

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |295 |

YARWEB: “WEB-BASED GENERIC YARA RULE GENERATOR”

Mr. Shreyas Biju Nair1, Mr. Laalas Tadavarthy2, Mr. Kailas M K3,

Mr. Gowrishankar T O4
1Computer Science and Engineering, Presidency University, Bangalore, India
2Computer Science and Engineering, Presidency University, Bangalore, India
3Computer Science and Engineering, Presidency University, Bangalore, India
4Computer Science and Engineering, Presidency University, Bangalore, India

Article DOI: https://doi.org/10.36713/epra15953

DOI No: 10.36713/epra15953

ABSTRACT
In the modern 21st century, surfing the internet has become difficult due to the rise of malware and adware. Sensitive information

is often a risk to be stored without encryption. If malware does infiltrate, devising a solution to mitigate the risks is difficult and

tiresome. The proposed framework presents a web-based approach to automatically generate a YARA rule for a malicious file

uploaded by the user. Since it is a search engine-based model, it becomes extremely portable and useful. The testing of this prototype

depicts that it is fully capable of detecting malicious samples with an average accuracy of 0.80.

KEYWORDS—Malware Analysis, YARA Rules, Generic Rules, Malicious Strings, Fully Automated.

I. INTRODUCTION
The cyber realm is rife with malicious programs, often

referred to as malware, designed to exploit vulnerabilities and

inflict harm upon unsuspecting systems. Recent years have

witnessed a surge in the quantity, diversity, and

sophistication of these threats, necessitating automated

solutions for their analysis and mitigation [1].

Among the various methodologies proposed, signature-based

detection, despite its limitations, remains a cornerstone of

endpoint security due to its simplicity, speed, and

effectiveness. Anti-virus software leverages signature

matching by maintaining a database of known malicious

patterns (signatures). During scans, files are hashed (e.g.,

using MD5) and compared against this database. A match

triggers alarm bells, flagging the file as a potential threat.

However, this approach hinges on frequent database updates

and comprehensive signature coverage for every new

malware variant [2]. The inherent sensitivity of cryptographic

hashes to minor code alterations can render them ineffective

against polymorphic malware strains. Maintaining and

updating vast databases of known signatures also poses

logistical challenges.

Seeking to address these limitations, researchers have

explored alternative signature-based techniques like string-

based and rule-based approaches. YARA, a popular

framework, exemplifies this effort, offering a powerful

pattern-matching engine for scanning large datasets. While

effective, YARA relies on meticulous rule creation,

demanding expert knowledge and extensive malware

analysis experience. The upkeep and adaptation of these rules

further add to the complexity.

This work aims to bridge this gap by automating the

generation of effective YARA signatures for known malware

samples. The objective is to develop signatures capable of

identifying new malware variants with high accuracy

(precision and recall) while minimizing false positives [3].

The proposed methodology focuses on generating signatures

for Microsoft Windows executables.

The subsequent sections delve deeper into these topics:

section II provides all the details about YARA rules and its

format. Section III provides research-based studies of

multiple existing works. Section IV depicts a comprehensive

comparison of YarWeb with its competitors. Sections V and

VI revolve around the proposed framework and extended

login controls respectively. Section VII reveals the intricacies

and usefulness of the results generated. Section VIII

concludes the research paper.

II. YARA RULES
YARA rules serve as meticulous blueprints for identifying

malicious code. They operate by seeking out specific

patterns—known as signatures or strings—within files,

folders, or processes, and comparing them to those associated

with documented malware [4]. These rules are composed of

three essential components: meta, strings, and condition.

Meta is the section that provides descriptive information

about the rule, such as its author, purpose, and creation date.

Strings are the heart of YARA's detection as the capabilities

of the rule lie within its string definitions. These strings fall

into three distinct categories: Text, hexadecimal, and regular

https://doi.org/10.36713/epra15953

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |296 |

expression strings [5]. Text strings are readable text

sequences, potentially enhanced with modifiers like nocase

(case-insensitive matching), ASCII, wide (Unicode), and

fullword (whole-word matches) for refined control [6].

