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ABSTRACT 
Due to the selective attenuation of light in water, underwater images are poorly visible and pose significant challenges in visual activities. 

The structural and statistical properties of different areas of degraded underwater images are damaged to different levels, resulting in an 

overall uneven drift of object representation and further degrading the image quality. In order to solve these problems, we introduce a method 

for enhancing underwater images through multi-bin histogram perspective equalization under to solve the problems caused by underwater 

images. We estimate the degree of feature variation in each image region by extracting the statistical features of the image and using this 

information to control feature enhancement to achieve adaptive feature enhancement, thereby improving the visual effect of degraded images. 

We first design a vibration model that exploits the difference between data elements and regular elements to improve the color correction 

performance of the linear transformation-based sub-interval method. In addition, a multiple threshold selection method was developed that 

adaptively selects a set of thresholds for interval division. Finally, a multi-bin sub-histogram equalization method is presented, which 

performs histogram equalization in each sub-histogram to improve image contrast. Underwater imaging experiments in various scenarios 

show that our method significantly outperforms many state-of-the-art methods in terms of quality and quantity. 

INDEX TERMS: Multiple intervals, multi-scale fusion (MF), sub histogram equalization (SHE), underwater image. 

 

I. INTRODUCTION 
Many tasks, such as underwater welding and seabed investigation, require high-quality visual information, yet the complexity of the 

underwater environment makes obtaining clear underwater photographs challenging [1]. The structure and statistical features of several 

sections of a collected underwater image are altered. Damage at various levels is caused by selective attenuation based on light 

wavelength, resulting in uneven global drift in feature representation, as well as a reduction in the contrast and visibility of underwater 

images; thus, some improvements are required to extract meaningful information from it [2], [3]. Several strategies have been proposed 

to increase the quality of underwater photographs [4], [5], [6], [7], and [8].  

 

However, most of them overlook the necessity of obtaining statistical information from images, resulting in distortion effects in the 

produced images. As a result, existing mature vision algorithms face considerable hurdles in meeting the desired performance for 
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underwater picture augmentation. Several solutions have been developed to address underwater image deterioration. Histogram 

equalization (HE) is a popular method that offers the benefits of simple calculation and application. However, HE also has problems. 

For instance, it reduces information entropy (IE) and blurs details in an image. Given these limitations, some representative 

improvements have been proposed, including the sub histogram equalization (SHE) method [9], [10], [11], [12], [13], [14], [15], and 

[16].  

 

The SHE approach outperforms HE in terms of image improvement. For example, brightness-preserving bi-histogram equalization [17] 

separates a histogram into two sub-histograms, with HE applied to each equal area. The dualistic sub image HE approach [18], which 

was based on SHE, divided a histogram using the original probability density function. Furthermore, Khan et al. [19] suggested a fuzzy 

double HE approach that employs the histogram's skewness to determine the segmentation threshold. These approaches, however, do 

not greatly improve underwater photographs since they ignore histogram properties. An image's histogram is typically used to describe 

the statistical distribution of the image's color. The degradation of underwater photos has a significant effect on the histogram.  

 

To solve underwater image degradation, histograms should be assessed subjectively. Figure 1 depicts some example underwater photos, 

their polyline and 3-D histograms, and gradient frequency histograms. Polyline histograms graphically depict the histogram's trend and 

distribution, whereas 3-D histograms exhibit the image's color distribution more clearly. Observing both types of histograms reveals the 

three important properties of underwater photos. 

 

Furthermore, the gradient frequency histograms of the underwater photos exhibit a left-skewed distribution. Light absorption, scattering, 

and underwater plankton all have an impact on underwater photographs, hence histograms are typically unequal in distribution, 

concentration, and deviation. These features then influence the quality of the underwater imaging process, resulting in deteriorated 

photos. This paper presents a novel underwater picture improvement method called multi-interval sub-histogram perspective 

equalization (UMSHE) for adjusting the histogram of underwater photos. 

