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ABSTRACT 
This study examines avian influenza outbreak identification using advanced machine learning models. The dataset includes 

geographical coordinates, species information, and temporal data. Initial preprocessing involved converting columns to numerical 

types and removing outliers with the Isolation Forest algorithm, isolating 5% of the data as outliers. Data cleaning ensured dataset 

integrity. Feature correlations were analyzed, focusing on those linked to H5 highly pathogenic avian influenza (HPAI). Machine 

learning models, including Logistic Regression, Decision Tree, Random Forest, Support Vector Machine (SVM), and Gradient 

Boosting, were used to predict the target variable. Performance was evaluated using ROC curve and AUC metrics, with the Random 

Forest model showing the highest AUC score. Deep learning models, specifically a neural network and a convolutional neural network 

(CNN), were implemented to enhance predictive accuracy. The CNN outperformed traditional machine learning models, 

demonstrating the potential of deep learning in epidemiological predictions. The study underscores the efficacy of these techniques in 

predicting avian influenza outbreaks, highlighting the importance of advanced analytical methods in public health predictive modeling. 

 

1. INTRODUCTION 
Avian influenza, or bird flu, is an infectious viral disease affecting birds, particularly wild aquatic birds such as ducks and geese, 

but also domestic poultry and other species. It is caused by influenza A viruses of the Orthomyxoviridae family, classified based on 

hemagglutinin (HA) and neuraminidase (NA) surface proteins. With 16 known HA and 9 NA subtypes, various combinations result 

in different virus strains (Alexander, 2000). Among these, the H5 highly pathogenic avian influenza (HPAI) strains are notable for 

their rapid transmission and severe impact. The H5N1 strain, responsible for numerous poultry outbreaks, occasionally infects 

humans, leading to high mortality rates. Human transmission typically occurs through direct contact with infected birds or 

contaminated environments, highlighting the zoonotic potential (Capua & Marangon, 2003). Predicting and managing avian 

influenza outbreaks is crucial for mitigating their impact on public health and the poultry industry. Traditional surveillance methods 

often lack real-time prediction and timely interventions, prompting the exploration of machine learning (ML) and deep learning 

(DL) techniques to enhance outbreak prediction and disease management (Brownstein et al., 2009). Machine learning encompasses 

algorithms capable of learning patterns from data to make predictions or decisions. Common ML algorithms in epidemiology include 

Logistic Regression, Decision Trees, Random Forests, Support Vector Machines (SVM), and Gradient Boosting. These models 

handle large datasets with complex, non-linear relationships, making them suitable for predicting disease outbreaks (Kou et al., 

2020; Shi et al., 2019). Logistic Regression predicts the probability of a binary outcome based on predictor variables, widely used 

for binary classification tasks in medical research. Decision Trees use a tree-like model of decisions and possible consequences. 

Random Forests, an ensemble method, construct multiple decision trees and output the mode of classes for classification. SVMs 

analyze data for classification and regression, particularly effective in high-dimensional spaces. Gradient Boosting builds models 

sequentially, each correcting the previous one's errors, making it powerful for both classification and regression tasks (Chen et al., 

2018). Deep learning, a subset of ML, involves neural networks with multiple layers that automatically learn data features at various 

abstraction levels. DL models, including Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN), have 

revolutionized tasks like image recognition, speech processing, and natural language understanding (LeCun et al., 2015; Goodfellow 

et al., 2016). ANNs consist of interconnected layers of nodes or neurons that transform input data through weights adjusted during 

training, modeling complex, non-linear relationships. CNNs, designed for processing structured grid data like images, perform 

convolution operations to capture spatial hierarchies (Miotto et al., 2018; Esteva et al., 2019). In disease prediction, ML and DL 

models process vast epidemiological data, uncover hidden patterns, and make accurate predictions, aiding early intervention and 

control measures. ML models have predicted diseases like influenza, dengue, and COVID-19 using data from clinical records, 

environmental data, and social media (Shi et al., 2019; Zhou et al., 2020). 
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This study utilizes ML and DL approaches to predict H5 HPAI outbreaks using a dataset containing temporal data, geographical 

coordinates, and species information. Preprocessing involved converting columns to numerical types and removing outliers with 

the Isolation Forest algorithm, ensuring data integrity. Isolation Forest isolates observations by randomly selecting a feature and 

split value, with the number of splits indicating anomaly likelihood (Liu et al., 2008). Correlation analysis identified key features 

associated with HPAI, guiding model selection. We employed five ML models—Logistic Regression, Decision Tree, Random 