Hexadecimal strings represent raw byte sequences, offering

flexibility through wildcards (?), jumps ([n-m]), and

alternatives (|) to accommodate variations [6].Regular

expression strings, introduced in YARA 2.0, extend pattern-

matching capabilities beyond straightforward text and hex

sequences, enabling intricate matching logic [6]. Condition is

the final section that acts as the gatekeeper, determining

whether a rule fires or remains dormant. It specifies the

minimum number of strings that must successfully match

within a target file to warrant a malware classification [7].

The condition itself is expressed as a Boolean expression,

mirroring those found in common programming languages

[6].

By meticulously crafting these rules, security professionals

can arm YARA with the knowledge necessary to pinpoint

malware amidst vast datasets, empowering swift and

effective threat mitigation.

Fig. 1. YARA Rules: Example

III. RELATED WORK
Automatic generation of YARA rules became the most

sought-after method because generating rules manually by

analyzing strings becomes a tedious and time-consuming

task. This led to the development of tools that perform the

previously mentioned task with efficiency. Here, three such

tools are explained: yaBin, yaraGenerator, and yarGen.

A. yaBin

Within the arsenal of YARA rule generation tools, yaBin

stands out for its unique approach to identifying malware.

Developed by the Alien Vault Open Threat Exchange (OTX)

community, this Python-based tool zeroed in on rare

functions lurking within malware samples or families [8].

yaBin meticulously scans code for function prologues, which

are telltale markers that signal the beginning of a function. It's

akin to spotting the opening lines of a chapter in a book. To

ensure focus on the truly distinctive, yaBin cross-references

identified strings against a comprehensive whitelist of

frequently used library functions. The resulting YARA rules

are crafted as lists of hexadecimal strings, capturing the

unique byte sequences associated with rare functions. When

scanning suspected malware files, yaBin compares these

fingerprints, seeking similarity in their byte-level

composition. A close match raises a red flag, indicating a

potential malicious presence.

B. yaraGenerator

Developed by Chris Clark, yaraGenerator takes a distinct

approach to crafting YARA rules, prioritizing adaptability to

different file types [9]. This Python-based tool recognizes

that malware can infiltrate systems through various disguises.

yaraGenerator meticulously analyzes code, identifying

strings that hold the potential to distinguish malicious code

from benign files. It then leverages code refactoring

techniques to streamline these strings, enhancing their

effectiveness as malware fingerprints. To ensure focus on

identifying truly unique characteristics, yaraGenerator

employs a blacklist of roughly 30,000 common strings,

organized by file format. This filter eliminates strings that

frequently appear in legitimate software, reducing the

likelihood of false positives. The resulting YARA rules are

crafted with sensitivity to the specific file format being

examined. This attention to detail ensures that the signatures

effectively capture the unique patterns that often signal

malware within each distinct file type.

C. yarGen

yarGen stands apart for its innovative use of machine learning

and natural language processing techniques. It employs fuzzy

regular expressions, a Naive Bayes classifier, and a Gibberish

Detector to meticulously analyze code, discern patterns, and

pinpoint those strings and opcodes most likely to signal the

presence of malware [10]. To ensure precision, yarGen cross-

references identified strings and opcodes against extensive

databases of known, legitimate software. This filtering

process eliminates common elements, leaving behind the

more distinctive patterns that often characterize malicious

code. The resulting YARA rules feature a carefully selected

set of strings and opcodes, typically capped at 20 to maintain

operational efficiency. These elements are chosen based on

their assigned scores, reflecting their potential for accurately

identifying malware.

IV. OBJECTIVES
 YarWeb is a unique tool that automatically generates

generic YARA rules of a specific malware signature on a

web-based platform. The objectives that this project aims to

achieve or have already achieved are listed below:

● Web-based: YarWeb’s front end is entirely built on

HTML, CSS, and Javascript. Being web-based is

easier to navigate and use when compared to

Command-line based tools.