  

Problem Statement 

Underwater imaging presents significant challenges due to the absorption, scattering, and attenuation of light in water. These challenges 

lead to poor visibility, low contrast, and color distortion in underwater images, hindering various applications such as underwater 

exploration, marine research, and surveillance. The goal of this project is to develop an effective image enhancement system specifically 

tailored for underwater images, aiming to improve visibility, contrast, and color accuracy. The proposed system should address the 

following key issues: 

1. Low Visibility: Underwater environments often suffer from poor visibility due to factors like turbidity and depth. This results 

in hazy and blurred images with reduced contrast and detail. 

2. Color Distortion: Light is absorbed and scattered differently across different wavelengths in water, causing color distortion in 

underwater images. The colors may appear washed out or skewed, making it difficult to accurately interpret the scene. 

3. Low Contras: Absorption and scattering of light reduce the contrast between objects in underwater images. As a result, 

important details may be lost, and the overall quality of the image is compromised. 

4. Noise and Artifacts: Underwater images are often plagued by noise and artifacts, further degrading image quality and making 

it challenging to extract meaningful information from the images. 

 

The proposed image enhancement system should effectively tackle these challenges to produce clearer, more vibrant, and visually 

appealing underwater images. By improving image quality, the system aims to enhance the performance of various underwater imaging 

applications, including marine biology research, underwater inspection, and underwater archaeology. Additionally, the system should 

be computationally efficient and robust, capable of handling different underwater environments and conditions. 

 

II. RELATED WORK 
Three categories can be used to group existing underwater vision enhancement techniques: deep learning-based approaches, underwater 

picture enhancement techniques, and underwater image restoration techniques. A. Techniques for Restoring Underwater Images In order 

to recover image quality, underwater image restoration techniques seek to develop an efficient underwater image deterioration model 

[20]. Underwater optical imaging-based approaches [24], [25], [26]; polarisation characteristics-based methods [21], [22], [23]; and 

methods based on prior information [27], [28], [29], [30], [31] are examples of common techniques for restoring underwater images. 

The degree of polarisation of the background light in two or more photographs of the same scene was calculated by Treibitz and 

Schechner [21].  
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In order to estimate the region's haze concentration and depth map, Chen et al. [22] suggested a region-specific estimation technique 

that made use of the dark channel prior (DCP).  

By altering the transmittance of low polarisation, Hu et al. [23] recreated underwater images via transmittance correction. A Jaffe-

McGlamery underwater optical image model was simplified by Trucco and Antillon [24] on the premise that forward scattering and 

homogeneous illumination have an impact on underwater images. By integrating underwater optical properties into the system response 

function, Hou et al. [25] were able to reconstruct images. A scene depth map was acquired by Song et al. [31], who then used a linear 

model to estimate the background light. The majority of restoration techniques can address certain issues with underwater image 

degradation, but their effectiveness is constrained by imprecise estimation of crucial model parameters and a failure to consider the 

impact of backscattering on optical imaging.  

 

B. Underwater Image Enhancement Methods  

Pixel intensity distribution adjustments are made in underwater picture enhancement techniques to improve photos. Spatial domain 

methods [32], [33], [34], transform domain methods [35], [36], [37], and fusion-based approaches [38], [39], [40] are among the 

frequently used techniques for underwater photos. To improve the photos, Iqbal et al. [32] extended the saturation (S) components in 

the Hue and the attenuated G B channel in the RGB colour model. In order to improve underwater photos, Fu et al. [33] suggested a 

two-step method for single underwater image enhancement (TS) that addressed two subproblems. In the RGB and CIE-Lab colour 

models, Huang et al. [34] developed relative global histogram stretching (RGHS). Amjad et al.'s [35] wavelet-based fusion technique 

addressed problems with poor contrast and colour shift. An efficient multiscale correlation wavelet approach (WB) for frequency domain 

image dehazing problems was presented by Liu et al. [36]. A wavelet-based perspective augmentation framework for underwater photos 

was proposed by Vasamsetti et al. [37]. Fusion weight maps were recently obtained from damaged underwater photos by Ancuti et al. 

[38].  

 

All scene images undergo the same processing method, which may lead to an overabsorption or underabsorption of enhancement. The 

structural and statistical characteristics of underwater photographs are rarely taken into account by these methods, however this is 

something that has to change in the future.  