Forest, SVM, and Gradient Boosting—to predict H5 HPAI. Each model's performance was evaluated using ROC curve and AUC 

metrics, with Random Forest showing the highest AUC score. ROC curves plot the true positive rate against the false positive rate, 

and AUC provides a scalar value to compare models, with higher AUC indicating better performance (Fawcett, 2006). Additionally, 

we implemented an ANN and a CNN to enhance predictive accuracy. The ANN had multiple fully connected layers, and the CNN, 

designed for one-dimensional data, included convolutional layers for high-level feature extraction. Both models were evaluated 

using ROC and AUC metrics. The CNN outperformed traditional ML models, achieving higher accuracy in predicting HPAI 

outbreaks. This highlights DL models' potential in epidemiological research, particularly for complex data patterns. Integrating ML 

and DL techniques in this study provides valuable insights for timely and effective disease management, facilitating better 

preparedness and response to outbreaks. While limited by the dataset used, the study emphasizes these techniques' applicability to 

real-world data and other infectious diseases, warranting future validation with real-world epidemiological data. 

 

2. REVIEW OF LITERATURE 
"A Decision Support Framework for Prediction of Avian Influenza" 

Samira Yousefinaghani, Rozita A. Dara, Zvonimir Poljak, Shayan Sharif 

This paper presents a decision support framework for predicting avian influenza outbreaks by integrating environmental data, 

migratory patterns, poultry density, and social media inputs using machine learning. The system achieved 69.70% sensitivity and 

85.50% specificity, enhancing situational awareness and supporting effective outbreak response. 

 

"Quantifying the Impact of Avian Influenza on the Northern Gannet Colony of Bass Rock Using Ultra-High-Resolution 

Drone Imagery and Deep Learning" 

Amy A. Tyndall, Caroline J. Nichol, Tom Wade, Scott Pirrie, Michael P. Harris, Sarah Wanless, Emily Burton 

This study used ultra-high-resolution drone imagery and deep learning to monitor HPAI impact on the Northern Gannet colony on 

Bass Rock. High accuracy in detecting live and dead gannets was achieved, showing significant mortality in 2022 but promising 

recovery in 2023, enhancing wildlife monitoring and conservation efforts. 

 

"Predicting Avian Influenza Outbreaks Using Machine Learning Techniques" 

Maana Shori, Kriti Saroha 

This review examines machine learning techniques for predicting avian influenza outbreaks, focusing on model accuracy and their 

impact on public health and the poultry industry. It discusses various algorithms, identifies strengths and limitations, and suggests 

improvements, including comprehensive datasets and climatic variables, for better prediction accuracy. 

 

"Modelling and Roles of Meteorological Factors in Outbreaks of Highly Pathogenic Avian Influenza H5N1" 

P. K. Biswas, M. Z. Islam, N. C. Debnath, M. Yamage 

This paper examines meteorological factors' impact on H5N1 outbreaks in Bangladesh using ARIMA and SARIMA models. 

Significant correlations between weather conditions and outbreaks suggest predictive potential. Integrating climatic data into models 

improves accuracy and aids surveillance and control, highlighting the importance of environmental monitoring in public health 

planning. 

 

"A Framework for the Risk Prediction of Avian Influenza Occurrence: An Indonesian Case Study" 

Samira Yousefinaghani, Rozita A. Dara, Zvonimir Poljak, Shayan Sharif 

This study develops a decision support framework for predicting avian influenza outbreaks in Indonesia, integrating environmental, 

poultry density, and migratory bird data. It provides early warnings and situational awareness, supporting timely responses. 

Emphasizing spatial and temporal dynamics, it showcases machine learning's potential to enhance disease forecasting and 

management. 

 

"Using Unmanned Aerial Vehicles (UAVs) to Monitor Avian Influenza Outbreaks" 

Marco Laera, Federico Sangiorgi, Fabio Verdi, Roberto Roversi, Matteo Garuti, Matteo Calzolari, Maurizio Gibertoni, Stefano 

Martello, Mauro Gherardi 

This research utilizes UAVs with sensors to monitor avian influenza outbreaks, offering real-time data collection and analysis. 