● Login controls: This is the only YARA-related tool in

the market that has production-ready features like a

login page. YarWeb ensures that users are allowed to

create their profiles and their work is isolated from one

another.

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |297 |

● Admin functionalities: Adding to the production-ready

environment, an admin has the capabilities to monitor

other users and provide input.

● Rule Updation: Rules created or existing in the

database can be uploaded on YarWeb without a hassle.

● Portability: Since the project is web-hosted, it is OS-

independent and only minimal Python packages are

needed for YarWeb to function.

● Fast processing: YarWeb works on string matching

and concatenation. This ensures that the YARA rule is

produced within seconds.

IV. COMPARISON WITH YARWEB
Even though these tools automatically produce YARA

rules, there are major drawbacks to them. Some of these

drawbacks are:

● These tools are dependent on a command terminal to

work. They are to be installed and commands are to be

remembered for the functioning of these tools.

● They are not portable. Installing dependencies and

packages is time-consuming.

● Processing of these rules requires large databases to be

downloaded in the host server. This takes up space.

● Most of these tools take up to 10 seconds or more to

produce their rules, which makes them less efficient.

● Some of these tools do not create a generic rule for a

particular signature. They tend to be very specific to a

file and its extension.

● They are not production-ready. They are programs

working on Python scripts and do not hold any other

corporate or production-based association.

YarWeb meets all these above-mentioned conditions and

does more. Here, yarWeb is comprehensively compared with

a relevant competitor-yarGen.

TABLE I: COMPARISON BETWEEN YARWEB AND YARGEN

Features YarWeb yarGen

Web Based Yes No

Precision 0.80 0.793

Portable Yes No

Processing Time 3 seconds 34 seconds

Ready to be integrated

to a larger software

Yes No

Cross-platform Yes No

Login/Admin controls Yes No

Test the produced rule Yes No

Update the produced

rule

Yes No

Check if the file is

malicious or not

Yes No

User interaction Interactions with

GUI/Web

platform

Commands

are used

Produces extra rules

(super rules) which

causes redundancy

No Yes

V. PROPOSED FRAMEWORK
YarWeb is built entirely on Python and is completely open

source. This makes the code easy to review and extend. Since

it works primarily on the web, web-based technologies are

used, such as HTML, CSS, Javascript, and JQuery. The

integration between the scripts and the HTML templates is

done using Flask.

Fig. 2. Working of YarWeb

As shown in Fig. 2, a linear approach is followed to get to the

main functioning of the product. This process can be broken

down into 7 subsequent processes: Creating databases,

Information retrieval, Login process, Admin controls, About

the product, Creating the rule, and Testing the rule. Here,

these functions are explained individually.

D. Creating Databases:

This process involves two steps: Collecting malware samples

and Extracting malicious strings from the samples, as shown

in Fig. 3. YarWeb sources its samples entirely from

MalwareBazaar. This platform has a database containing

various types of samples wherein a particular sample can be

searched by a hash (MD5, SHA256, SHA1), imphash, tlsh

hash, ClamAV signature, tag, or malware family.

This first stage involves the selection of the most commonly

spotted malware signatures. Once a signature has been

decided on, malware samples are downloaded on the website

in a sandbox environment. It is important to download the

files on a virtual/sandbox environment so that the host system

is isolated from the off chance of an accidental activation of

the live malware. Similarly, samples for other such signatures

are collected.

The second stage involves extracting the malicious strings

using tools like PEStudio. PEStudio helps to identify

unknown/unique strings in the file system that may/may not

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |298 |

be malicious. These could be strings or hex codes. Once these

strings are noted, they are recorded in a .csv file. YarWeb’s

databases are these .csv files, mostly containing only two

columns: Malware_sha256 (name of the malware) and

Malicious Strings. The larger the database, the more accurate

would be the rules produced. .csv files are preferred because

they are easier to read since the data is presented in a tabular

manner, and also because pandas often support only files of

that extension.

