obtained from C₃ by attaching a path of length atleast 2 at a vertex, say v of C₃.
- (iii) G is obtained from C_3 by joining $K_{1,n}$ ($n \ge 2$) at a vertex, say v of C_3 .
- (iv) G is the graph obtained from C_3 by attaching a path P of length at least 3 at a vertex of C_3 and then attaching pendant edges at the support and the pendant vertex of P.
- (v) G is obtained from the graph mentioned in (ii), (iii) or (iv) by attaching atleast two pendant edges at v.

Proof.

Let G be a connected unicyclic graph having p (p \geq 4) vertices with the cycle C₃. Assume $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$.

By Theorems ?? and ??, $\gamma_{cctd}(G) = p - 1$ or p - 2.

Therefore, $\gamma_{ctd}(G) = p - 2$ or p - 3.

Case 1. $\gamma_{cctd}(G) = p - 1$.

Therefore, $\gamma_{ctd}(G) = p - 2$.

But, $\gamma_{ctd}(G) = p - 2$ if and only if G is isomorphic to one of the following graphs:

 K_p , C_p or G is the graph obtained from a complete graph by attaching pendant edges at atleast one of the vertices of the complete graph (by Theorem ??). Since G is unicyclic, G is either C_p (or) G is the graph obtained from C_3 by attaching pendant edges at atleast one of the vertices of C_3 .

If pendant edges are attached at exactly one vertex, then $\gamma_{cctd}(G) = \gamma_{ctd}(G)$.

Therefore, G is the graph obtained from C₃ by attaching pendant edges at atleast two vertices of C₃.

Case 2. $\gamma_{cctd}(G) = p - 2$.

By Theorem ??, $\gamma_{cctd}(G) = p - 2$ if and only if there exists at least two adjacent vertices of C_n which are of degree 2 in G. Therefore, G is the graph obtained from C_3 by attaching trees at exactly one vertex of C_3 .

If either G has an induced path P of length at least 3 such that the degree of each internal vertex of P is at least 3 in G and the end vertices of P are not the pendant vertices of G (or) if G has $K_{1,n}$ ($n \ge 3$) as an induced subgraph such that degrees of pendant vertices of $K_{1,n}$ in G are at least 2 and the degree of central vertex of $K_{1,n}$ is at least n, then V(G) - V(P) or $V(G) - V(K_{1,n})$ is a ctd-set of G and hence $\gamma_{crd}(G) \le p - 4$.

Therefore, G is one of the graphs given in (ii), (iii), (iv) and (v).

Conversely, if G is the graph given as in (i), then $\gamma_{ctd}(G) = p - 2$, whereas $\gamma_{cctd}(G) = p - 1$. For the graphs G mentioned in (ii), (iii), (iv) and (v), $\gamma_{ctd}(G) = p - 3$ and $\gamma_{cctd}(G) = p - 2$.

In a similar manner, the following theorem can be proved.

Theorem 1.8.

Let G be a connected unicyclic graph with the cycle C_4 , then, $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$ if and only if G is one of the following graphs.

www.eprajournals.com Volume: 1/ Issue: 3/ May 2016

35

- (i) G is obtained from C₄ by attaching pendant edges at a vertex or any two adjacent vertices of C₄.
- (ii) G is obtained from C₄ by attaching a path of length atleast 2 at a vertex, say v of C₄.
- (iii) G is obtained from C_4 by joining $K_{1,n}$ ($n \ge 2$) at a vertex, say v of C_4 .
- (iv) G is obtained from C_4 by attaching a path P of length at least 3 at a vertex of C_4 and then attaching pendant edges at the pendant vertex (or) the support of P (or) at both.
- (v) G is obtained from C_4 by attaching a path of length 2 and then attaching pendant edges at a pendant vertex of the path.

Theorem 1.9.

Let G be a connected unicyclic with the cycle C_n ($n \ge 5$). Then, $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$ if and only if G is one of the following graphs.