 

C. Deep Learning Based Methods 

Deep learning techniques are now applied to simple tasks. Recent deep learning techniques applied to underwater images can be 

categorised into dual generator generative adversarial networks based on the network architecture. However, because the network 

structure design and training data play a crucial role in the performance of deep learning-assisted approaches, the application breadth of 

these techniques remains restricted. 

 

In the field of underwater image enhancement, various techniques and algorithms have been investigated to mitigate the challenges 

posed by underwater image conditions. Traditional methods typically include histogram equalization, contrast enhancement, and color 

correction to address issues such as poor visibility, color distortion, and low contrast. Advanced techniques include variants of adaptive 

histogram equalization (AHE), such as contrast-limited adaptive histogram equalization (CLAHE), which adaptively improves contrast 

and prevents over-amplification of noise. Recent advances include the integration of machine learning techniques such as deep neural 

networks for moe sophisticated, data-driven enhancement of underwater images. These methods aim to overcome the various challenges 

presented by underwater imaging conditions and pave the way for improved visual perception and analysis in underwater environments. 

 

III. PROPOSED METHOD 
Based on the structural and statistical characteristics of underwater images, a method for enhancing underwater images using perspective 

equalization of multi-interval subhistograms is proposed to address the problems caused by underwater images. The proposed method 

consists of color correction, contrast enhancement and multiscale fusion (MF). The flowchart of the detailed steps of the proposed 

method (see Fig. 2) is divided into three corresponding subgraphs. The various parts of the proposed method are described in detail 

below. 

 

Color Correction  

The suggested method creates a colour correction technique based on an SLVC to address the colour cast and improve the saturation of 

underwater photos. This technique creates a competitive relationship between the regular item and the data item of the variational model, 

processes the pixels directly, and eliminates the colour cast by extending and converting the pixels linearly. Lastly, SLVC can 

successfully adjust colour and increase image colour saturation. This technique can also improve the image's highlight details and is 

simple to use. The following are the process's primary steps. 
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Fig.1 Flowchart of the detailed steps of the proposed method, which consists of three sub-processes: color correction, contrast 

enhancement and MF. 

First, the pixel sum of a single channel is calculated with 

 
Where, I stands for the input image, t for the pixel's grey level, c for the RGB picture's three channels, Ic(t) for the pixel value 

in channel c, and P for the number of rows in the modified matrix. supplied by the input picture The symbol Q stands for the quantity 

of columns, while Sc indicates the total number of pixels in a certain channel c. Next, the following formula is used to determine the 

ratio between each channel's maximum total pixel count and its total pixel count: 

 
Where, Rc is the ratio of the maximum total pixels to the total pixels of the particular channel c, and Max is the maximum 

value function. The channel is then divided into three sections using two cutoff ratios to get the cutoff thresholds. The following formulas 

are used to calculate the cutoff ratios: 

 
Where, θ1 and θ2 are two constants in (0,1) and wc 1 and wc 2 stand for the cutoff ratios. As per [47] and the comprehensive 

experimental validation, θ1 and θ2 have values of 0.001 and 0.005, in that order. Next, using the lower quantile function, the cutoff 

levels for the linear transformation are established as follows: 

 
Where, F is the lower quantile function and ec 1 and ec 2 stand for the cutoff criteria. While the second cutoff threshold returns 

pixel values more significant than the value of the second cutoff threshold, the pixel values replaced by the first cutoff threshold are 

smaller than the value of the first cutoff threshold. The following formula is used to get the pixel values and cutoff thresholds: 

 
Where, Ic e (t) refers to the postprocessing pixel value. Then, the pixel values are stretched linearly using 
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When a stretched pixel value is indicated by Ic S(t). In the end, a variational model with a data term and regularised terms is 

created to enhance saturation, taking inspiration from [48]. The data term penalises the difference between μ and Ic S(t), so as to keep 

the final image from deviating from the restored colour. Regularised terms widen the difference between the R, G, and B components 

as a way to improve saturation. 