Fig. 3. Creation of database and other steps

E. Information Retrieval page

Creating the database is an entirely developer-related step. As

a user/customer, YarWeb initially displays a landing page

that provides all the necessary fundamental information on

YARA rules and how it functions. This page is purely built

for information consumption and retrieval from a third-party

point of view. The webpage is fluid and interactive with

rolling gifs and a professional backdrop. Throughout the

project, one page leads to the other through buttons. Once the

customer clicks on the Login button, it will lead to the Login

page subsequently.

F. Login page

The login page contains two important tabs: For existing

users and new users. Existing users can log in using their

credentials whereas new users will be led to a tab wherein

they are allowed to fill out the form to create credentials.

These functionalities will be explained in detail below:

New Users

These users will have to fill in four important details to create

their accounts: Name, Email, Password, and Confirm

Password. These input fields are created using HTML and

validated using Javascript. This means the email field will

check whether the string inputted is in the standard email

format. The password field is also validated, hence it follows

the basic password requirements. If these input field

requirements are not met, the user will not be allowed to

proceed with the process. The Python script imports the

SQLAlchemy package, which then produces a users.db file

in the host’s environment. All the credentials created will be

stored in this .db file. YarWeb ensures that the password is

not stored in plaintext. An import package, bcrypt, is an

adaptive cryptographic hash function for passwords. This

adds a layer of security to the entire project.

Existing Users

These users will have to fill in two important fields to log in:

Registered email ID and password. Input validations are

applied in this tab as well. When the user inputs their

credentials and clicks on the Login button, a backend process

is triggered. The credentials are checked in a linear one-to-

one manner. First, the program identifies the user's email and

searches the users.db database file to flag it. If the email is

not found, the flag is returned as null, and the user is

displayed an error message. However, if the email matches

with the list of email IDs in the database, then the flag is

returned as True or 1. After this, the program then checks if

the passwords are matched. The password that was inputted

by the user is then hashed using bcrypt. This hash value is

compared with the existing hash in the database. If the values

match, another flag is returned and the user will be logged in.

The user is then led to a page that displays all the information

about YarWeb, as shown in Fig. 4. Python script also includes

session management using cookies to ensure that after the

user logs in, it is impossible to return to the login page until

and unless the session key expires. This prevents unnecessary

form submissions and multiple logins.

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |299 |

Fig. 4. User/Customer’s login and workflow

Admin User:

The admin will have additional controls that are inaccessible

to the regular users. Moreover, the login system does not

check the database for admin credentials as they are

hardcoded in the Python script. This isolates the admin

credentials from losing control over the program when an

unfortunate data breach occurs because the credentials will

not be a part of the user database. Admin also gains specific

controls: User interaction monitoring and Rule updation, as

shown in Fig. 5. Both these features are located on a single

platform. The Dashboard has a minimal, well-organized

layout that ensures all the features are easily accessible and

monitorable.

The first part of the dashboard is the User interaction

monitoring system. Here, the details of the users are

specified. The fields mentioned are Username(email),

Number of Logins, and the total time spent on the framework.

Information about the users is easily identifiable as they are

displayed in floating containers, coded entirely using CSS.

The number of logins field shows the cumulative figure of the

number of successful logins, not the number of login

attempts. This works by using an incremental count variable

which increments every time the login program returns a flag

positive during the login process. However, the admin is not

given the control to delete the user or read their credentials,

as this would be unprofessional and against an Information

Technology Administrator’s etiquette.

Fig. 5. Admin’s login and workflow

The second part of the dashboard is all about Rule Updation.

This provides the functionality for the admin to update the

existing YARA rules on the go. YarWeb does this, by letting

the admin pick a signature from the list of recorded malicious

signatures. Once the signature has been decided on, the admin

can download a template. This template is a text file that

depicts the format for the strings required for the updation.