- (i) G is obtained from C_n ($n \ge 5$) by attaching pendant edges at atleast one vertex of C_n such that distance between any two vertices of C_n , which are the supports of G, is atleast two and the vertices of C_n , which are not the supports of G, are not independent.
- (ii) G is obtained from C_n ($n \ge 5$) by attaching trees (which are not stars) to exactly one vertex, say v of C_n such that the vertices of the trees which are adjacent to v are not the supports of the trees (or G).
- (iii) G is obtained from C_n by joining $K_{1,n}$ ($n \ge 1$) to exactly one vertex of C_n .

Proof.

Let G be any connected unicyclic graph with the cycle C_n ($n \ge 5$) as the unique cycle having p vertices such that $\gamma_{cctd}(G) = \gamma_{ctd}(G) + 1$.

If $G \cong C_n$, then $\gamma_{cctd}(G)$ = $\gamma_{ctd}(G)$. Hence, G has atleast one support

(1) Assume G is the graph obtained from C_n ($n \ge 5$) by attaching pendant edges at vertices of C_n . If any two adjacent vertices of C_n are supports of G, then $\gamma_{ctd}(G) = p - 4$ and $\gamma_{cctd}(G) = p - 2$.

Hence, no two adjacent vertices of C_n are supports of G.

If the vertices of C_n , which are not the supports of G, are independent, then G is the graph obtained from C_n by attaching pendant edges at vertices of C_n which are at distance two. For this graph G, $\gamma_{ctd}(G) = p - 3$ and $\gamma_{cctd}(G) = p - 1$. Therefore, the set of vertices of C_n , which are not the supports of G, are not independent.

In this case, number of supports of G is $\leq \left\lfloor \frac{n-1}{2} \right\rfloor$.

Hence, G is the graph given in (1).

(2) Assume G is the graph obtained from C_n ($n \ge 5$) by attaching trees at any vertex of C_n . If trees are attached at atleast two vertices of C_n (or) trees together with pendant edges are attached at atleast one vertex, then also $\gamma_{cctd}(G) \ge \gamma_{ctd}(G) + 2$.

Therefore, G is the graph obtained from C_n by attaching trees at exactly one vertex, say v of C_n.

If a vertex of the tree adjacent to v is a support and if there exists at least one nonpendant vertex adjacent to this support, then also $\gamma_{cctd}(G) \ge \gamma_{ctd}(G) + 2$.

П

36

Hence, vertices of the tree adjacent to v is not a support (or)

If a vertex of the tree adjacent to v is a support, then there exists no nonpendant vertex adjacent to this support.

Therefore, we have the graphs given in (i), (ii) (or) (iii).

Conversely, if G is one of the graphs given in (i), (ii) (or) (iii),

then $\gamma_{\text{cctd}}(G) = \gamma_{\text{ctd}}(G) + 1$.

Theorem 1.10.

There exists a connected graph G such that $\gamma_{cctd}(G) = \gamma_{ctd}(G) + a$, where a is an integer (a ≥ 2).

Proof.

Consider a cycle C_n ($n \ge 5$) on n vertices.

Let P_{a-1} be a path on (a-1) vertices in C_n , $2 \le a \le n-2$.

Attach a pendant edge and a path of length 2 at one of the end vertices of P_{a-1} and attach exactly one pendant edge at each of the remaining (a–2) vertices. The resulting graph G has $\gamma_{cctd}(G) = \gamma_{ctd}(G) + a$.

REFERENCES

- 1. Frank Harary, Graph Theory, Narosa Publishing House, Reprint, 2001.
- 2. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
- 3. S. Muthammai, M. Bhanumathi and P. Vidhya, Complementary tree domination in graphs, International Mathematical Forum, 6(26) (2011), 1273–1283.
- 4. O. Ore, Theory of Graphs, Amer. Math Soc. Colloq. Publ., 38, Providence, (1962).
- 5. L. Volkman, On graph with equal domination and covering numbers, Discrete Math., 51 (1994), 211-217.