
Published By
EPRA Publishing

CC License

Chief Editor
Dr. A. Singaraj, M.A., M.Phil., Ph.D.

Editor
 Mrs.M.Josephin Immaculate Ruba

EDITORIAL ADVISORS
1. Prof. Dr.Said I.Shalaby, MD,Ph.D.
 Professor & Vice President

Tropical Medicine,
Hepatology & Gastroenterology, NRC,
Academy of Scientific Research and Technology,
Cairo, Egypt.

2. Dr. Mussie T. Tessema,
Associate Professor,
Department of Business Administration,
Winona State University, MN,
United States of America,

3. Dr. Mengsteab Tesfayohannes,
Associate Professor,
Department of Management,
Sigmund Weis School of Business,
Susquehanna University,
Selinsgrove, PENN,
 United States of America,

4. Dr. Ahmed Sebihi
Associate Professor
Islamic Culture and Social Sciences (ICSS),
Department of General Education (DGE),
Gulf Medical University (GMU),
UAE.

5. Dr. Anne Maduka,
Assistant Professor,
Department of Economics,
Anambra State University,
Igbariam Campus,
Nigeria.

6. Dr. D.K. Awasthi, M.SC., Ph.D.
Associate Professor
Department of Chemistry,
Sri J.N.P.G. College,
Charbagh, Lucknow,
Uttar Pradesh. India

7. Dr. Tirtharaj Bhoi, M.A, Ph.D,
Assistant Professor,
School of Social Science,
University of Jammu,
Jammu, Jammu & Kashmir, India.

8. Dr. Pradeep Kumar Choudhury,
 Assistant Professor,

Institute for Studies in Industrial Development,
An ICSSR Research Institute,
New Delhi- 110070, India.

9. Dr. Gyanendra Awasthi, M.Sc., Ph.D., NET
Associate Professor & HOD
Department of Biochemistry,
Dolphin (PG) Institute of Biomedical & Natural
Sciences,

 Dehradun, Uttarakhand, India.
10. Dr. C. Satapathy,
 Director,
 Amity Humanity Foundation,
 Amity Business School, Bhubaneswar,
 Orissa, India.

ISSN (Online): 2455-7838
SJIF Impact Factor : 6.093

Research &
Development

EPRA International Journal of

(IJRD)

Monthly Peer Reviewed & Indexed
International Online Journal

Volume: 4, Issue:4, April 2019

Volume: 4 | Issue: 4 | April| 2019 www.eprajournals.com |252 |

SOFTWARE ASSISTANT USING RASPBERRY PI

Mrs.V.S.Kulkarni
1

Asst.Prof.,Electronics And Telecommunication, WIT, Solapur, India

Akash Dyawarkonda
2

U.G.Student,Electronics And Telecommunication, WIT, Solapur, India

Bharat Kongari
3

U.G.Student,Electronics And Telecommunication, WIT, Solapur, India

Shweta Girgel
4

U.G.Student,Electronics And Telecommunication, WIT, Solapur, India

ABSTRACT

 This project idea is based on building the Software Assistant using Raspberry pi 3 model. This software assistant

is just prototype of the role “Jarvis” in Iron man movie. With this software assistant user can operates it by your

voice command. It can perform all user’s soft work like checking mail, massages, playing music, etc

I. INTRODUCTION

The advent of software assistants has been an
important event in the history of computing. Software
assistants are useful for helping the users of a computer
system automate tasks and accomplish tasks with
minimum human interaction with a machine. The
interaction that takes place between a user and a
software assistant seems natural; the user communicates
using their voice, and the software responds in the same
way.If you have seen the movie Iron Man, you can
perhaps imagine having a software assistant like Tony
Stark’s Jarvis. Does that idea excite you? The movie
inspired me to build my own software assistant software,
Melissa. Such a software assistant can serve in the
Internet of things as well as run a voice-controlled coffee
machine or a voice-controlled drone.

