

SJIF Impact Factor (2024): 8.675 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 | ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 9 | Issue: 7 | July 2024 - Peer Reviewed Journal

ON Q*g-CLOSED SETS

Hamant Kumar¹, M. C. Sharma²

Department of Mathematics

¹V. A. Govt Degree College, Atrauli-Aligarh, 202280, U. P. (India)

²N. R. E. C. College Khurja-Bulandshahr, 203131, U. P. (India)

ABSTRACT

The author introduced the notion of Q^*g -closed sets in the paper entitled " Q^*g -closed sets in topological space" by P. Padma and S. Uday Kumar [5]. However, there is a false theorem, namely Theorem 3.4. The correct statement of Theorem 3.4 is mentioned in this paper with correct proof and gave a counter-example in support of this theorem.

KEYWORDS: regular open, π -open, g-closed, Q^* -closed and Q^* g-closed sets. 2020 AMS Classification: 54A05.

1. INTRODUCTION

In 1958, K. Kuratowski [2] introduced and investigated the notion of regular open sets and obtained their properties. In 1968, V. Zaitsev [7] introduced and studied the concept of π -open sets and obtained their basic properties. In 1970, Levine [3] initiated the investigation of g-closed sets in topological spaces, since then many modifications of g-closed sets were defined and investigated by a large number of topologists. In 1993, N. Palaniappan and K. C. Rao [6] introduced the concept of rg-closed sets and obtained some properties of rg-closed sets in topological spaces. In 2000, Dontchev and Noiri [1] studied the concept of π g-closed sets and obtained some basic properties. In 2010, M. Murugalingam and N. Lalitha [4] introduced and studied the concept of Q*-open sets and obtained some properties of Q*-open sets in topological spaces. In 2015, P. Padma and S. Udaya Kumar [5] introduced the notion of Q*g-closed sets in topological spaces and obtained some properties of Q*g-closed sets.

In this paper, we study the notion of Q*g-closed sets in the paper entitled "Q*g-closed sets in topological space" by P. Padma and S. Uday Kumar [5], published in Int. J. of Adv. Res. in Engg. and Appl. Sci. However, there is a false theorem, namely Theorem 3.4. The correct statement of Theorem 3.4 is mentioned in this paper with correct proof and gave a counter-example in support of this theorem.

2. PRELIMINARIES

Throughout the present paper, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f:(X,\mathfrak{I})\to (Y,\sigma)$ (or simply $f:X\to Y$) denotes a function f of a space (X,\mathfrak{I}) into a space (Y,σ) . Let A be a subset of a space X. The closure and the interior of A are denoted by C(A) and C(A), respectively. A subset A of a space X is said to be **regularly open** or **open domain** [2] if it is the interior of its own closure or, equivalently, if it is the interior of some closed set. A complement of an open domain subset of X is called **closed domain** (or A subset A is said to be **regular open** [2] (resp. **regular closed**) if $A \subset C(A)$ (resp. $A \subset C(A)$). The finite union of regular open sets is said to be A-open [7]. The complement of a A-open set is said to be A-closed.

regular open \rightarrow π -open \rightarrow open

Where none of the implications is reversible [1].

- **2.1 Definition**. A subset A of a topological space (X, \Im) is said to be
- (1) **g-closed** [3] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.
- (2) $\pi \text{\bf g-closed}$ [1] if $cl(A) \subset U$ whenever $A \subset U$ and U is $\pi\text{-open}.$
- (3) **rg-closed** [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is regular open.

SJIF Impact Factor (2024): 8.675 | ISI I.F. Value: 1.241 | Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 9 | Issue: 7 | July 2024 - Peer Reviewed Journal

In the definition of g-closed set, we use U as an open set, in the definition of πg -closed set, we use U as a π -open set and in the definition of rg-closed set, we use U as a regular open set.

The complement of a g-closed (resp. π -closed, rg-closed) set is said to be **g-open** (π g-open, rg-open).

2.2 Remark. We summarize the fundamental relationships between several types of generalized closed sets in the following diagram. None of the implications is reversible [1].

closed	\rightarrow	g-closed	\rightarrow	πg-closed	\rightarrow	rg-closed
--------	---------------	----------	---------------	-----------	---------------	-----------

3. Q*g-CLOSED SETS

- **3.1 Definition.** A subset A of a topological space X is said to be Q^*g -closed [5] if $cl(A) \subset U$ whenever $A \subset U$ and U is Q^* -open.
- **3.2 Remark**. Every Q*-open set is open.

In the definition of Q*g-closed set, we use U as a Q*-open set but in the definition of g-closed set, we use U as an open set. So the correct statement of the **Theorem 3.4** is as follows:

3.3 Theorem. Every g-closed set is Q*g-closed set.

Proof. Let A be g-closed set in X and $A \subset U$ where U is Q*-open set. Since every Q*-open set is open and A is g-closed set, $cl(A) \subset U$ U. Hence A is Q*g-closed set.

Converse of the above theorem is not true and is shown by the following example:

- **2.3 Example.** Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then
- (i) closed sets are : ϕ , X, $\{c\}$, $\{a, c\}$, $\{b, c\}$.
- (i) Q*-closed sets are : ϕ , {c}.
- (i) g-closed sets are : ϕ , X, {c}, {a, c}, {b, c}.
- (i) Q*g-closed sets are : ϕ , X, $\{b\}$, $\{c\}$, $\{a, c\}$, $\{b, c\}$.

In the above example, every g-closed set is Q*g-closed but converse is not true. In the above example, the set $A = \{b\}$ is Q*g-closed but not g-closed.

REFERENCES

- Dontchev and T. Noiri, Quasi normal spaces and πg-closed sets, Acta Math. Hungar. 89(3) (2000), 211-219. 1.
- 2. C. Kuratowski, Topology I, 4th. ed., in French, Hafner, New York, 1958.
- N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89 96.
- M. Murugalingam and N. Lalitha, Q*-closed sets, Bull. of Pure and Appl. Sci., Vol. 29 E Issue 2 (2010), 369 376.
- P. Padma and S. Udaya Kumar, Q*g-closed sets in topological space, Int. J. of Adv. Res. in Engg. and Appl. Sci., Vol. 2 No. 1, (2015), 97 -
- N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211 219. 6.
- V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR 178 (1968), 778–779.