The admin can then edit the downloaded template, and

modify it with strings. Then this file can be uploaded to the

same section using a direct Upload button. In the backend,

the Python script appends these strings at the end of the

existing strings in the rule. This is done so by looking for the

string “condition:” since this happens to be the attribute

present after the strings. After locating this, the strings from

the template are concatenated and saved. The aim of this

feature is quick-updation. If the YARA rule of that signature

were very lengthy, it would be difficult and time-consuming

for the admin to search through the existing strings to add

strings of choice. Auto-save ensures that the rule is updated

and saved without manually clicking on the Save button of

the file. Since the file name of the YARA rule does not

change from this process, the updated YARA rule can be

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |300 |

directly used for rule testing against a particular malicious

file. Even though the template provides a format of a singular

string, it is possible to modify it to numerous strings which

can be added to the rule. The string given in the template is

just for format reference, there is no cap on the number of

strings.

G. About the product page:

This page serves the purpose of educating the user about

YarWeb and its functioning before using the application.

Information is structured in an informative and minimal

manner. Complicated and technical information is not

specified here. The webpage’s User Interface (UI) is similar

to the UI used in the landing page (A). The only difference is

that this page can only be accessed after a successful login

from either a user/customer or an admin. The “Get Started”

button leads to the next page.

H. Creating the rule:

This is the heart of the proposed framework. The key aspect

of this stage is the production of the YARA rule. Initially, the

user/admin will be greeted with a plethora of malicious

signatures to choose from. These signatures are displayed in

containers of their own, with distinct images for easy

identification. This is done entirely on CSS. Currently, four

extremely common malicious signatures are used for rule

generation: AgentTesla, SnakeKeyLogger, RedLineStealer,

and Loki. Agent Tesla, a . NET-based keylogger, lurks in the

shadows, silently recording every keystroke and capturing

sensitive data as the user navigates the digital world. Its

insidious capabilities extend far beyond mere keylogging,

posing a significant threat to both personal and organizational

security. RedLineStealer operates like a skilled pickpocket

in the digital realm, covertly snatching sensitive data from a

wide range of sources. It is to be noted that YarWeb is not

limited to these signatures, multiple signatures can be added,

provided databases are created for the same.

Fig. 6. Steps followed by YarWeb to create a YARA rule

Once the signature has been decided on, a special container

for that particular signature appears on the same webpage.

Within seconds, a YARA rule is created for that particular

signature. The steps depicted in Fig. 6 are followed for the

rule creation. The backend Python script locates the database

of the chosen signature and reads the malicious strings

column (second column). Then the program performs two

special functions on the strings: Concatenation and

Removing duplicates. Initially in the database, strings of each

malware are stored in variables of their own respectively in

the format “$sXX”. This is a variable name where XX depicts

a two-digit number. Each malicious file in a database contains

up to 20 malicious strings that it is associated with. This

means that a range of $s1 to $s20 is used to store strings for

a particular malware file of a specific signature. There could

be numerous such files in a database with the same variable

names for their strings. To prevent the redundancy of the

variable names in the final YARA rule, duplication removal

is done. The script specifically reads every value following

the characters “$s” to ensure that the number assigned after

those characters, is unique and not previously used. Once the

duplicates are removed, these strings are then concatenated to

form a single set. The script also ensures that the output

follows the standard YARA rule format (Fig. 1). It fills

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |301 |

default information specific to YarWeb in the Meta section

of the rule. The concatenated and treated strings are added to

the Strings section. A unique signature-specific condition is

also listed in the rule. After the YARA rule has been created,

it is stored locally in the host for further updation or usage. It

is also presented in a downloadable manner on the webpage

as a hyperlink. The user can click on this link to further

download the YARA rule. Right under this, a “Test” button

would lead to the Testing page.

I. Testing the rule:

This is the final stage of YarWeb, where the automatically

generated YARA rule is put to test. On the page itself, there

is a Upload button. This button is formatted to only allow

executable (.exe) files to be chosen. It is to be noted, that this

feature can be extended wherein any file type can be chosen.