Commercial Software Assistants:
Software assistants are useful for carrying out tasks
such as saving notes, telling you the weather, playing
music, retrieving information, and much more.
Following are some software assistants that are
already available in the market:
Google Now:Developed by Google for Android and
iOS mobile operating systems. It also runs on
computer systems with the Google Chrome web
browser. The best thing about this software is its
voice-recognition ability.
Siri:Developed by Apple and runs only on iOS,
watchOS, and tvOS. Siri is a very advanced personal
assistant with lots of features and capabilities.

SJIF Impact Factor: 6.093 Volume: 4 | Issue: 4 | April | 2019 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Peer Reviewed Journal

 __________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|_______________

Volume: 4 | Issue: 4 | April| 2019 www.eprajournals.com |253 |

II.REQUIRED COMPNENTS
1) Raspberry pi 3 B+

2) Microphone

3) Speakers

4) 3.5” TFT display

III. BASIC CONCEPT OF ANY
SOFTWARE ASSISTANT

For any software assistant three components are
required :

1) Speech to Text conversion(STT)

2) Logic Engine

3) Text to Speech conversion(TTS)

A. Speech to Text (STT)
The STT engine converts the user’s speech into

a text string that can be processed by the logic
engine. This involves recording the user’s voice,
capturing the words from the recording (cancelling
any noise and fixing distortion in the process), and
then using natural language processing (NLP) to
convert the recording to a text string.sample that
performs the STT conversion. This section discusses
that example.
GOOGLE STT
Take a look at this new code snippet:
import speech_recognition as
 sr# obtain audio from the microphone
 = sr.Recognizer()with sr.Microphone() as source:
 print("Say something!")
 audio = r.listen(source)
recognize speech using Google Speech
Recognition
try:
 # for testing purposes, you're just using the
default API key
 # to use another API key, use
`r.recognize_google(audio,
key="GOOGLE_SPEECH_RECOGNITION_API_
KEY")`
 # instead of `r.recognize_google(audio)`
 print("Google Speech Recognition thinks you
said " + r.recognize_google(audio))
except sr.UnknownValueError:
 print("Google Speech Recognition could not
understand audio")
except sr.RequestError as e:

 print("Could not request results from Google
Speech Recognition
WIT.AI STT

If you wish to use Wit.ai STT , use this
snippet in place of the try/except clause used
in the previous code:
recognize speech using Wit.ai
WIT_AI_KEY = "INSERT WIT.AI API
KEY HERE"
try:
 print("Wit.ai thinks you said " +
r.recognize_wit(audio, key=WIT_AI_KEY))
except sr.UnknownValueError:
 print("Wit.ai could not understand audio")
except sr.RequestError as e:
 print("Could not request results from
Wit.ai service; {0}".format(e))
While using the Wit.ai service, you have to
obtain the Wit.ai key stored in
the WIT_AI_KEY constant. You use
the r.recognize_wit() function to pass the
audio and the key as arguments.

B. Logic Engine :
This is the brain of the system. The Logic

engine is based on Artificial Intelligence and Internet
of things, using this both of the systems logic
engine’s intelligence is depend.

To develop logic engine we used python
programming in raspberry pi. . So, you need to have
the Python interpreter installed to run the Python
code files. *nix systems generally have Python
preinstalled.

It handles user queries via a series of if-then-
else clauses in the Python programming language. It
decides what the output should be in response to
specific inputs main.py is the STT engine of your
software, and it is also the entry point to your
program. You need main.py to direct user queries to
its logic engine , which you code in the brain.py file.
The brain.py file will contain a ladder
of if/else clauses to determine what the user wants to
say. If there is a pattern match with one of the
statements, brain.py call the corresponding module.

Figure shows the control flow of the program.
This will be similar for all the modules you develop
for Melissa in future chapters. The difference will be
that some other module is called by brain.py instead
of general_conversations.py.

