

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 9 | Issue: 10 | October 2024

- Peer Reviewed Journal

ADVANCED COMPUTING: BEST PRACTICES FOR AUTOMATING IMAGE DEPLOYMENT USING DOCKER, CLOUD, AND HPC FOR AI/ML APPLICATIONS

Kamalakannan Balasubramanian

Article DOI: <u>https://doi.org/10.36713/epra18562</u> DOI No: 10.36713/epra18562

INTRODUCTION

Docker has revolutionized how applications are packaged, making it easy to bundle an application with all its dependencies into a standardized unit. When paired with cloud platforms (AWS, GCP, Azure) and High-Performance Computing (HPC) servers, Docker enables rapid deployment and scaling of complex applications, including those utilizing AI/ML (Artificial Intelligence/Machine Learning) algorithms.

This document outlines best practices for automating the deployment of AI/ML applications using Docker, cloud infrastructure, and HPC servers. The focus is on streamlining the development, testing, and production pipeline, particularly in environments where resource-intensive models or datasets are processed.

Abbreviations

Abbreviation Expansion

- HPC High-Performance Computing
- AI/ML Artificial Intelligence/Machine Learning
- AWS Amazon Web Services
- GCP Google Cloud Platform

Problem Statement

In cloud environments like AWS or GCP, where large-scale AI/ML applications are deployed, numerous patches and updates are frequently released, requiring rigorous testing before they are certified. This creates a significant challenge, as testing AI/ML models involves large datasets and computation-heavy processes. In traditional setups, this testing would lead to:

- Long testing cycles due to the manual creation of virtual machines (VMs) and containers.
- Overuse of hardware resources due to the need for multiple VMs for testing and certification.
- Increased complexity in managing resources, especially for large AI/ML datasets and models.

Additionally, AI/ML models often require specialized computing environments that can handle parallel processing and distributed training, which traditional VM setups cannot adequately support.

Solution Approach: Docker on Cloud with HPC for AI/ML Applications

Integrating Docker with cloud platforms (such as AWS or GCP) and HPC servers offers a robust solution for managing the deployment and testing of AI/ML applications. HPC servers provide enhanced computational power, allowing large-scale AI/ML models to be trained and tested efficiently, while Docker simplifies container management.

Key Strategies

- 1. Automated Image Deployment: Using Docker to automate image creation for AI/ML applications and integrate patches in a single container.
- 2. HPC Integration: Leveraging HPC servers available in cloud environments to handle the intensive compute requirements of AI/ML applications, including training neural networks or processing large datasets.
- 3. Automated Testing and Cleanup: Developing scripts to automate container creation for testing and to destroy containers after testing to reduce resource usage.

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 9 | Issue: 10 | October 2024

- Peer Reviewed Journal

Docker Workflow with HPC for AI/ML

Build

Using Docker, create lightweight and portable containers that include the necessary AI/ML libraries, frameworks (e.g., TensorFlow, PyTorch), and dependencies. HPC servers allow these applications to scale across multiple nodes for faster processing.

Ship

Enable seamless distribution of AI/ML containers across cloud environments and HPC clusters (such as those offered by AWS or GCP). Docker ensures consistency across environments and allows for faster iteration during development.

Run

Run complex AI/ML models on HPC-powered cloud environments. Docker's scalability and HPC's high-performance capabilities enable faster training and testing cycles for AI models, handling large-scale computations and datasets efficiently.

Steps for Automating AI/ML Image Deployment Using Docker, Cloud, and HPC

- 1. Provision a Cloud VM with HPC Resources: Create a VM in a cloud environment (AWS, Azure, GCP) with access to HPC resources.
- 2. Install Docker: Set up Docker on the VM to manage containers.
- 3. Configure HPC for Docker: Ensure that the cloud instance is optimized for high-performance tasks, including parallel processing for AI/ML workloads.
- 4. Run AI/ML Models in Containers: Start by deploying AI/ML applications in containers, leveraging Docker's efficiency to bundle all dependencies.
- 5. Use Pre-existing AI/ML Docker Images: Leverage Docker Hub to use pre-built images for common AI/ML frameworks like TensorFlow, PyTorch, or Scikit-learn.
- 6. Customize and Build AI/ML Images: Create custom Docker images for your AI/ML workflows, including models, datasets, and dependencies.
- 7. Push AI/ML Images to Repositories: Publish your custom images to Docker Hub or a private repository for reuse.
- 8. Automate Testing with HPC: Write scripts to automate the creation and destruction of containers for testing AI/ML models, ensuring they can run on HPC clusters in cloud environments.
- 9. Monitor and Optimize Resource Usage: Utilize HPC metrics from cloud platforms to monitor resource allocation and optimize performance during model training and testing.

Benefits of Using Docker and HPC for AI/ML Workflows Quantitative Benefits

- Portability Across Environments: AI/ML models and their dependencies can be easily transferred between different environments without compatibility issues.
- Improved Performance: HPC servers available in cloud environments (AWS, GCP) reduce the training time for AI/ML models by leveraging parallel processing capabilities.
- Faster Testing Cycles: Automating container creation and destruction significantly reduces time spent on repetitive testing tasks.
- Optimized Resource Usage: HPC enables more efficient use of hardware resources, allowing AI/ML applications to scale effectively.

Qualitative Benefits

- Scalability: Docker and HPC allow you to scale AI/ML applications across large clusters of machines, speeding up complex model training.
- Version Control: Track and manage different versions of AI/ML models within Docker containers, simplifying the process of testing and deployment.
- Simplified Maintenance: With Docker, dependencies and environmental configurations are handled within containers, reducing potential compatibility issues.
- Collaboration: Docker containers can be shared easily, enabling collaborative AI/ML development across teams.

SJIF Impact Factor (2024): 8.675| ISI I.F. Value: 1.241| Journal DOI: 10.36713/epra2016 ISSN: 2455-7838(Online)

EPRA International Journal of Research and Development (IJRD)

Volume: 9 | Issue: 10 | October 2024

- Peer Reviewed Journal

Applicability to AI/ML Projects

This best practice can be applied across various AI/ML projects that involve heavy computational requirements, including:

- Model Training: Use HPC for faster training of deep learning models.
- Data Processing: Efficiently process large datasets in parallel using HPC-enhanced Docker containers.
- Continuous Integration/Continuous Deployment (CI/CD): Automate the deployment of AI/ML models across environments while testing in parallel using Docker and HPC.

Learning/Improvements

Future improvements include leveraging advanced orchestration tools like Kubernetes to manage AI/ML containers at scale, ensuring that workloads are distributed effectively across HPC clusters. Additional tools like TensorFlow Serving can be integrated to manage model serving in real-time applications.

CONCLUSION

The combination of Docker, cloud platforms (AWS, GCP), and HPC infrastructure offers a powerful solution for deploying and testing AI/ML applications. By automating image creation, utilizing scalable HPC resources, and streamlining testing processes, organizations can drastically improve their AI/ML deployment cycles, reduce resource consumption, and accelerate innovation.