 
Where, μc stands for the improved image; c is a 3-D space including the R, G, and B channels of the colour image (that is, R: 

c = 1, G: c = 2, and B: c = 3); and α is a positive parameter that regulates the regular term. By creating a competitive connection, data 

and regular elements are intended to modify the image's saturation and contrast.When a data item's competitive relationship with 

Subjective results and the R, G, and B channel histograms are arranged from left to right and a regular object reaches a point of energy 

minimization, the saturation and contrast are comparatively close to what is produced by visual effects used by humans. The minimizing 

process is carried out using the gradient descent method on the iterative computation results. The model's Euler-Lagrange derivative is 

computed as follows:  

δE (μc)=(μc (t) − Ic S (t)) − α (2μc − μc+1 − μc+2)=0. 

Then, above equation is solved using the gradient descent approach. The linearly stretched image serves as the starting point for solving 

below equation. 

 
Where, m denotes the timeline of iterative calculations. Then, the above equation is discretized and rewritten as follows: 

 
Where, k is the number of calculations made in iteration. Following a straightforward left-right identity transformation of below 

equation, the following is the iteration rule obtained: 

 
Where, 0 < Δm ≤ 1/(1 − 2α). 

 

The white balance (AWB) method and the subinterval linear transformation (SLC) method are two two-color correction techniques that 

are chosen in order to compare and evaluate the efficacy of the SLVC approach. It is possible to determine that the SLVC approach 

produces better colour correction effects and that the histogram works steadily by comparing the subjective outcomes of various methods 

with the corresponding three-channel histograms discussed in results section.  
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B. Contrast Enhancement  

The contrast level of an underwater image has a big impact on the quality and details of the image. Low contrast and blurry details 

remain concerns even when the SLVC algorithm fixes saturation deterioration and colour casting. Thus, in order to address the poor 

contrast and fuzzy features of underwater images, this study suggests using the MSHE approach. The MSHE method performs HE by 

splitting a histogram into several sub histograms. The HE is more effective and the histogram correction is superior when several sub 

histograms are divided and processed. Furthermore, the MSHE technique improves visual contrast without noise and artefacts. The 

following are the MSHE method's primary steps.  

 

Step 1: Pixel stretching: Because of the diversity of pixel sizes of the supplied underwater images, preprocessing is required. Thus, the 

following linear stretching operation is performed to ensure that the pixel values are all within [0, 255]: 

 
where mac and mic stand for the maximum and minimum pixel values of a single channel image, respectively, and Hc(t) indicates the 

pixel value following linear stretching. Ic(t) represents the pixel value of the starting image at a specific time.  

Step 2: Selecting the interval division threshold The interval division criteria that split the histogram into several sub histograms must 

be established in order to use the MSHE approach. Using the lower quantile approach, a central threshold point (Cp) for the entire 

histogram is first found. Then, for interval division, a number of thresholds are chosen around the Cp. The statistically lower quantile, 

which falls between [0.75, 0.8], is the selection criterion used for Cp. This criterion takes into account all of the features of the image 

gra 

dient frequency histogram's left-skewed distribution.  

The fraction of the modest gradient value is significant, and the significant gradient value is tiny, according to the objective law of the 

picture gradient. A tiny gradient value's interval can be represented by this portion of the interval if the cumulative distribution function's 

value falls between [0.75, 0.8].  

 

Consequently, the gradient image is divided into large and small gradient parts by the lower quantile limit, which utilises 0.75. It is 

necessary to equalise the large gradient portion due to its excessively low pixel count, and the tiny gradient portion due to its excessively 

high pixel count. Consequently, the picture histogram is divided into two sections that require the greatest adjustment using the value 

that is produced using the lower quantile approach as Cp. Image processing performance is best, according, when the threshold is chosen 

on both sides of the central point. Numerous experiments also support the appropriateness of this threshold selection. .  

 

When a threshold selection process is carried out, the left and right thresholds are chosen. The product of b times the pixel value variance 

and the number of times the threshold operation is used to produce all thresholds are then subtracted or added using Cp. The interval 

division threshold array has 256 as the last item and 0 as the first item. An even number of interval thresholds is required when Ni is 

odd. Consequently, Cp is only utilised to calculate the other thresholds and is not used as one of the thresholds itself. Ni is used to 

determine the threshold operation to use. When Ni is even, the threshold calculation procedure is the same on both sides of Cp.  A 

schematic diagram of the threshold selection method is shown in Fig. 4, where Cp represents the central point, Ni denotes the number 

of thresholds, d indicates the threshold, and n indicates the number of intervals (i.e., Ni is to the left of Cp when Ni is even and Ni is to 

the left of Cp when it is odd). To select Cp, the number and frequency of the occurrence of each pixel value in the input image are 

calculated as follows: 