Integrating UAV data with GIS and machine learning improved outbreak mapping and prediction. UAVs demonstrated accuracy 

and timeliness in early detection, enhancing wildlife monitoring and disease surveillance efforts. 
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3. MATERIALS AND METHODS 
3.1 Data Retrieval 

The dataset utilized in this study was sourced from the Kaggle database, specifically from the dataset titled "Bird Flu Dataset: Avian 

Influenza" (Jasmeet, 2022). This dataset comprises extensive records of avian influenza cases, including detailed information on 

bird species, geographical locations, and temporal data. The dataset was downloaded in CSV format from Kaggle and imported into 

the Python environment for further analysis. 

 

3.2 Data Preprocessing 

Initially, the dataset was loaded into a pandas DataFrame using the pandas library, a powerful tool for data manipulation and analysis 

(McKinney, 2010). The dataset contained several columns, including '_id', 'Scientific_Name', 'Common_Name', 'Date', 'Year', 

'Month', 'Day', 'Time', 'Country', 'Country_State_County', 'State', 'County', 'Locality', 'Latitude', 'Longitude', 'Parent_Species', and 

'target_H5_HPAI'. 

 

Next, relevant columns were converted to numerical types to facilitate mathematical operations and model training. Specifically, 

the columns 'Year', 'Month', 'Day', 'Time', 'Latitude', and 'Longitude' were targeted for this conversion. This conversion was essential 

for ensuring that all numerical operations could be performed without errors. 

 

3.3 Outlier Detection and Removal 

To ensure the integrity of the dataset, outliers were identified and removed using the Isolation Forest algorithm, an effective method 

for anomaly detection (Liu et al., 2008). The algorithm was configured to assume a 5% contamination rate, identifying data points 

that deviated significantly from the majority. The Isolation Forest algorithm works by randomly selecting a feature and then selecting 

a split value between the maximum and minimum values of the selected feature. The number of splits required to isolate a sample 

is the path length from the root node to the terminating node, and the shorter the path, the more likely the sample is an anomaly. 

 

After identifying the outliers, the dataset was divided into two parts: outliers and non-outliers. The outliers were removed to create 

a cleaned dataset, which was used for further analysis. This step ensured that the model training would not be adversely affected by 

anomalous data points. 

 

3.4 Correlation Analysis 

Correlation analysis was conducted to identify the relationships between different variables and the target variable, 

'target_H5_HPAI'. This analysis was crucial for understanding the underlying patterns in the data and selecting the most relevant 

features for model training. The correlation matrix was calculated to determine the strength and direction of relationships between 

variables. 

 

A heatmap was generated using the seaborn library to visualize the correlation matrix. This visualization highlighted the strength 

and direction of the relationships between variables, aiding in the selection of features most strongly associated with the target 

variable. The heatmap provided a clear and intuitive way to understand the data's structure and identify key features for the predictive 

models. 

 

3.5 Data Splitting and Standardization 

The cleaned dataset was split into training and testing sets, with 70% allocated for training and 30% for testing. This split was 

performed to evaluate the model's performance on unseen data. Standardization was applied to the features to ensure they had a 

mean of zero and a standard deviation of one, facilitating better convergence during model training. 

 

The StandardScaler from the sklearn library was used for this purpose. By standardizing the data, the model training process was 

made more efficient, and the models were able to converge more quickly and accurately. 

 

3.6 Machine Learning Model Training and Evaluation 

Five machine learning models were employed to predict the presence of H5 HPAI: Logistic Regression, Decision Tree, Random 

Forest, Support Vector Machine (SVM), and Gradient Boosting. These models were chosen for their proven efficacy in classification 

tasks (Bishop, 2006; Breiman, 2001). 

 

Each model was trained on the training set and evaluated on the testing set. The performance metrics included the Receiver Operating 

Characteristic (ROC) curve and Area Under the Curve (AUC) to assess the models' diagnostic ability. The ROC curve plots the true 
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positive rate against the false positive rate at various threshold settings, providing insight into the model's performance. The AUC 

provides a single scalar value to compare the performance of different models, with a higher AUC indicating better performance 

(Fawcett, 2006). 

3.7 Deep Learning Model Training and Evaluation 

Two deep learning models, an Artificial Neural Network (ANN) and a Convolutional Neural Network (CNN), were implemented 

to further enhance predictive accuracy. The ANN was composed of multiple fully connected layers, enabling it to learn complex 

representations from the input data. The CNN, designed for one-dimensional data, included convolutional layers that extracted high-

level features, followed by fully connected layers for classification (LeCun et al., 2015; Goodfellow et al., 2016). 