One important feature is that this page does not ask the

user/admin to select a signature. This is because the script for

the current and the previous page works on session keys.

When the user/admin generates a YARA rule, a session is

created for that specific rule. Essentially, the program

remembers the most recently created rule and for which

signature it was created. Due to this, the testing page

automatically assumes that the testing is being done for that

specific YARA rule. This feature was added to remove the

redundant task of selecting a feature.

Once the file has been uploaded, pattern matching takes

place. This is done using the tool yara-python. This tool is the

HTML-enabled version of the YARA tool since the regular

version is entirely command terminal dependent. Yara-

python is programmed to analyze strings of a given file and

match it against a given YARA rule. Hence, in YarWeb, yara-

python considers the user/admin inputted file as the file to be

analyzed, and the most recently produced YARA rule as the

rule to be matched against. If the rule has matched or the

strings of the rule display similar characteristics to the strings

of the file, then the file is considered malicious for that

particular malware signature. If the uploaded file is not a part

of that specific malicious signature, then the YARA rule will

not be matched and a negative result will be displayed. To

ensure that YarWeb informs the user that the file uploaded is

malicious, no matter the signature-based matching,

VirusTotal API is integrated. VirusTotal is a popular platform

used by security analysts to check whether a hash, file, or

URL is malicious or not. An API key is used to fetch its

capabilities on YarWeb. The file uploaded by the user on

YarWeb is sent to VirusTotal using the API key. The file is

scanned against multiple third-party antivirus vendors. If

these vendors have reported the file as malicious, these

reports will be displayed on YarWeb. The YARA rule

matching of YarWeb occurs simultaneously. Both these

outputs are displayed together, to prevent any waiting time.

Around 60-70 reports are produced on YarWeb through the

API so that the user/admin is aware of the potential dangers

of the file.

VI. RESULTS AND DISCUSSION
One of the key highlights of YarWeb’s results is the limited

time taken to produce the outputs/YARA rules. This is

achieved solely due to the simplicity of the datasets. The

more complex a dataset is, the longer the result will take to

form. YarWeb follows a two-column dataset, and its linear

concatenation and duplicate removal technique are additional

features that contribute to the quick-loading time. YarWeb

loads the rules in about 3 seconds whereas the competitors

load the rules in about 20-35 seconds as depicted in Fig. 7.

Fig. 7. Graphical representation of the time taken by

YarWeb and its competitors to produce YARA rules

automatically

When programming models are compared, accuracy is a great

factor to measure. Accuracy is the percentage of correct

classifications that a trained model achieves, i.e., the number

of correct predictions divided by the total number of

predictions across all classes. For YarWeb, accuracy was

tested by taking 20 malware samples of the same signature,

in this case, AgentTesla. A YARA rule, already generated by

YarWeb, is then used against these malware test samples one

by one. The results were recorded. The outcome of this test

was that 16 of these malware samples were matched positive

as malicious and of the same signature, 4 of them were

considered negative. This gives an accuracy of 0.80, which is

much better than the ratings of the current competitors.

Fig. 8. Graphical representation of the accuracy of the

rules produced by YarWeb and its competitors

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)
Volume: 9 | Issue: 2 | February 2024 - Peer Reviewed Journal

2024 EPRA IJRD | Journal DOI: https://doi.org/10.36713/epra2016 | https://eprajournals.com/ |302 |

VII. FUTURE WORK
The future for YarWeb is bright as the ability for the product

to extend its capabilities is endless. For starters, the entire

front end can be developed on React JS. In the realm of

crafting immersive and responsive user interfaces, React JS

stands as a compelling force. React encourages the creation

of self-contained, reusable UI components. This modular

structure promotes code organization, maintainability, and

testability. Components can be developed and tested

independently, fostering collaboration and streamlining

workflows. React employs a virtual DOM, a lightweight in-

memory representation of the UI. This enables efficient

updates by pinpointing and rendering only the necessary

changes, leading to faster and smoother user experiences. To

enhance the encryption standards for the login process,

sturdier encryption algorithms like SHA-256 can be used.