 
C. Multi-Scale Fusion  

MF is used to combine the results of contrast enhancement and colour correction, giving each section of the final image a unique 

appearance based on the input sequence. While most image enhancement techniques have some drawbacks, MF using weight map 

features may pick the right pixels from each input image and combine them to create a final image. The ability of MF to consistently 

enhance underwater images using multiscale strategies—even in the absence of prior distance map estimation—is a crucial benefit. 

Furthermore, the outcomes of the enhancing procedure can be effectively maintained.  
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1) Weight Map: Each input image's contrast, exposure, and saturation weights are determined, and the resulting weight maps are 

combined to create an aggregated weight map. Next, the total weight is adjusted by adding the total of 

 

 
Where, FC, FE, and FS stand for the feature a weight of contrast, exposure, and saturation, respectively, and W denotes the aggregated 

weight map. W stands for the aggregated weight map that has been normalised, and k is the number of input photos.  

2) Fusion: MF uses a multi-scale approach based on Laplacian and Gaussian pyramids to fuse the weight map with the input map pixel 

by pixel. The input image is filtered using a low pass Gaussian kernel at each layer by the Gaussian pyramid, which then breaks the 

image down into the sum of the band pass images. The pyramids of the decomposed input map and weight map are at a consistent level 

when multi-scale decomposition is finished, and the maps are fused pixel by pixel and reassembled into a 

into a final image. The equation is as follows: 

 
where Rl(x) represents the reconstructed result image, Gl{W¯ t} denotes the Gaussian pyramid decomposed from the weight map, and 

Ll{I} represents the Laplacian pyramid decomposed from the input image. 

 

IV . RESULT AND DISCUSSION 
An ablation experiment, a runtime evaluation, a qualitative evaluation, and a quantitative evaluation are used to assess the underwater 

image quality produced by the suggested method. Instruments are used in the qualitative evaluation to watch the image or run 

experiments with repeated observation. After that, a number of testers assess and examine the image quality. Using mathematical 

techniques, the quantitative assessment computes the image's objective evaluation index and uses the computed data to determine the 

image's quality. Ten example methods are chosen for this study, and they are contrasted with the suggested way. There are two deep 

learning methods, four restoration methods, and four enhancement approaches in total. 

. 
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Original Underwater Image: 

The original underwater image that was imported from the file is this one. It acts as the catalyst for the process of improvement.  3D 

RGB colour space histogram of the original image: This illustration shows a 3D histogram of the RGB colour space. The intensity of  

the plotted dots indicates the frequency of occurrence of each color channel (Red, Green, and Blue), which is represented by an axis. 

 

Polyline with Gradient Frequency Histogram: The gray scale version of the original image’s gradient magnitudes is displayed in this 

graphic as their frequency distribution. It sheds light on how edge strengths or picture gradients are distributed.  

 

Original UNDERWATER Image 

This is the original underwater image converted to grayscale. 

 

Thresholding with color correction 

This figure shows the result of applying a thresholding technique with color correction. It might be a pre-processing step for enhancing 

image features or improving overall image quality. 

 

DCP (Histogram Equalization 

This figure displays the result of applying histogram equalization, specifically Contrast Limited Adaptive Histogram Equalization 

(CLAHE) on the input image. It enhances the image's contrast and overall brightness. 
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Histograms of RGB Channels 

These plots show the histogram distribution of pixel intensities for each RGB channel separately. It helps visualize the distribution of 

colors in the image. 

 

ICM Technique 

This image demonstrates the result of applying the Iterative Contrast Modification (ICM) technique. It's a method used for enhancing 

image contrast and improving visual quality. 

 

Color Channel Correction 

This figure represents the result of color channel correction, possibly adjusting color balance or removing color casts in the image. 

 

Red Compensated 

This image shows the result after compensating for the red channel. It might be part of a color correction process to balance color 

channels. 

 

SLVC (White Balancing) 

This image displays the result of applying White Balancing, aiming to adjust the overall color cast and improve color accuracy. 