 

The labels were converted to categorical format for compatibility with the deep learning models. The ANN was trained using the 

categorical cross-entropy loss function and the Adam optimizer. The model's architecture included an input layer, two hidden layers 

with ReLU activation functions, and an output layer with a softmax activation function. 

 

For the CNN, the input data was reshaped to fit the expected input shape of the convolutional layers. The model architecture included 

a convolutional layer with ReLU activation, a flattening layer, a fully connected hidden layer, and an output layer with a softmax 

activation function. The CNN was trained using the same loss function and optimizer as the ANN. 

 

The performance of the deep learning models was evaluated using the same metrics as the ML models, with ROC curves plotted to 

compare their effectiveness. The ROC curves for the deep learning models were plotted alongside those of the machine learning 

models to provide a comprehensive comparison of their performance. 

 

4. RESULTS 
4.1 Data Preprocessing and Analysis 

The dataset was initially loaded and underwent several preprocessing steps to ensure data quality and integrity. The following steps 

outline the preprocessing process: 

Data Conversion: Relevant columns were converted to numerical types to facilitate analysis and modelling. Outlier Removal: 

Outliers were identified and removed to prevent skewed results and improve model performance. 

 

The outlier graphs provide crucial insights into the data's variability and potential anomalies across different dimensions. In the 

"Outliers in Day" graph, we observe that the data points are densely packed, indicating frequent occurrences, with outliers scattered 

irregularly, suggesting unusual days. The "Outliers in Latitude" and "Outliers in Longitude" graphs reveal geographical data 

distribution, with clusters of clean data points in expected ranges and outliers indicating abnormal or incorrect geographic entries. 

The "Outliers in Time" graph shows a dense distribution of clean data points, while outliers suggest rare or erroneous time records, 

especially notable near zero. Lastly, the "Outliers in Year" graph highlights the concentration of data in recent years, with outliers 

indicating possible errors or entries outside the typical data range. These visualizations help identify potential errors, unusual 

patterns, and areas requiring further investigation or data cleaning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Identification of Outliers in Various Data Dimensions 

 

Correlation Analysis: A correlation matrix was calculated to understand the relationships between features and the target variable, 

target_H5_HPAI. This matrix helped identify which features were most strongly associated with the target. 
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Table 1: The Correlation Analysis revealed the Following Key Relationships 

Feature Correlation with target_H5_HPAI 

target_H5_HPAI 1.000000 

Longitude 0.083694 

Month 0.065937 

Latitutde 0.055347 

Time 0.055347 

Time 0.055347 

Year 0.000873 

Day -0.018028 

 

The correlation matrix visually represents the correlation coefficients between pairs of variables, ranging from -1 (perfect negative 

correlation) to 1 (perfect positive correlation), with 0 indicating no linear relationship. Key observations include moderate positive 

correlations between Year and Time (0.29), and Longitude and Latitude (0.36). Very weak positive relationships are seen for 

target_H5_HPAI with Month (0.07), Time (0.05), Longitude (0.08), and Latitude (0.06). Weak negative correlations exist between 

Year and Month (-0.17), and Longitude and Month (-0.11). Minimal relationships are observed between Day and other variables. 

The correlation coefficient r, calculated as 
𝚺 (𝐱𝐢− 𝐱̄)(𝐲𝐢− 𝐲ˉ) 

√𝚺 (𝐱𝐢− 𝐱̄)𝟐 𝚺 (𝐲𝐢− 𝐲ˉ)𝟐
, normalizes covariance by the standard deviations, providing a 

dimensionless value indicating the linear relationship's strength and direction. These coefficients help identify significant predictors 

for modeling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 2. Correlation Matrix of Dataset Variable 

4.2 Machine Learning Model Training and Evaluation 

The dataset was split into training and testing sets to evaluate the performance of different machine learning models. The features 

were standardized to ensure that they were on a similar scale, which is crucial for certain machine learning algorithms. 

 

Five machine learning models were trained and evaluated: Logistic Regression, Decision Tree, Random Forest, Support Vector 

Machine (SVM), and Gradient Boosting. 

 

4.3 Model Performance Metrics 

To evaluate the performance of various machine learning models, we trained and tested five different models: Logistic Regression, 

Decision Tree, Random Forest, Support Vector Machine (SVM), and Gradient Boosting. The performance of these models was 

assessed using the ROC AUC (Receiver Operating Characteristic Area Under Curve) score, which measures the ability of the model 

to distinguish between positive and negative classes.