This ensures that the user information is well protected and

safeguarded from threat actors. Instead of storing user data in

a simple .db file, a node JS setup can be used as a backend

data server to store sensitive data. Furthermore, additional

features can be added for the user/admin that enhance the user

workflow.

When it comes to rule generation, using a bigger database

with multiple datasets can be valuable. This would ensure that

the rule is more accurate than before. however, this may or

may not affect the loading speed. Using blockchain

technology can help secure and track the uploaded files better

since it works on a decentralized platform. Moreover, the

constant updation of databases would help to address and

target emerging malware threats and signatures making

YarWeb more efficient than it already is.

VIII. CONCLUSION
YarWeb is created with simplistic user interaction and ease

of usage in mind. The unique selling point (USP) of the

product is its portability and production-ready environment.

The team behind YarWeb has analyzed almost all the tools

related to YARA rule generation, collected and recorded the

drawbacks, and aided in creating YarWeb to combat these

issues. Currently, YarWeb can produce YARA rules in under

5 seconds, and does it entirely on a webpage with an accuracy

of 80%. Malicious signature is a topic many engineers and

developers sideline due to its complex nature. YarWeb makes

learning and using YARA rules fun and intuitive, opening

doors to the world of malware analysis and beyond.

AVAILABILITY

The YarWeb reference implementation can be obtained at

https://github.com/issashrez/YarWeb.

ACKNOWLEDGEMENTS

We would like to thank VirusTotal for providing the API key

and helping us and our users scan their files. We would also

like to express our gratitude to MalwareBazaar for providing

us with all the necessary malware samples to aid us both in

database creation and for testing the samples against our

YARA rules which helped us to track the precision and

accuracy of the model.

REFERENCES
1. Khalid, M., Ismail, M., Hussain, M., and Hanif Durad, M.

(2020). “Automatic YARA Rule Generation”, 2020
International Conference on Cyber Warfare and Security
(ICCWS). doi:10.1109/iccws48432.2020.92923

2. E. Raff, R. Zak, G. L. Munoz, W. Fleming, H. S. Anderson,
B. Filar, C. Nicholas, and J. Holt, “Automatic Yara Rule
Generation Using Biclustering”,
https://doi.org/10.48550/arXiv.2009.03779

3. N. Naik, P. Jenkins, R. Cooke, J. Gillett, and Y. Jin,
“Evaluating automatically generated YARA rules and
enhancing their effectiveness,” in Proc. IEEE Symp. Ser.
Comput. Intell. (SSCI), Dec. 2020, pp. 1146–1153.

4. N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, and J.
Song, “Embedding fuzzy rules with YARA rules for
performance optimization of malware analysis,” in IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE).
IEEE, 2020.

5. VirusTotal. (2019) YARA in a nutshell.
 [Online]. Available: https://virustotal.github.io/yara/

6. V. Alvarez. (2019) Writing YARA rules
 [Online]. Available:
https://yara.readthedocs.io/en/v3.4.0/writingrules.html

7. Readthedocs. (2019) Writing YARA rules. [Online].
 Available:
https://yara.readthedocs.io/en/v3.5.0/writingrules.html

8. C. Doman. (2018) yabin: A YARA rule generator for
finding related samples and hunting. [Online]. Available:
https://github.com/AlienVault-OTX/yabin

9. C. Clark. (2013) yaraGenerator: Automatic YARA rule
generation. [Online]. Available:
 https://github.com/Xen0ph0n/YaraGenerator

10. F. Roth. (2018) yarGen is a generator for YARA rules.
[Online].Available: https://github.com/Neo23x0/yarGen

https://github.com/issashrez/YarWeb
https://yara.readthedocs.io/en/v3.5.0/writingrules.html
https://github.com/AlienVault-OTX/yabin
https://github.com/Xen0ph0n/YaraGenerator
https://github.com/Neo23x0/yarGen