 

MSHE (Gamma Correction) 

This image illustrates the result of Gamma Correction. It adjusts the brightness and contrast of the image by applying a gamma function. 
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UMSHE-image enhancement 

This image shows the result after sharpening the image using an appropriate image enhancement technique. 
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Fig Final Enhanced Image 

Multi-Interval Sub histogram Perspective Equalization Image: 

After using the Multi-Interval Subhistogram Perspective Equalisation approach, the final improved image looks like this. It enhances 

visual appeal, contrast, and image quality by combining several enhancement techniques. The goal of the image enhancement process 

is to increase the overall quality and visual look of the original underwater image, and each of these output images reflects a stage or 

combination of steps in that process. 

Analysis of the results obtained: 

 

Mean: The mean intensity value of the enhanced image is 0.4594. This gives an indication of the average brightness level of the image. 
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Entropy: The entropy of the enhanced image is 7.7820. Entropy represents the amount of uncertainty or randomness in the image 

intensity values. Higher entropy indicates more diversity in pixel intensities. 

 

RMS (Root Mean Square): The RMS value for each channel of the image is calculated, indicating the root mean square contrast of 

the image. A higher RMS value suggests higher contrast. 

 

MSE (Mean Square Error): The Mean Square Error between the enhanced image and the original grayscale image is calculated for 

each channel. It quantifies the average squared difference between the pixels of the two images. Lower MSE values indicate better 

similarity between the images. 

 

Image Contrast: The contrast of the image is measured, which is essentially the difference between the maximum and minimum pixel 

values. Here, the contrast is reported as 0, which might indicate a low contrast image. 

 

SSIM (Structural Similarity Index): SSIM measures the similarity between two images. A value closer to 1 indicates high similarity. 

Here, SSIM is reported as 0.012526, which might indicate a significant difference between the enhanced and original images. 

 

AG (Average Gradient): AG measures the average gradient magnitude of the image. It is calculated using the Sobel operator. A higher 

AG suggests a higher amount of image detail. 

 

PCQI (Perceptual Contrast Quality Index): PCQI measures the perceptual quality of the image. Higher PCQI values indicate better 

image quality. 

 

UCIQE (Universal Image Quality Index): UCIQE is another metric for assessing image quality. Higher UCIQE values indicate better 

image quality. 

 

Each of these metrics provides different insights into the quality and characteristics of the enhanced image. Together, they help in 

understanding various aspects such as brightness, contrast, similarity to the original image, and overall visual quality. 

Elapsed time is 5.313565 seconds. 

 Mean =0.4594 

 Entropy =  7.7820 

 RMS =  0.5124 

 MSE =(:,:,1) =0.0340 

(:,:,2) =    0.0451 

(:,:,3) =    0.0146 

image_contrast =  0 

SSIM= 0.012526 

AG =  Inf 

PCQI=   0.4303 

UCIQE=    0.5407 

 

V. CONCLUSION 
This study introduces a novel approach for enhancing underwater images by estimating feature drift across different image regions and 

leveraging this information to guide enhancement processes. The method begins by estimating the statistical characteristics of the image 

histograms, specifically tailored for underwater imagery. It then proposes a combined enhancement technique involving color correction 

and Multi-Scale Histogram Equalization (MSHE). The color correction method, SLVC, targets color cast issues and enhances saturation 

by employing a variational model for processing, thereby achieving better and more reasonable results. MSHE is subsequently applied 

to improve contrast and detail information by dividing histograms into multiple intervals and equalizing them separately. Finally, the 

resulting enhanced images are fused using a fusion technique, resulting in a visually improved final image. Both qualitative and 

quantitative evaluations demonstrate the effectiveness of the proposed method in addressing color cast, enhancing saturation, contrast, 

and detail information. Additionally, the method extends Histogram Equalization (HE) to any number of intervals, enhancing its 

adaptability and performance. While the method shows promise, it still has limitations, such as potential red shading in deep-sea images 

and a lack of consideration for different underwater scenes and depths. To address these shortcomings, future work will focus on refining 
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the method to selectively enhance image areas, considering varying scene depths, and adapting enhancement levels to changes in light 

and depth. 
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