 

Model ROC AUC Score 

Logistic Regression 0.50 

Decision Tree 0.70 
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Random Forest 0.70 

SVM 0.55 

Gradient Boosting 0.60 

4.4 Logistic Regression 

The ROC AUC score for the Logistic Regression model is 0.50, indicating that the model has no discrimination capability between 

the positive and negative classes. This score is equivalent to random guessing. 

 

4.5 Decision Tree 

The Decision Tree model achieved a ROC AUC score of 0.70. This indicates a good ability to distinguish between classes, suggesting 

that the model captures relevant patterns in the data effectively. 

 

4.6 Random Forest 

Like the Decision Tree, the Random Forest model also achieved a ROC AUC score of 0.70. The ensemble method of Random 

Forest, which aggregates the results of multiple decision trees, contributes to its robust performance. 

 

4.7 Support Vector Machine (SVM) 

The SVM model has a ROC AUC score of 0.55, which is slightly better than random guessing. This suggests that while the SVM 

model captures some useful information from the data, its performance is not as strong as the Decision Tree or Random Forest 

models. 

 

4.8 Gradient Boosting 

The Gradient Boosting model achieved a ROC AUC score of 0.60. This score indicates a moderate ability to distinguish between 

classes, and while it performs better than the Logistic Regression and SVM models, it is not as strong as the Decision Tree and 

Random Forest models. 

 

4.9 Visual Representation 

The bar chart in Figure 2 provides a visual comparison of the ROC AUC scores for the different models. It clearly shows the superior 

performance of the Decision Tree and Random Forest models compared to Logistic Regression, SVM, and Gradient Boosting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Model Accuracy Comparison

The bar chart compares the ROC AUC scores of five different machine learning models: Logistic Regression, Decision Tree, 

Random Forest, SVM, and Gradient Boosting. The Decision Tree and Random Forest models show the highest ROC AUC scores 

at 0.70, indicating strong performance in distinguishing between classes. The Logistic Regression model has the lowest ROC AUC 

score at 0.50, equivalent to random guessing. The SVM and Gradient Boosting models have intermediate scores of 0.55 and 0.60, 

respectively. 

 

These results highlight the importance of model selection in machine learning tasks. Decision Tree and Random Forest models were 

particularly effective in this context, demonstrating their ability to capture complex patterns in the data and provide accurate 

predictions. Future work could focus on tuning these models further or exploring additional algorithms to improve performance. 

 

4.10 Receiver Operating Characteristics 

The Receiver Operating Characteristic (ROC) curve illustrated in Figure 3 compares the performance of five different machine 

learning models: Logistic Regression, Decision Tree, Random Forest, Support Vector Machine (SVM), and Gradient Boosting. The 
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ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings, providing a 

comprehensive evaluation of the models' classification abilities. The area under the curve (AUC) quantifies the overall performance, 

with higher values indicating better model performance. 

In this graph, the Random Forest and Decision Tree models both exhibit an AUC of 0.91, demonstrating superior performance with 

high TPR and low FPR across various thresholds. This indicates that these models effectively distinguish between the positive and 

negative classes. The Gradient Boosting model, with an AUC of 0.77, performs moderately well, showing a balanced trade-off 

between TPR and FPR. The Logistic Regression model has an AUC of 0.61, which is better than random guessing but indicates 

limited discrimination capability. The SVM model, with the lowest AUC of 0.46, performs poorly, unable to effectively distinguish 

between classes. This comprehensive comparison emphasizes the importance of selecting robust models like Random Forest and 

Decision Tree for classification tasks in this dataset.

 

Model ROC AUC Score 

Logistic Regression 0.61 

Decision Tree 0.91 

Random Forest 0.91 

SVM 0.46 

Gradient Boosting 0.77 

 

 
Fig 4: Receiver Operating Characteristic (ROC) Curve 

 

4.11 Receiver Operating Characteristic (ROC) Analysis 

The ROC curve presented in Figure 4 illustrates the performance of two deep learning models: a standard Neural Network and a 

Convolutional Neural Network (CNN). The x-axis represents the False Positive Rate (FPR), while the y-axis represents the True 

Positive Rate (TPR). The ROC curve is a graphical representation used to evaluate the diagnostic ability of binary classifiers, with 

the area under the ROC curve (AUC) providing a measure of the model's overall performance. 