 __________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|_______________

Volume: 4 | Issue: 4 | April| 2019 www.eprajournals.com |254 |

C. Text To Speech (TTS) :
This component receives the output from Melissa’s logic
engine and converts the string to speech to complete the
interaction with the user.
For this software assistant we are using the linux inbuilt
TTS engine which is espeak
 Here is python coding for developing the Text to
speech engine,
def tts(message):

 """
 This function takes a message as an argument and
converts it to speech depending on the OS.
 """
 if sys.platform == 'darwin':

 tts_engine = 'say'
 return os.system(tts_engine + ' ' + message)
 elif sys.platform == 'linux2' or sys.platform == 'linux':
 tts_engine = 'espeak'
 return os.system(tts_engine + ' "' + message + '"')

Let’s go through the code. The first
two import statements import the os and sys modules.
Then you define a function called tts that takes a
message as an argument. The if statement determines
whether the platform is OS X; then it assigns
the say value to the tts_engine variable and
returns os.system(tts_engine + ' ' + message). This
executes the say command with the message on the
terminal. Similarly, if the platform is Linux based, it
assigns espeak to the tts_engine variable

To test the program, you can add the following
additional line at the bottom of the code:

tts("Hello world")
Save the code, and run the Python file. It should

execute successfully.

IV. General Conversation using software
assistant

What is time ?
Let’s write a new module for telling the time. It will
allow you to ask your assistant the time whenever you
want.

from datetime import datetime
from tts import tts
def what_is_time():

 tts("The time is " +
datetime.strftime(datetime.now(),
'%H:%M:%S'))

In this code, you first import the datetime module
and the datetime function and call datetime.now() in
the tts function, in the what_is_time() function. Also
note that you format the time
using datetime.strftime(), using the format “x hours,
y minutes, z seconds.”
Repeat what I say
This program performs the same function as the
“Repeat What I Say”
def main():
 r = sr.Recognizer()
 with sr.Microphone() as source:
 print("Say something!")
 audio = r.listen(source)
 try:
 speech_text =
r.recognize_google(audio).lower().replace("'", "")
 print("Melissa thinks you said '" + speech_text +
"'")
 except sr.UnknownValueError:
 print("Melissa could not understand audio")
 except sr.RequestError as e:
 print("Could not request results from Google
Speech Recognition service; {0}".format(e))
 tts(speech_text)

Like this we can built general conversation module
using python program. You can build your own
module with new ideas like for asking weather, notes
taking, Home automation, Music player, etc.

V. CONCLUSION

Software Personal Assistance, which can perform
task in offline condition as we given the local
modules to Software assistant. In online condition it
gets more resources to work with. Also, any
peripheral which is connected with the raspberry pi
is can be control with the Software Personal
Assistance, just by giving the command. The local
modules can be added or removed by user as he sees
fit. Also, there is simple option for conversation with
Software assistant, where it learns further.

This software assistant as product helps to people
in their day to day life to live smarter, faster, and
enjoyable. Here is the wide future in software
assistant as can build your own software assistant
and develop it as you want.

REFERENCES

1. Bor-shen Lin, Hsin-ming Wang, and Lin-shan Lee,
“A distributed architecture for cooperative spoken
dialogue agents with coherent dialogue state and
history,” in Proceeding of the 2nd IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU). Citeseer, 1999, vol. 99, p. 4..

 __________|EPRA International Journal of Research and Development (IJRD) |ISSN:2455-7838 (Online) |SJIF Impact Factor: 6.093|_______________

Volume: 4 | Issue: 4 | April| 2019 www.eprajournals.com |255 |

2. Olivier Lemon and Olivier Pietquin, “Machine learning
for spoken dialogue systems,” in Proceedings of the 7th
Annual Conference of the International Speech
Communication Association (Interspeech), 2007, pp.
2685– 2688.

3. Reference Book Building a Software Assistant for
Raspberry Pi by Tany Pant

4. Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefevre, and Olivier Pietquin, “Co-adaptation in spoken `
dialogue systems,” in Natural Interaction with Robots,