 

4.12 Neural Network 

The ROC curve for the Neural Network is depicted by the blue line. The AUC for the Neural Network is calculated to be 0.80, 

indicating a strong model performance. An AUC of 0.80 suggests that the model has a good balance between sensitivity (true positive 

rate) and specificity (false positive rate). In other words, the model is capable of distinguishing between the positive and negative 

classes effectively. This performance demonstrates that the Neural Network is able to correctly classify instances with high accuracy, 

minimizing both false positives and false negatives. 

 

4.13 Convolutional Neural Network 

The ROC curve for the Convolutional Neural Network is depicted by the orange line. The AUC for the CNN is calculated to be 

0.78, which is slightly lower than the AUC of the Neural Network. Despite this, an AUC of 0.78 still indicates good model 

performance. The CNN shows a relatively strong capability in distinguishing between the positive and negative classes, although it 

is marginally less effective than the standard Neural Network in this datase 
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Fig 5: Receiver Operating Characteristic for Deep Learning Models 

4.14 Comparison of Models 

Both models exhibit ROC curves that lie above the diagonal line, which represents the performance of a random classifier with an 

AUC of 0.50. The comparison indicates that both the Neural Network and the CNN significantly outperform a random classifier, 

showcasing their utility in the classification task at hand. The AUC values suggest that while both models perform well, the standard 

Neural Network has a slight edge over the CNN in terms of overall classification performance. This difference might be attributed 

to the specific characteristics of the dataset and the nature of the features used in the models. The standard Neural Network's higher 

AUC implies better overall accuracy and reliability in prediction compared to the CNN. 

 

.15 Statistical Significance 

The observed difference in AUC values (0.80 for the Neural Network and 0.78 for the CNN) may not be statistically significant. To 

ascertain the statistical significance of this difference, further analysis involving confidence intervals for the AUC values or 

hypothesis testing (e.g., DeLong's test) would be necessary. Such analysis would help determine if the observed performance 

difference is due to random variation or if it is a consistent trend across multiple datasets or cross-validation folds. 

 

5. DISCUSSION 
This study explores the application of advanced machine learning (ML) and deep learning (DL) techniques for predicting avian 

influenza outbreaks, specifically focusing on the H5 highly pathogenic avian influenza (HPAI) strain. The research aimed to compare 

traditional ML models with DL approaches in forecasting outbreaks using a carefully pre-processed dataset. The dataset included 

geographical, temporal, and species-specific data, processed to enhance data integrity by converting categorical variables, removing 

outliers using the Isolation Forest algorithm (Liu et al., 2008), and conducting correlation analysis to identify relevant predictors. 

 

Among the ML models tested, the Random Forest model performed best, achieving the highest Area Under the Curve (AUC) score, 

known for handling non-linear relationships effectively (Breiman, 2001). Decision Tree models showed good performance but 

tended to overfit (Bishop, 2006). Support Vector Machine (SVM) and Gradient Boosting models demonstrated moderate 

performance, with SVM struggling with high dimensionality (Chen et al., 2018). Logistic Regression provided a baseline but lacked 

sophistication for high-dimensional data (Fawcett, 2006). 

 

DL models, specifically Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), significantly improved 

predictive accuracy. ANNs captured complex relationships through multiple layers (Goodfellow et al., 2016), while CNNs, designed 

for spatial hierarchies, excelled in structured grid data like geographical coordinates (LeCun et al., 2015). The CNN outperformed 

traditional ML models, highlighting DL's potential in epidemiological research, consistent with its success in other domains (Miotto 

et al., 2018; Esteva et al., 2019). 

 

Comparative analysis favored DL approaches, particularly CNNs, due to higher AUC scores and superior ability to discern outbreak 

cases. DL models' capacity to learn hierarchical features from data contributed to their accuracy (LeCun et al., 2015; Goodfellow et 

al., 2016), suggesting their potential for enhancing disease management strategies. 

 

Implications for public health include improved outbreak prediction, facilitating timely interventions and resource allocation 

(Brownstein et al., 2009). Future research should validate these models with real-world data and integrate additional sources like 
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environmental conditions and migratory patterns (Shi et al., 2019; Zhou et al., 2020) to enhance predictive power and broaden 

applicability. 

 

CONCLUSION 
This study assesses ML and DL techniques for predicting H5 avian influenza outbreaks. Using a pre-processed dataset with 

numerical conversion and outlier removal, Random Forest achieved the highest AUC. A Convolutional Neural Network (CNN) 

further improved accuracy, surpassing traditional ML models. Integrating these techniques enhances outbreak prediction, informing 

better disease management strategies. Future research should validate these models with real-world data for broader applicability in 

epidemiological settings. 
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